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Abstract

Extracellular matrix is composed by a complex array of molecules that together provide structural 

and functional support to cells. These properties are mainly mediated by the activity of 

collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM 

composition is tissue-specific and could include matricellular proteins whose primary role is to 

modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during 

injury, inflammation and disease. Particularly, they are closely associated with the progression and 

prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an 

overview of the potential use of matricellular proteins in drug delivery including the generation of 

therapeutic agents based on the properties and structures of these proteins as well as their utility as 

biomarkers for specific diseases.
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1. Introduction

Matricellular proteins constitute a class of molecules linked by their ability to function as 

modulators of cell-matrix interactions without serving primary roles as structural 

components (1). Originally, this genetically unrelated group consisted of several 

thrombospondin (TSP) family members, osteopontin (OPN), tenascin-C (TN-C), and 

secreted protein acidic and rich in cysteines (SPARC). More recently, the group has 

expanded to include additional proteins such as periostin, autotaxin, PEDF, fibulin-5 and 

other tenascins that contribute to its functional complexity. In fact, for some matricellular 

proteins there is now an appreciation for significant intracellular functions (2–7). Because of 

their ability to interact with both matricellular proteins and cell surface receptors, these 

proteins have been shown to influence ECM assembly (collagen secretion, fibrillogenesis) 

as well as numerous cell functions (adhesion, proliferation, migration). Despite the ability of 

the matricellular proteins to influence these significant processes, mice lacking one or more 

matricellular genes are, in most cases, viable and fertile and do not display remarkable 

phenotypes (8). These observations suggested that the matricellular proteins are dispensable 

during development. However, some matricellular proteins, including autotaxin and 

members of the CCN family, are necessary for development, and deletion is embryonic 

lethal (9, 10). In addition, their expression in adult tissues is usually low but is highly 

induced in various pathologies or injuries (11–14). Therefore, investigators have sought to 

establish functions in various disease and injury models. Such studies have expanded our 

understanding of the matricellular proteins and have suggested that they can be exploited in 

the context of developing therapeutic strategies, and many of those strategies have advanced 

to the clinic (Table 1) (15). Specifically, because they have diverse functions in many 

tissues, they can they can be used in multiple ways to enable effective drug delivery. Based 
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on their expression and contribution to various pathologies, matricellular proteins could 

serve as either targets for inhibition or as a basis for the development of therapeutic agents 

(15–19). In addition, their ability to interact with both cells and matrix makes them suitable 

for localized drug delivery. Finally, the presence of certain matricellular proteins, both in 

diseased tissue or in circulation, can indicate the state and progression of the disease and 

thus could be useful biomarkers for assessing clinical outcomes (Table 2). Therefore, several 

matricellular proteins have been suggested as diagnostic or predictive biomarkers for various 

diseases ranging from cardiovascular pathologies to cancer (20, 21).

2.1 Thrombospondins and drug delivery

Thrombospondins (TSP) are a family of secreted multifunctional ECM proteins with five 

members (TSP 1-5) (8). TSP-1 and -2 are synthesized as homotrimers with a molecular 

weight of 450,000. TSP-3, -4 and -5 are synthesized as homopentamers with molecular 

weights of each monomer ranging from 105,000 to160,000. TSP-1 and TSP-2 share a high 

degree of homology and display potent anti-angiogenic activity (22). However, they display 

distinct spatiotemporal expression patterns and functional diversity due to differences in 

their promoter regions (23). For example, both are implicated in wound healing but TSP-1, 

which is primarily released by platelets and secreted by monocytes/macrophages, plays a 

significant role in the early inflammatory phase. In contrast, TSP-2 is mainly secreted by 

fibroblasts and influences matrix remodeling. In addition to angiogenesis, TSPs have been 

implicated in many other processes including ECM synthesis and assembly, synaptogenesis, 

and inflammation (24–26). Despite the differences in structure and expression patterns, 

TSPs have been implicated in a variety of diseases including cancers, glaucoma, pulmonary 

and cardiovascular diseases, and kidney diseases (14, 27–30). Because of their significant 

roles in these conditions, both the overexpression and inhibitory targeting of TSPs have been 

pursued as therapeutic treatments (31–34).

The primary biological functions of TSP-1 are platelet aggregation, modulation of the 

inflammatory response, and the regulation of angiogenesis (35). Of these roles, the 

antiangiogenic effect is the most studied (36). In cancer, many oncogenic mutations result in 

the downregulation of TSP-1, which enable a proangiogenic phenotype (37). The restoration 

or induction of TSP-1 signaling in the tumor environment has the potential to restrict tumor 

growth by decreasing the tumor vasculature. This effect was observed in human skin 

carcinoma cells that were engineered to express TSP-1, the resulting tumors had greatly 

reduced vascularity and exhibited restricted growth (38). The effect was reversed with 

antisense inhibition of TSP-1. The inhibition of angiogenesis and restriction of tumor growth 

was also observed in cutaneous squamous cell carcinomas, breast carcinomas, and in human 

gliomas transfected to overexpress TSP-1 (39–41).

The initial attempt to create a therapy out of TSP-1’s antiangiogenic properties was with the 

isolation of antiangiogenic peptides from the larger TSP-1 protein (42). A recombinant 

protein composed of 3 type 1 repeats (TSR) from the antiangiogenic region of TSP-1was 

designed to avoid using the full length protein. 3TSR treatment was initially proven 

effective at inhibiting lung and pancreatic tumor growth (43, 44). Antiangiogenic treatment 

with 3TSR has also been used in combination with traditional cytotoxic chemotherapy. In an 

Sawyer and Kyriakides Page 3

Adv Drug Deliv Rev. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



advanced ovarian cancer model, treatment with 3TSR normalized the tumor vasculature and 

increased the efficacy of carboplatin delivered by either a maximum tolerated dose or 

metronomic dosing regimens (45). Similary, lexatumumab, a humanized antibody against 

TRAIL receptor DR5, was used in combination with 3TSR to attack tumor endothelial cells. 

The combination therapy was shown to be more effective than either drug as a monotherapy 

in treating a colon cancer model in mice (46). This synergy results from 3TSRs ability to 

upregulate DR5, and prime the tumor cells for treatment with the antibody (47).

In addition to 3TSR, individual peptides from TSP-1 were created and utilized for 

antiangiogenic chemotherapy (48). The two peptide mimetics, named ABT-510 and 

ABT-526, were shown to be effective at inhibiting angiogenesis and tumor growth in both 

mouse cancer models and naturally occurring cancers in dogs (48–50). An initial phase 1 

study of ABT-510 in humans showed linear pharmokinetics across all doses, but continuous 

infusions resulted in pain at the injection site, which was minimized by bolus dosing (51). 

Further clinical trials investigated ABT-510 as a monotherapy for patients with advanced 

soft tissue sarcoma, renal cell carcinoma, and metastatic melanoma (52–54). In each case 

ABT-510 exhibit a good safety profile, but failed to produce clinical responses. ABT-510 

was used in additional Phase 1 clinical trials in combination with 5-fluoruracil and 

leucovorin, or gemcitabine and cisplatin, for solid tumors, and with temozolomide and 

radiation as a treatment for glioblastoma (55–57). Each study noted a strong safety profile 

for ABT-510 as part of a combination therapy. Additional combination therapies are being 

examined in preclinical models to build on ABT-510s antiangiogenic capability (58, 59).

Like TSP-1, TSP-2 is antiangiogenic and a potent inhibitor of tumor growth (60). Cell-based 

techniques have been developed to provide local delivery of TSP-2, and could prove useful 

for cancer treatment, macular degeneration, or other diseases of aberrant angiogenesis (61). 

However, TSP-2 also plays a role in ECM assembly, wound healing, and the foreign body 

response (62–64). Wounds in TSP-2 null mice appear to heal faster, produce less scarring, 

and produce an irregular, highly vascularized, granulation tissue. Injection of polymer-based 

delivery vehicles loaded with antisense TSP-2 cDNA was able to reproduce the increased 

angiogenesis and irregular matrix remodeling observed in the null mice (65).

Implants in TSP-2 null mice induce an altered foreign body response that results in more 

vascularized capsules, when compared to WT controls. A gene-activated matrix that 

delivered anti-sense TSP-2 cDNA was able to induce local transfection and yield a 

vascularized capsule similar to TSP-2 null mice (66). Looser, more vascularized capsules 

could enable the use of implantable devices, like glucose sensors for diabetics. A reduced 

FBR would also be advantageous for vascular grafts, where adverse remodeling after 

implantation can lead to neointimal hyperplasia and restenosis. One potential solution, a 

vascular graft coated in gene delivery vehicles for TSP-2 siRNA, showed the ability to 

transfect adhered aortic smooth muscle cells and knockdown TSP-2 (67).

2.2 Osteopontin and drug delivery

OPN, also known as bone sialoprotein I (BSP-1 or BNSP) is a highly negatively charged, 

extracellular matrix protein that is heavily glycosylated and phosphorylated (68–70). Both 

the extensive presence of acidic amino acids and many phosphate groups contribute to its 
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negative charge. In addition to phosphorylation, OPN undergoes glycosylation and 

sulphation (71). Moreover, full length OPN can be modified via enzymatic digestions by 

thrombin and carboxypeptidase C that expose cryptic sequences and remove the C-terminal 

amino acids, respectively. Splice variants of OPN have also been described with expression 

patterns that appear to be cancer-specific (72). Coupled with the ability of OPN to interact 

with multiple receptors, the existence of multiple OPN isoforms contribute to its functional 

complexity. Even though OPN was first identified as a major constituent of bone with 

prominent roles in bone formation and calcification, it is now appreciated that it is a 

multifunctional molecule with critical roles in physiology and pathology that are primarily 

dependent on its spatiotemporal expression. Consistent with its extensive associations with 

numerous processes, OPN has been shown to be expressed in multiple cell types including 

fibroblasts, various bone cells, chondrocytes, immune and inflammatory cells, and vascular 

cells and it is associated with cell attachment via integrins, chemotaxis, and survival/

apoptosis (68). In terms of physiological processes, OPN functions in bone mineralization 

and remodeling, angiogenesis, and immune and cardiovascular functions (68, 69, 73). OPN 

has also been linked to many pathological conditions such as skeletal disorders, cancer, 

rheumatoid arthritis, multiple sclerosis, atherosclerosis and heart disease (68, 73–80).

OPN has been shown to play a role in the epithelial to mesenchymal transition (EMT), a 

process where epithelial cells lose polarity and gain motility (18). In cancer, EMT generally 

precedes growth and metastasis, which makes OPN a likely biomarker for disease 

progression. In colon, prostate, pancreatic, head and neck, and metastatic breast cancers, 

expression of OPN is correlated with disease progression and decreased survival (81–86). 

Osteopontin is also strongly associated with metastasis, particularly with bone metastasis, 

which makes it a good biomarker for disease progression in many types of cancers (87, 88).

The role of OPN in the growth and metastasis of multiple cancers is well-known, and there 

have been multiple studies examining OPN as a therapeutic target (74, 89). The anticancer 

effects of dietary genistein (an isoflavone found in soy bean), resveratrol, curcumin, and 

thalidomide in animal cancer models was partially attributed to each compounds ability to 

decrease OPN (90–93). Posttrascriptional gene silencing using siRNA or shRNA has also 

been used to silence OPN expression in animal models of cancer. The technique has been 

used extensively in models of liver and gastric cancers, with knockdown of OPN resulting in 

decreased growth, invasion, and angiogenesis (21). Similar results were seen in vitro and in 

vivo with breast, oral, and endometrial cancer cell lines (94–96). As with other matricellular 

proteins, aptamers, small molecule inhibitors, and antibodies can also be used 

therapeutically (74, 97).

An alternate approach to treating cancer, via the inhibition of OPN, is by attempting to 

prevent metastasis. To examine this approach Yu et. al. used an orthotopic mouse breast 

cancer model that metastasized to the lungs (98). Two weeks after tumor inoculation, 

shRNA against OPN was delivered as an aerosol into the lungs of the mice. The shRNA 

decreased the levels of OPN in the lung tissue and prevented metastasis up to two months 

after application.
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Outside of cancer, OPN has been associated with a variety of other diseases. A recent study 

of OPN as a biomarker for sepsis, determined that plasma OPN could serve as a prognostic 

biomarker for a variety of critically ill patients (99). This increase in plasma OPN was 

attributed to increased levels TNF-α and IL-1, which are increased in inflammation and 

stimulate the expression of OPN. Plasma OPN also correlated with disease severity in both 

alcoholic liver cirrhosis and hepatic fibrosis from hepatitis C virus infection (100, 101). 

Moreover, hydrodynamic intravenous injection of OPN siRNA reduced liver tissue injury in 

a murine model of concanavalin A (ConA)-induced fulminant hepatitis (102).

Osteopontin has also been shown to be upregulated during oxidative stress, making it a 

biomarker for vascular diseases (103–105). In a mouse stroke model, OPN increased after 

injury, reaching peak levels 5 days post-occlusion (106). In humans, OPN increased after 

stroke, and greater levels in plasma correlated with disability and decreased functional 

outcome (104, 107).

The use of OPN as a target or treatment for cardiac disease is complicated by the need to 

balance inflammation, angiogenesis, and fibrosis (19). However, in the CNS, OPN is 

neuroprotective when administered after an ischemic event (108). The neuroprotective effect 

is mediated via RGD motif and signaling via Akt and MAPK. As a therapy, both OPN 

peptide mimics and OPN containing gelatin nanoparticles were neuroprotective in a mouse 

MCAO stroke model after intranasal administration (109–111).

Outside of OPNs use as an active agent or therapeutic target, the adhesive capability of 

OPN, mediated by a variety of binding motifs, makes it a good candidate for integrative 

biomaterial coatings and implants (112). For example, surface treatment of positively 

charged polymer (p(HEMA-co-AEMA) with oriented OPN reduced the foreign body 

response in a mouse implant model (113). Mixtures of OPN and gelatin have shown 

improved integration in both tooth and bone repair (114, 115). The adhesive capacity can 

also be used to direct the cellular coating of biomaterial implants. Endothelial progenitor 

cells were shown to increase adhesion and spreading on a surface coated with OPN (116). 

Similarly, mesenchymal stem cells showed attachment, spreading, and motility on OPN 

coated hydroxyapatite and gold surfaces, which could be potentially useful as orthopedic 

implants (117). Finally, in a murine dorsal air sac assay the OPN-derived peptide 

SVVYGLR induced an angiogenic response similar to vascular endothelial growth factor 

(VEGF) (118).

2.3 Tenascins and drug delivery

Four molecules, TN-C, TN-R, TN-W, and TN-X make up the TN family. These large 

oligomeric proteins are homologous in structure and are made as homotrimers or hexamers 

that contain tandem epidermal growth factor and fibronectin type III repeats and a 

fibrinogen homology domain (119, 120). As a family, the tenascins have been shown to play 

roles in cancer, fibrosis, and the function of the central nervous system (CNS) (120, 121). 

However, more specialized roles in physiological and pathological conditions have been 

described for each member. TN-C is a hexameric protein with a molecular weight of 220,00 

and is the most widely studied member of the family (122, 123). It has anti-adhesive 

properties that are mediated by its ability to interact with fibronectin. In addition, isoforms 
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of TN-C generated via alternative splicing have shown functional heterogeneity that 

includes effects on cell proliferation and migration. Thus far, TN-C has been implicated in 

various diseases including cancers and sarcomas, fibrosis, and cardiovascular disease (124–

127). TN-R, TN-W, and TN-X exist in multiple isoforms and are less well studied with 

limited reports linking them to vascular calcification, Ehlers-Danlos syndrome, and CNS 

diseases (128–131).

In cancer, TN-C is produced by both the tumor and stromal cells in the primary tumor and as 

a part of the metastatic niche (119). TN-C supports the growth and metastasis of neoplasms 

by promoting proliferation, migration, angiogenesis, metastasis, and aiding in the EMT 

(132–134). In breast cancer, TN-C expression is correlated with disease progression and 

relapse by metastasis to the lung and is a potential biomarker for the disease (135, 136). 

Similarly, TN-C has also been noted as a biomarker for pancreatic, bladder, colorectal 

cancers, and glioma (137–141). Therapeutic inhibition of TN-C is a possible treatment 

strategy in these models as well, which was illustrated in a mouse breast cancer model when 

cells treated with shRNA against TN-C produced fewer metastases (135).

A great amount of research has been conducted on the relationship between TN-C and 

glioma. Expression of TN-C in glioma is associated with increased invasion, recurrence, and 

poor prognosis (142). Encouragingly, initial research using glioma cell lines showed that 

inhibition of TN-C using antibodies resulting in decreased proliferation and migration (143). 

As a result, one of the first studies of RNAi in humans was a study that injected dsRNA 

targeting TN-C into the brains of patients with recurrent gliomas (144). After positive results 

in the initial, 8 person, study, a larger 46 person trial was conducted (145). The results 

showed an improvement in survival and disease score, but the observed benefits were not 

definitively linked to therapeutic gene silencing. However, the study was a promising first 

step towards a new therapy for glioma, and there have been numerous advances in RNAi 

technology since the completion of the study.

Another way the overexpression of TN-C can be used to treat brain tumors is by using 

targeting ligands to localize toxins or radiotherapeutics. Using this strategy, an aptamer 

against TN-C was able to localize imaging agents to intracranial tumors, indicating potential 

as a therapeutic (146). An alternative to aptamers, antibodies against TN-C have been 

developed, tagged with radiolabels, and are able to specifically target intracranial tumors 

from i.v. administration (147, 148). One therapeutic modality, referred to as an avidin-biotin 

pretargeting system, used systemic administration of a biotinylated anti-tenascin antibody, 

followed by avidin administration and then subsequent administration of a biotinylated 

radioligand to provide radiotherapy (149).

Anti-TN-C antibodies were also used in intracranially delivered radiotherapy. Phase one 

safety studies showed good tolerability with few instances of hematologic toxicity of TN-C 

targeted radioligands administered into the resection cavity of patients with recurrent or 

newly diagnosed glioma (150, 151). Follow up studies evaluated new antibodies, 

radioligands, patient populations, and dosing methods, all with promising results for the 

intracranially delivered therapeutic (150, 152–155). The progression free survival achieved 

with the local administration of the targeted radiotherapy compared favorably with Gliadel, 
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a locally delivered chemotherapeutic (156). The ability of TN-C antibodies to target 

radiotherapies could conceivably be extended to larger drug delivery vehicles delivered 

intracranially (157, 158).

TN-C also plays a role in cardiovascular disease. After myocardial infarction, TN-C is 

transiently expressed at the border of the injury and is not expressed in the mature scar (14). 

Experiments in TN-C null mice have demonstrated that it promotes cell migration in the 

early phase, but may contribute to fibrosis at later stages (159, 160). This highlights the 

multifunctional role of TN-C in cardiac remodeling, which involves the recruitment of 

myofibroblasts, collagen fiber formation, and angiogenesis that promote repair, as well as 

the creation of a de-adhesive state, upregulation of MMPs, and enhancement of 

inflammation that contribute to fibrosis (19). As such, TN-C is a reported biomarker for a 

number of cardiovascular diseases, including: dilated cardiomyopathy, coronary plaque 

rupture, heart failure, and acute myocardial infarction (161–166). For cardiovascular 

imaging, a labeled TN-C antibody has been used to noninvasively detect remodeling in rats 

after infarction, and could potentially be used to look for left ventricular remodeling, which 

can lead to heart failure in humans (167).

In vascular disease, TN-C has been shown to accelerate neointimal formation (168, 169). 

The formation was reduced in TN-C-null mice, identifying a possible therapeutic target. 

Towards this end, PLGA microparticles have been fabricated to deliver an antisense 

oligonucleotide against TN-C and are able to reduce smooth muscle cell proliferation and 

migration (170). Tenascin-C is also found in atherosclerotic plaques, and a labeled TN-C 

antibody was able to successfully image them in rats (171). The characteristics that make 

TN-C deleterious for vascular grafts could make it advantageous for aneurysm treatment. 

This was evident in a study that implanted TN-C coated platinum coils into a rat aneurysm 

model and observed accelerated organization and decreased aneurysm volume (172).

Tenascin-C can also serve as a biomarker and potential therapeutic for inflammatory 

conditions. TN-C is expressed at sites of damage and inflammation in rheumatoid joints, and 

is required to maintain inflammation (173). A preclinical investigation of a TN-C targeting 

antibody conjugated to IL10 (F8-IL10), successfully inhibited the progression of arthritis in 

a mouse model and showed a good safety profile in monkeys (174). An update on the Phase 

1b study of F8-IL10 noted early beneficial effects and no dose-limiting toxicities (175).

Early promising results have also been observed in the connection between Alzheimer’s 

disease and TN-C (176). TN-C was noticed to be upregulated in cultured microglial cells 

challenged with amyloid β peptide and in the brains of mouse that overexpress a mutated 

amyloid β. Crossbreeding the amyloid β overexpressing mouse into a TN-C null mouse 

resulted in a reduced amyloid β load and improved disease pathogenesis, indicating an 

exciting new possible therapy.

While TN-C is the most studied member of the tenascin family, TN-W also plays a role in 

the progression of cancer (134). TN-W is present in many solid tumors, including colon and 

breast cancers, and functions in the same manner as TN-C, but its presence in healthy tissues 

is more restricted (177). Further studies have shown that TN-W could be an effective 
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biomarker for glioma, melanomas, pancreas, kidney, and lung carcinomas, and warrants 

further study alongside TN-C as a biomarker and therapeutic target (20).

2.4 CCNs and drug delivery

CCN intercellular signaling proteins consist of six members that make the CCN family of 

extracellular matrix (ECM)-associated signaling proteins (178–182). Based on the first three 

members of this family (CYR61, CTGF, and NOV; now known as CCN1, CCN2, and 

CCN3, respectively) the acronym CCN was selected (183). WISP1, WISP2, and WISP3 

were also added to the family as CCN4, CCN5, and CCN6. All the CCNs are characterized 

by having four conserved cysteine-rich domains. These include an insulin-like growth factor 

binding protein (IGFBP) domain (domain I), a Von Willebrand factor domain (domain II), a 

thrombospondin-homology domain (domain III), and a cysteine knot, heparin-binding 

domain (domain IV). Despite early studies suggesting that CCNs had growth factor-like 

activities, it is now well accepted that they are matricellular proteins with diverse functions. 

Importantly, consistent with the matricellular concept, CCN proteins are involved in the 

integration of signals between the extracellular matrix and the cell surface. Recent studies 

have also indicated that they play significant roles in several diseases and are considered 

valid candidates for either therapeutic targeting or development of therapeutics (184, 185). 

These include diseases related to chronic inflammation such as rheumatoid arthritis, 

atherosclerosis, diabetes-related pathologies, as well as hematological malignancies, and 

many cancers.

Expression of the CCN family of matricellular proteins is often correlated with increased 

vascular density, growth, and metastasis (179, 185). In fact, the increased presence of one or 

multiple members of the CCN family is associated with poor prognosis in breast, prostate, 

pancreatic, renal, bone, head and neck, and brain cancers (186–190). More specifically, 

CCN4 is upregulated in early stages of prostate cancer and correlated with higher circulating 

levels of the protein (191). CCN5 has been correlated with decreased progression free 

survival and overall survival in patients with astrocytomas (192). Additionally, CCN1 can 

be used as a biomarker to predict poor prognosis in patients with esophageal squamous cell 

carcinoma (193).

The overexpression of the CCN family during the growth and metastasis of cancer presents 

an opportunity for therapeutic intervention (184). Pancreatic, ovarian, and prostate cancer 

xenografts showed less growth and metastatic ability in vivo after transfection with RNA 

inhibitors against CCN1 or CCN2 (187, 194–196). siRNA against CCN1 was also effective 

at slowing the growth of an orthotopic glioma model when injected intratumorally (197). In 

addition to CCN1 and CCN2, CCN4 inhibition using antibodies was able to slow the growth 

and metastasis of a prostate cancer xenograft in vivo (191). In contract, the addition of 

CCN3, 5, and 6 can negatively affect proliferation of cancer xenografts (198–202).

Outside of cancer, CCN2 plays a prominent role in, and can be used as a biomarker for, 

many fibrotic diseases (184, 203). In scleroderma, CCN2 is correlated with severity of the 

disease in both plasma and tissue samples (204). Similarly, CCN2 in plasma also correlates 

with risk and mortality for patients with diabetic retinopathy (205, 206).
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A strong relationship between CCN2 and multiple types of fibrotic disease has inspired the 

development of multiple therapeutic inhibitors (207, 208). Therapeutic gene silencing using 

siRNA has been shown to reduce the expression of CCN2 in vitro and in rodent models, and 

that the reduction in expression correlates with reduced fibrosis (209–211). Antisense 

oligonucleotides have also been used in rodent models with similar effects (212, 213).

Therapeutic antibodies against CCN2 have also been developed, and one, FibroGens’s 

FG-3019, is currently undergoing clinical trials for the treatment of fibrotic diseases in 

humans (184, 208, 214). A phase 1 study of FG-3019 in patients with diabetic nephropathy 

showed good tolerability and a reduction in albuminuria (215, 216). In the Duchenne 

muscular dystrophy mouse model, FG-3019 was able to improve muscular strength and 

reduce impairment and fibrosis (217). An aptamer is also being developed to inhibit CCN2 

signaling (218).

CCN proteins themselves, because of their effects on adhesion, angiogenesis and 

inflammation, can also serve as therapeutics. CCN1 in particular has a potent ability to 

modulate inflammation (219). Vascular graft remodeling, a process driven by inflammation, 

was improved in a sheep model with a decellularized graft coated with CCN1 that showed 

enhanced endothelialization (220, 221). CCN1 also reduced immune infiltration and disease 

score in a mouse model of myocarditis (222).

2.5 SPARC and drug delivery

SPARC, also known as osteonectin, has a molecular weight of 40,000 and is composed of 

four domains that include a calcium-binding region at the amino terminus, a cysteine-rich 

domain, a hydrophilic domain, and a helix-loop-helix structural motif (EF hand) at the 

carboxy terminus (223, 224). In addition to binding calcium and promoting mineral crystal 

formation, SPARC interacts with collagen and participates in the activation of latent TGF-β 

(223). It is made by multiple cell types including fibroblasts, endothelial cells, osteoblasts 

and macrophages and has been shown to influence cell adhesion and morphology as well as 

proliferation. In addition, SPARC plays important roles in tissue remodeling, wound 

healing, and fibrosis. Various studies have also linked SPARC expression to different types 

of cancer, diabetes, glaucoma, and fibrotic disorders (225–231).

The role of SPARC in the pathophysiology of cancer is complicated by its many functions. 

SPARC can abrogate focal adhesions and lead to migration and metastasis (232). However, 

it can also bind and interact with growth factors to promote cell cycle arrest and reduce 

angiogenesis (233). This dichotomy is borne out in the literature, summarized nicely by 

Podhajcer et.al., where SPARC is noted to be highly expressed in a wide range of very 

aggressive human tumors, but is also noted to be antitumorigenic in many other models 

(234). Using glioblastoma as an example, SPARC expression has been correlated with 

increased migration and poor prognosis in humans (235, 236). However, when SPARC 

expression was inhibited using shRNA, a human cell line showed increased growth and 

tumorigenic potential (237). The multiple roles played by SPARC in the tumoral 

environment complicate its use as a biomarker and as a target for therapeutic inhibition.
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The high expression of SPARC in the tumor environment, regardless of its function, could 

be used to localize other therapeutic molecules. The high levels of tumoral SPARC was 

proposed as one mechanism for the efficacy of nanoparticulate albumin bound paclitaxel 

(nab-paclitaxel), owing to the capacity of SPARC to bind albumin, and in a Phase III trial of 

nab-paclitaxel in metastatic pancreatic, SPARC had positive association with efficacy (238, 

239). However, in a mouse pancreatic cancer model, this binding effect was found to be 

saturable at low doses and not responsible for efficacy of the nab-paclitaxel (240). The effect 

of SPARC expression on nab-paclitaxel efficacy in vivo is likely muted by the abundance of 

albumin in serum, and the pharmacokinetics of the nab-paclitaxel. More specific targeting of 

SPARC, using a high affinity antibody linked to a nanoparticle, was able to increase the 

detection of tumor and metastases using CT and fluorescent imaging in mice. SPARC can 

also be used as a target antigen to direct immunotherapy, providing therapeutic localization 

while avoiding inhibition (241).

Outside of cancer, SPARC is highly involved in fibrosis, mediated by its role in the 

organization of collagen and ECM assembly as well as TGF-β activity (1). In humans, 

SPARC expression is increased in pulmonary, renal, hepatic, and dermal fibrosis (230). 

Experiments in SPARC-null mice illustrated that in the absence of SPARC, fibrosis was 

decreased (230, 242). In wild type mice, SPARC gene silencing using siRNA has been 

examined as a method to reduce fibrosis. For example, the injection or instillation of siRNA 

against SPARC reduced the expression of SPARC in situ and reduced the extent of fibrosis 

in both skin a lung fibrosis models (243). A nanoparticle system based on hydroxyapatite 

was developed to deliver SPARC siRNA more efficiently to fibroblasts that drive fibrosis 

(244).

In a biomaterial based approach, SPARC-derived components susceptible to enzymatic 

cleavage have been incorporated into hydrogels to enhance their degradation in response to 

plasmin, matrix metalloproteinase 1 (MMP-1), and MMP-2 (245). Incorporation of such 

degradation sensitive sites allows for the tuned response of the hydrogel system, and enables 

tissue specific delivery.

2.6 Periostin and drug delivery

Periostin, also known as osteoblast-specific factor-2, has a molecular weight of 90,000 and 

contains a fasciclin domain (FAS1 domain), which is involved in cell adhesion (246, 247). It 

shares structural homology with FAS1, which is an axon guidance protein, and transforming 

growth factor (TGF)-β-induced protein, βig-h3. Consistent with the presence of a fasciclin 

domain, periostin promotes adhesion as well as spreading of various cell types (248). 

Isoforms of periostin also exist due to alternative splicing and have been linked to cancers 

(249). In addition, periostin has been associated with numerous pathological conditions 

including asthma, skin disorders, polycystic kidney disease, and cardiovascular disease (247, 

250–254).

Periostin, like many of the other matricellular proteins, is expressed at low levels in healthy 

tissue but is upregulated in pathology and during tissue repair, and neoplasia (14). One 

pathological condition where periostin is significantly upregulated is asthma, as a result of 

fibrosis in the lungs (246). Specifically, periostin is associated with eosinophilic, TH2 driven 
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asthma, which responds well to corticosteroid treatment (255). Serum levels of periostin can 

serve as a biomarker for this subtype of asthma and, when confirmed, patients can be given 

the appropriate therapy (256). Via a similar mechanism, periostin is a biomarker for 

idiopathic interstitial pneumonias with fibrosis (257).

The expression of periostin is increased in many cancers, including neuroblastoma, ovarian, 

breast, colon, pancreas, NSCLC, and head and neck cancers (258). In each of these cancers, 

the presence of periostin is associated with metastasis, progression, and poor survival. The 

therapeutic inhibition of periostin has been proposed as a method to reduce tumor growth 

and metastasis, and improve survival, particularly in gastric cancer and glioma (259, 260). 

This strategy was used successfully in an orthotopic breast cancer xenograft (261). After 

tumor inoculation, systemic injection of an inhibitory DNA aptamer, PNDA-3, reduced 

tumor growth and metastasis. Inhibition of tumor growth was also observed in an ovarian 

cancer model when periostin was inhibited by specific siRNA delivered using chitosan 

nanoparticles (262).

In development, periostin is responsible for ECM maturation in the heart (254). Similarly, in 

failing hearts, increased levels of periostin are associated with myocardial fibrosis (263). 

However, after a myocardial infarction, there is damaged tissue in the heart that needs to be 

repaired for proper function, and periostin, because of its ability to regulate fibrosis, 

angiogenesis, and proliferation, could promote the cardiac healing process (264). This 

hypothesis was tested in a rat myocardial infarct model, where delivery of periostin via 

injection or in a gelfoam matrix improved cardiac remodeling and reduced the infarct area 

after (265). The gelfoam matrix delivery system was evaluated again in a swine model of 

myocardial infarction (266). In this large animal model, delivery of periostin again resulted 

in increased cardiomyocyte cell cycle activity and increased angiogenesis at the infarct 

border. However, a similar study using gelfoam to deliver a periostin peptide described an 

increase in cardiac fibrosis in addition to improved cardiac function (267). The potentially 

limiting fibrosis observed in the swine model highlights the complexity encountered when 

delivering a multifunctional active agent with a complex signaling pathway. Clinical 

translation will rely on careful dosing and control over the pharmacokinetics to ensure 

improved healing without fibrosis.

2.7 Other Matricellular proteins and drug delivery

As mentioned in the introduction, the matricellular family of proteins has recently expanded 

with the addition of autotaxin, R-Spondin, PEDF, and fibulin-5. This diverse group of 

proteins has pleiotropic functions that include modulation of cell-matrix interactions and cell 

adhesion. Similar to the prototypical members of the matricellular family, studies have 

implicated these proteins in the pathophysiology of several diseases. In this section, we 

briefly describe these proteins, their functions, and their associations with specific diseases.

Autotaxin is an ecto-lysophospholipase involved in the generation of lysophosphatic acid 

and has been implicated in the regulation of proliferation, invasion, migration and 

angiogenesis (268). In addition, studies have implicated this protein in several diseases 

including idiopathic pulmonary fibrosis, liver cirrhosis, and several cancers (269–278). 

Because its structure has been elucidated and the active sites are defined, autotaxin has been 
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utilized in the development of small molecular weight drugs (270, 279). R-spondins are 

predominantly involved in Wnt signaling and play roles in gonadal and skeletal 

development (280, 281). They are considered matricellular because they contain type 1 TSP 

repeats and can interact with both ECM components and cell surface receptors. PEDF is a 

secreted protein with anti-angiogenic and neurotrophic activities (282). It has been 

implicated in a diverse set of diseases including Alzheimers, acute coronary syndrome, bone 

diseases, and tumors (283–286). From a therapeutic perspective, PEDF has been successful 

employed in the treatment of age-related macular degeneration (282). In addition, its ability 

to treat tumors due to its anti-angiogenic activity and its role in other angiogenic diseases 

has received attention (287, 288). Finally, fibulin-5 is a secreted protein that is intimately 

involved in the process of elastogenesis and plays a prominent role in development (289). 

Similar to other matricellular protein it has anti-angiogenic activity and has been suggested 

as a possible treatment in tumors (290).

3 Conclusion

The ability of matricellular proteins to regulate cell-cell and cell-matrix interactions during 

the progression of multiple disease states makes them targets for potential therapies, most 

notably in cardiovascular diseases and cancer. Many matricellular proteins, including 

TSP-1and 2, SPARC, OPN, and TN-C, are involved in the structure and remodeling of the 

myocardium following injury (14, 19). They are typically expressed at low levels, if at all, in 

healthy tissue, but are highly expressed after injury and during remodeling. Their role in the 

regulation of vascular growth factors, and the creation of a de-adhesive state, can lead to 

improper remodeling and tissue dysfunction. However, in the correct context, certain 

matricellular proteins can actually improve healing after injury. This dichotomy complicates 

their use as therapeutics and therapeutic targets in cardiovascular disease.

In addition to cardiovascular disease, matricellular proteins have a demonstrated role in the 

progression of cancer. The hallmarks of cancer, and the progression of healthy cells towards 

malignancy, arise as a result of the loss of homeostasis governing growth, proliferation, and 

death (291). In addition, the growth and metastasis of the resulting neoplasm requires the 

induction of angiogenesis, increased motility, and avoidance of immune detection. The 

extracellular matrix and matricellular proteins are potent modulators of each of those 

hallmarks, and their expression can be used to drive or suppress cancer progression (292). 

Their integral role in the tumoral microenvironment makes matricellular proteins useful as 

biomarkers, therapeutic targets, and active agents.

However, the multifunctional role of matricellular proteins within the environment 

complicates their use in the design of novel therapies. Each of the matricellular proteins has 

multiple functional regions that interact with many cell surface and ECM molecules to 

modulate cell-cell and cell-matrix interactions. In many cases, the exact nature of these 

interactions is unclear, and can result in a complicated network of signaling events. For 

example, TSP1 has known antiangiogenic properties, but is also highly expressed in certain 

high grade tumors (293, 294). This suggests that in certain cancers the ability of TSP-1 to 

promote motility, proliferation, and adhesion, outweigh the effects on angiogenesis (295).
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The complicated roles of matricellular proteins present significant difficulties in designing 

therapies to inhibit or mimic their activities. Fortunately, TSP-1 also provides a positive 

example of isolating a single matrix protein property for the development of a therapeutic 

agent. By identifying the specific peptide regions responsible for TSP1’s antiangiogenic 

activity, therapeutic peptides and small molecules can be designed to reduce angiogenesis in 

the clinic (34, 51). Similarly, elucidation of sites in these proteins that mediate their 

interactions with cells and matrix could lead to the development of small molecular weight 

inhibitors with highly specific activities. In addition to TSP1, the rest of the matricellular 

proteins discussed in this review highlight multiple opportunities for effective drug delivery, 

especially in cardiovascular disease and cancer. However, the continued development of 

therapies derived from matricellular proteins, will require more research to precisely define 

their mode of action, and allow for the identification and creation of powerful targets, 

agonists, and drug carriers.
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