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Abstract

Rewards are defined by their behavioral functions in learning (positive reinforcement), approach 

behavior, economic choices and emotions. Dopamine neurons respond to rewards with two 

components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective 

dopamine detection component reports all salient environmental events irrespective of their 

reward association. It is highly sensitive to factors related to reward and thus detects a maximal 

number of potential rewards. It senses also aversive stimuli but reports their physical impact rather 

than their aversiveness. The second response component processes reward value accurately and 

starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward 

value as a numeric, quantitative utility prediction error, consistent with formal concepts of 

economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and 

appropriate for driving and updating economic decisions.
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The response of midbrain dopamine neurons to rewards and reward-predicting stimuli consists of 

two components. The initial, unselective component detects any salient environmental event very 

rapidly, whereas the subsequent component codes a formal reward utility prediction error, as 

conceptualized by combining animal learning theory and economic decision theory.
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Rewards are stimuli, objects, events, situations and activities with crucial biological 

functions for individual survival and gene propagation. Specific behavioral learning and 

decision tasks serve to assess the neuronal underpinnings of reward functions. Individual 

neurons signaling reward information are found in the dopamine system, striatum, 

orbitofrontal cortex, amygdala, and their associated structures. These reward neurons 

process specific aspects of rewards such as amount, probability, value, utility and risk in 

forms suitable for economic decisions. Brain structures with reward neurons often contain 

also neurons that process aversive stimuli and punishment. Dopamine neurons do not seem 

to be activated by punishers and code reward value only in a positive monotonic manner, as 

results from recent well-controlled experiments suggest.

This review elaborates on the properties of one of the brain's main reward system, the 

dopamine neurons. We describe the recently clarified specificity of its signal to reward as 

opposed to other events. We then relate the dopamine signal to formal economic decision 

theory, which provides a stringent conceptual framework for reward function. Specifically, 

we demonstrate that the dopamine reward prediction error signal processes reward as a 

specific form of subjective value called economic utility.
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BACKGROUND

Reward function

The body needs specific substances for survival, including proteins, carbohydrates, fats, 

vitamins, electrolytes and water, which are contained in foods and liquids. To propagate 

their genes, individuals must mate, reproduce and raise offspring. Food and liquid rewards 

subserve the alimentary needs. Different from common associations of reward with bonus or 

happiness, the scientific use of the term stresses three functions. Rewards are positive 

reinforcers, they ‘make us come back for more’. This function is captured most simply by 

Pavlovian and operant conditioning. Further, rewards are attractive, generate approach 

behavior and serve as arguments for economic decisions. This function is crucially based on 

the stringently formalized term of economic utility. Finally, rewards are associated with 

positive emotions, in particular with pleasure as a reaction to something that turns out to be 

good, with desire of something that is already known to be good, and with happiness as a 

longer lasting state derived from pleasure and desire (Schroeder 2004). Thus, a reward is a 

stimulus, object, event, activity or situation that induces positive learning, makes us 

approach and select it in economic choices, and/or induces positive emotions.

The proximal reward functions of learning, approach and emotions serve the ultimate, distal 

function of rewards, which is to increase evolutionary fitness. To acquire and follow these 

primary alimentary and reproductive rewards is the reason why the brain's reward system 

has evolved. Thus, the proximal reward functions help the evolutionary selection of 

phenotypes that maximize gene propagation.

Neuronal reward signals

Reward processing requires a large array of brain functions from glia to synapses and 

channels. Investigations of neuronal reward processing consider that information processing 

systems work with identifiable signals that serve the rapid detection of important events and 

lead to efficient behavioral actions. Although many molecular and cellular approaches 

provide sufficient spatial and temporal resolution, the action potentials of individual neurons 

are often the most appropriate neuronal signals for investigations involving well-controlled 

behavioral actions. The rate of action potentials (impulses/s) provides a code for neuronal 

processing of reward information during behaviors defined by concepts derived from 

experimental psychology and experimental economics. It is thus possible to identify reward 

neurons by studying action potentials in relation to specific theoretical constructs 

(parameters) of reward functions in learning and economic choices.

Reward prediction error signal

Dopamine neurons in the pars compacta of substantia nigra and in the ventral tegmental area 

(VTA) show a phasic neuronal signal that codes reward relative to its prediction. A reward 

that is better than predicted generates a positive signal (increase in impulse rate), a fully 

predicted reward fails to generate a signal, and a reward that is worse than predicted 

generates a negative signal (decrease in impulse rate) (Schultz et al. 1997; Schultz 1998). 

The response occurs in the same prediction-dependent way with conditioned, reward 

predicting stimuli that themselves have acquired reward value (Enomoto et al. 2011). This 
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signal codes a reward prediction error as conceptualized in major reinforcement models, 

such as the Rescorla-Wagner rule (Rescorla & Wagner 1972) and temporal difference 

learning (Sutton & Barto 1981). It follows formal theoretical criteria for prediction error 

processing, namely blocking (a stimulus not associated with a prediction error is blocked 

from behavioral and neuronal learning; Waelti et al. 2001) and conditioned inhibition (a 

stimulus associated with a negative prediction error inhibits behavioral and neuronal 

responses; Tobler et al. 2003). A positive dopamine response would enhance coincident 

synaptic transmission in striatum, frontal cortex or amygdala neurons, and a negative 

response would reduce synaptic transmission, thus directing individuals towards better 

rewards and away from worse rewards and helping to maximize utility in economic choices. 

Such a signal is also useful for learning and updating of reward values.

The phasic reward prediction error signal occurs in 70–90% of dopamine neurons in a rather 

stereotyped manner and shows only graded differences in latency, duration and magnitude 

between the neurons (Fiorillo et al. 2013a). Some dopamine neurons show an additional, 

slower response that codes reward risk (Fiorillo et al. 2003) and may affect the dopamine 

release induced by the prediction error signal. Apparent more complex relationships to 

cognitive processes can be explained by reward prediction error coding with appropriate 

analysis (Ljungberg et al. 1992; Morris et al. 2006; de Lafuente & Romo 2011; Enomoto et 

al. 2011; Matsumoto & Takada 2013). There are also minor, activations or depressions 

before or during large reaching movements (Schultz et al. 1983; Schultz 1986; Romo & 

Schultz 1990) but neither with slightly different arm movements (DeLong et al. 1983; 

Ljungberg et al. 1992; Satoh et al. 2003) nor with licking or eye movements (Waelti et al. 

2001; Cohen et al. 2012; Stauffer et al. 2015), which might inconsistently reflect general 

behavioral activation, attention or risk rather than robust movement relationships deficient in 

Parkinsonism. Distinct from these activities, dopamine neurons are well known to show 

similar structural and functional diversities as other neurons (e. g. Roeper 2013). The 

dopamine release driven by the phasic impulse responses is subject to local mechanisms, 

such as cholinergic activity (Threlfell et al. 2012) and glutamate co-release (Chuhma et al. 

2014). Thus, the stereotyped dopamine prediction error signal may provide locally 

differentiated influences on postsynaptic processing. At slower time courses over minutes 

and hours, dopamine impulse activity and dopamine release change with a large range of 

behavior, including behavioral activation, forced inactivation, stress, attention, reward, 

punishment and movement (Schultz 2007). At the slowest time course, tonic dopamine 

levels are finely regulated by local presynaptic and metabolic mechanisms. Pathological and 

experimental deviations from these levels are associated with Parkinson’s disease, 

schizophrenia and many other cognitive, motivational and motor dysfunctions. The 

implication of dopamine in these many functions is less derived from the stereotyped phasic 

dopamine reward signal and more from the specific functions of the postsynaptic structures 

affected by dopamine.
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TWO-COMPONENT REWARD RESPONSES

Stimulus components and their sequential processing

Rewarding stimuli, objects, events, situations and activities are composed of sensory 

components (visual, auditory, somatosensory, gustatory or olfactory), attentional 

components (physical intensity, novelty, surprise and motivational impact) and motivational 

value (reward). Neurons process these components in sequential steps, which become well 

distinguishable with increasing stimulus complexity. The occurrence of a stimulus is 

initially detected by its physical impact (Fig. 1A) and gives rise to subsequent processing of 

its specific sensory properties, like spatial position, orientation and color that identifies the 

stimulus. As last step, maybe partly in parallel, neurons assess the motivational value, which 

determines reward and punisher function. Similar steps are assumed in models for memory 

retrieval and sensory decisions (Ratcliff 1978; Ratcliff & McKoon 2008).

Whereas primary sensory systems may identify simple, undemanding stimuli at once and 

without apparent components, higher systems may process more complex objects in the 

sequential steps just outlined. Thus, neurons in somatosensory barrel cortex, prefrontal 

cortex, frontal eye fields, lateral intraparietal cortex, visual cortex and pulvinar show step-

wise processing, consisting of an initial, unselective detection response and a subsequent, 

selective component that identifies the specific stimulus in terms of orientation, motion, 

spatial frequency, visual category, target-distractor distinction, and figure-background 

distinction (Fig. 1B) (Thompson et al. 1996; Ringach et al. 1997; Kim & Shadlen 1999; 

Roelfsema et al. 2007; Lak et al. 2010). Reward-processing neurons in amygdala, primary 

visual cortex and inferotemporal cortex show similar distinct processing steps that comprise 

an initial, unselective stimulus detection and a subsequent reward valuation (Paton et al. 

2006; Mogami & Tanaka 2006; Ambroggi et al. 2008; Stanisor et al. 2013). Thus, higher 

neuronal systems are well known to process detection, identification and valuation of stimuli 

in identifiable sequential steps.

Two dopamine response components

As other neurons processing complex information, dopamine neurons process reward 

components sequentially. Any reward with sufficient physical intensity may elicit two 

response components (Fig. 1C, D). The first response component consists of an unselective 

increase of activity (‘activation’) and occurs with any stimulus irrespective of being 

associated with reward, punishment or nothing. It reflects the detection of the event without 

coding its value. It occurs also as striatal dopamine release, without distinguishing between 

reward-predicting and non-predicting stimuli (Day et al. 2007). The subsequent, second 

response component reflects the reward value of a reward-predicting stimulus or a reward 

and codes positive and negative reward prediction errors in a graded manner. These 

components are difficult to separate when the reward is simple and undemanding and can be 

rapidly identified and valued (Fig. 1C) (Steinfels et al. 1983; Schultz & Romo 1990; 

Ljungberg et al. 1992; Horvitz et al. 1997; Fiorillo et al. 2013b; Fiorillo 2013). They become 

more distinct with more demanding reward-predicting stimuli, such as moving dots that take 

longer to identify and value (Fig. 1D) (Nomoto et al. 2010), and with primary rewards 

whose amount is determined by liquid flow duration (onset of liquid flow elicits an initial 
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activation that persists only with larger amounts; Lak et al. 2014). Thus, dopamine responses 

consist of two components with different properties, which will now be discussed.

High sensitivity of initial response component

The initial activating response is enhanced by several factors, including physical stimulus 

intensity (Fiorillo et al. 2013a; b). Furthermore, a mechanism called generalization induces 

or enhances the response to an unrewarded stimulus, even a punisher, if that stimulus 

resembles physically a rewarded stimulus (Waelti et al. 2001; Tobler et al. 2003). For 

example, visual aversive stimuli rarely elicit activations when the alternating rewarded 

stimulus is auditory, but the unchanged aversive stimulus is very effective in inducing 

substantial activations when both stimuli are visual and thus resemble each other (Fig. 2) 

(Mirenowicz & Schultz 1996). Such generalization is also seen with striatal dopamine 

release (Day et al. 2007). The initial response increases also in contexts in which rewards are 

known to occur (here, ‘context’ refers specifically to all environmental stimuli and events 

except the explicit, differential stimulus). Small, unrewarded stimuli elicit no or only small 

dopamine activations before learning (Tobler et al. 2003) or in unrewarded contexts but are 

very effective in well-controlled rewarded environments (Fig. 2) (Kobayashi & Schultz 

2014). The initial activation increases also with stimulus novelty (Ljungberg et al. 1992), 

although novelty alone without sufficient stimulus intensity is ineffective (Tobler et al. 

2003). Thus, the initial, unselective detection response component is highly sensitive to 

factors related to rewards.

Salience, but only initially

The factors generating and enhancing the initial dopamine activation are likely endowed 

with stimulus-driven salience. Intense stimuli elicit attention through their noticeable 

physical impact, which is called physical salience. Rewards not only carry positive value but 

also induce attention due to their important biological functions, called motivational 

salience. (Biologically important punishers carry negative value but induce also motivational 

salience.) Thus, stimuli that resemble rewards physically (generalization) or that occur in 

environments in which rewards are known to occur (reward context) are associated with 

motivational salience, even before they have been identified as rewards. Finally, novel 

stimuli, even if they require identification and comparison with previously experienced 

stimuli, are surprising and thus draw attention, suggesting that they are endowed with 

novelty/surprise salience. Thus, the initial dopamine activation is sensitive to salience.

Despite this activation, the phasic dopamine response is not just a salience response, as 

sometimes assumed (Kapur 2003). The salience activation is rapidly followed by the second 

response component, which codes reward value as a graded, bidirectional reward prediction 

error (Fig. 1C, D). The second component is also invisible when an unrewarded stimulus 

occurs unpredictably; the lack of prediction error (no reward minus no prediction) would 

explain the absence of the second component, and the whole dopamine response consists 

only of the initial, detection component. This may be the reason why initial studies that did 

not use rewards interpreted the whole phasic dopamine response as if it were primarily 

coding salience (Steinfels et al. 1983; Horvitz et al. 1997), an interpretation strengthened by 

its short latency (Redgrave et al. 1999). The second component itself does not code salience, 
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as the very salient negative reward prediction errors and conditioned inhibitors do not induce 

any activation (Schultz 1998; Tobler et al. 2003). Aversive dopamine responses 

(Mirenowicz & Schultz 1996; Joshua et al. 2008; Matsumoto & Hikosaka 2009) might 

simply constitute the first component enhanced by physical salience, reward generalization 

and context (see below). Thus, dopamine neurons seem to code salience only as an initial 

activation, which might appear as their prime response with incomplete testing.

Benefits from the initial response component

The initial dopamine detection response component is very fast and occurs at latencies 

below 100 milliseconds. It is also very unselective, as it occurs not only with rewards but 

also with all kinds of unrewarded stimuli and even with punishers. Such a fast response 

allows brain mechanisms to start initiating behavioral reactions already before the stimulus 

has been fully identified and valued. If the stimulus turns out to be a reward, the behavioral 

initiation can proceed, rather than starting only at this moment. If it is not a reward, it is 

early enough to cancel the behavioral initiation and prevent errors (see below). Thus, no 

time is wasted by waiting for valuation, resulting in the quickest possible behavioral 

initiation.

The unselectivity of the initial response assures a wide, polysensory sensitivity to all 

possible stimuli and objects that may be rewards. The additional sensitivity to stimulus 

intensity, similarity, reward context and novelty further increases the chance to detect a 

reward and prevent missing it. It seems better to over-detect rewards than to under-detect 

them, as long as costly behavioral errors can be avoided (see below). Thus, dopamine 

neurons process potential rewards already before their reward nature has been confirmed or 

rejected.

The coding of physical, motivational and novelty/surprise salience would be beneficial for 

decision-making and behavioral learning (Pearce & Hall 1980). Attention is well known to 

enhance the neuronal processing of stationary and moving visual stimuli (Bushnell & 

Goldberg 1981; Treue & Maunsell 1996) and visual orienting (Nardo et al. 2011). The brief 

dopamine salience signal is likely to enhance in a similar way the neuronal processing of 

reward prediction error by the second component.

Thus, the fast and highly sensitive, unselective initial dopamine detection response is 

appropriate for very rapidly detecting a maximal number of rewards and for missing only 

few, thus contributing to maximal reward acquisition, which in the long run is evolutionary 

beneficial.

Correct reward valuation by the second response component

Once assessed by the second, reward prediction error component, which is particularly 

distinctive with more demanding stimuli (Fig. 1D; Nomoto et al. 2010), the value 

information remains present until the reward occurs. This becomes evident when a known 

test reward elicits a reward prediction error; a surprising reward following an unrewarded 

stimulus elicits a positive reward prediction error and a corresponding dopamine activation 

(Fig. 3; Waelti et al. 2001).
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The period of valuation precedes the behavioral reactions towards the reward (Fig. 3). 

Postsynaptic neurons downstream to dopamine neurons are likely to ‘see’ both dopamine 

response components, but they receive the value information from the second component 

early enough to allow correct behavioral reactions. This mechanism may explain why 

animals don’t often confuse rewards with non-rewards and punishers; despite neuronal 

generalization to unrewarded stimuli, they don’t generalize in their behavioral reactions 

(Mirenowicz & Schultz 1996; Day et al. 2007; Joshua et al. 2008).

Thus, by occurring early enough for appropriate behavioral reactions, the second response 

component prevents major negative effects that might derive from the early onset and 

unselectivity of the first response component, thus resulting in a positive tradeoff between 

benefits for reward acquisition and its costs.

No aversive activation

Dopamine neurons are activated by aversive stimuli (Tsai et al. 1980; Schultz & Romo 

1987; Schultz & Mirenowicz 1996; Guarraci and Kapp 1999). However, these activations 

reflect the physical intensities of the aversive stimuli rather than their negative value; 

keeping physical impact constant and increasing the bitterness of a liquid solution increases 

the measured behavioral aversiveness but reduces the dopamine activation (Fig. 4) (Fiorillo 

et al. 2013b). Purely aversive stimuli with low intensity induce only depressant responses, 

reflecting either negative punisher value or negative prediction error from reward omission 

(Fiorillo 2013). Thus, 'aversive' dopamine activations may represent the initial, unselective 

dopamine response component. Correspondingly, this activation is increased by reward 

generalization (Mirenowicz & Schultz 1996). Recent rediscoveries of 'aversive' dopamine 

activations have not considered these physical and generalization confounds, which may 

also explain the paradoxical, more frequent responses to conditioned than primary stimuli, 

nor have they checked for potential contribution from the rewarded context in which these 

tests were conducted (Joshua et al. 2008; Matsumoto & Hikosaka 2009). Stronger 

activations with higher punishment probability (Matsumoto & Hikosaka 2009) may derive 

from salience differences or anticipatory relief with punishment termination or avoidance 

(Budygin et al. 2012; Oleson et al. 2012) that are considered rewarding (Solomon and Corbit 

1974; Gerber et al. 2014). Thus, when all confounds are accounted for, dopamine neurons 

are not activated by the aversive value of punishers (Fiorillo et al. 2013). Response 

variations among neurons may reflect graded sensitivity differences of the initial response 

component to physical intensity, generalization and context (Fiorillo et al. 2013a), rather 

than two, categorically distinct types of dopamine neurons (Matsumoto & Hikosaka 2009). 

Thus, aversive stimuli may induce the initial, unselective dopamine response component 

through their salience, but neither the first nor the second dopamine response component 

seems to code punishment. Nevertheless, as neighboring non-dopamine neurons code 

punishment (Cohen et al. 2012), a few dopamine neurons might receive aversively coding 

collateral afferents.

Sufficient and necessary functions in learning and approach

Electrical and optogenetic activation of dopamine neurons elicits place preference, nose 

poking, lever pressing, choice preferences, spatial navigation, rotation, locomotion and 
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unblocking of learning (Corbett & Wise 1980; Tsai et al. 2009; Witten et al. 2011; Steinberg 

et al. 2013; Arsenault et al. 2014). Correspondingly, optogenetically induced direct or 

transsynaptic inhibition of dopamine neurons induces place dispreference learning (Tan et 

al. 2012; van Zessen et al. 2012; Ilango et al. 2014). The activation and inhibition of 

dopamine neurons apparently mimics positive and negative reward prediction error signals, 

suggesting a sufficient role of phasic dopamine signals in learning and approach. Habenula 

stimulation induces place dispreference, either by activating supposedly aversive dopamine 

neurons (Lammel et al. 2012) or by transsynaptically inhibiting dopamine neurons (Stopper 

et al. 2015), although the limited specificity of the employed TH:cre mice (Lammel et al. 

2015) and the known habenula inhibition of dopamine neurons (Matsumoto & Hikosaka 

2007) make the latter mechanism more likely. Dopamine receptor stimulation seems also 

necessary for these functions. Systemic dopamine receptor antagonists reduce simple 

stimulus-reward learning in rats (Flagel et al. 2011), and local D1 receptor antagonist 

injections into frontal cortex impair behavioral and neuronal learning and memory in 

monkeys (Sawaguchi & Goldman-Rakic 1991; Puig & Miller 2012). NMDA receptor knock 

out reduces dopamine burst responses, simple learning and behavioral reactions (Zweifel et 

al. 2009). Thus, the phasic dopamine signal is both causal and necessary for inducing 

learning and approach, allowing for the possibility that natural dopamine activations 

influence these behaviors.

Through diverging axonal projections, the dopamine response may act as a global 

reinforcement signal within a triad of low affinity D1 receptors located on dendritic spines 

of striatal neurons that are also contacted by cortical axons (Freund et al. 1984; Schultz 

1998). D1 receptor activation is necessary for long-term potentiation in striatum (Pawlak & 

Kerr 2008). Stimulation of dopamine D1 receptors prolongs striatal membrane 

depolarizations (Hernández-López et al. 1997), which may underlie the immediate focusing 

effect of dopamine on behavior. Thus, the synaptic dopamine actions, despite their 

heterogeneity (Threlfell et al. 2012: Roeper 2013; Chuhma et al. 2014), are overall 

consistent with the behavioral dopamine functions in learning and approach.

SUBJECTIVE VALUE AND ECONOMIC UTILITY

Objective or subjective value

The proximal function of reward is survival and reproduction of the individual gene carrier. 

Thus, reward value is subjective. What is important for me may not be that important for 

everybody. Thus, the objective, physical value a reward has for an individual, like liquid 

volume or money, depends on how much it enhances her well being. A millionaire walks 

less readily a mile to save a £ 2 bus fare than a student. Although rats normally don't drink 

salt solutions, they will do so after salt deprivation (Robinson & Berridge 2013). Thus, 

although physically bigger rewards are usually better, their subjective value increases to 

varying extents depending on the needs of the individual decision maker.

Subjective value signal

The phasic dopamine value response increases with increasing objective, physical reward 

parameters including amount, probability and statistically expected value (Fiorillo et al. 
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2003; Tobler et al. 2005). However, physical reward value depends also on the molecules in 

the reward, which differ between different reward types and substances. Therefore, the 

values of different reward objects are inherently difficult to assess from physical properties, 

and subjective reward values inferred from behavioral choices should be used as regressors 

for neuronal responses. Indeed, choices reveal subjective preference rankings between 

rewards that cannot be inferred from objective, physical parameters or do not share common 

dimensions, such as different or multi-component reward types. Dopamine responses follow 

closely the ranked preferences among liquid and food rewards (Fig. 5A) (Lak et al. 2014) 

and reflect the arithmetic sum of positive and negative values from rewards and punishers 

(Fiorillo 2013). Furthermore, risk affects subjective value. Most monkeys are risk seekers 

with small rewards, preferring risky over safe rewards of same expected value, whereas 

others are risk neutral. Dopamine responses follow closely the subjective risk-enhanced 

subjective value during risk seeking behavior and, correspondingly, are stronger with binary, 

equiprobable gambles than with safe rewards of identical expected value (Fig. 5B) (Lak et 

al. 2014). By contrast, dopamine responses are unaffected by risk during risk neutral 

behavior. Likewise, striatal voltammetric dopamine responses are higher or lower to 

identical gambles than to safe rewards depending on risk seeking or avoiding attitudes of 

rats (Sugam et al. 2012). Thus, closely corresponding to behavioral choices, dopamine 

neurons signal the subjective value derived from different rewards and from risk on a 

common currency scale. However, these behavioral methods do not allow to derive 

subjective value as a function of objective value in a straightforward manner.

Temporal discounting

Rewards delivered with a longer delay after a stimulus or an action lose their value. 

Psychophysical assessment of intertemporal choices between early and delayed rewards 

reveal hyperbolic or exponential decay of subjective reward value over delays of 2 to 16 s 

(Fig. 5C blue) (Kobayashi & Schultz 2008), thus relating subjective value to the physical 

measure of delay. Correspondingly, monkey dopamine responses to delay-predicting stimuli 

decay progressively, despite constant physical reward amount (Fig. 5C red), as do 

voltammetric dopamine responses in rat nucleus accumbens (Day et al. 2010). Dopamine 

prediction error responses at reward time increase correspondingly with longer delays. Thus, 

dopamine neurons code subjective value as a mathematical function of objective delay. 

However, temporal discounting is a specific case that does not afford a general method for 

deriving subjective value from objective value irrespective of time.

Formal economic utility

Expected Utility Theory makes one further and important step in the construction of 

subjective value. Whereas the choice preferences described so far allow only the ranking of 

subjective values, and temporal discounting is specific for delays, utility functions derived 

from choices under risk define numeric subjective value as mathematical functions of 

objective, physical reward. In providing numerically defined interval ratios, utility functions 

constitute mathematical approximations of the preference structure with unique shapes that 

are meaningful up to positive affine transformations (y=a+bx) (von Neumann and 

Morgenstern 1944; Savage 1954; Debreu 1959; Kagel et al. 1995). This formal definition of 

utility does not rely on other factors influencing subjective value such as reward type, delay 
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or effort cost, which are all contributors to utility but not essential in this construction. Thus, 

the expected utility model is a highly constrained, well-defined form of subjective value 

measured solely from choices under risk. The nonlinear relationship between utility, u(x), 

and objective value, x, derives from increasing or decreasing marginal utility, which is the 

utility derived from one additional unit of consumption (Bernoulli, 1954). Utility functions 

with these numerical properties can be compared with neuronal responses to rewards in 

order to identify neuronal utility functions n(x) that code reward in these strict quantitative 

economic terms.

Neuronal utility signal

Methods for estimating cardinal utility functions are based on concepts employing gambles 

(von Neumann and Morgenstern 1944). Binary, equiprobable gambles (p=0.5 each outcome) 

constitute the most simple and controlled risk tests identified by economic decision theory 

(Rothschild and Stiglitz 1970). Using the fractile method with choices between risky and 

safe outcomes (Caraco 1980; Machina 1987), monkeys’ choices reveal utility functions that 

are initially convex with small rewards (risk seeking, below 0.4–0.6 ml of blackcurrant 

juice), then linear, and then concave with larger amounts (risk avoiding) (Fig. 6A red), 

amounting to initially increasing and then decreasing marginal utility (Stauffer et al. 2014). 

Although these functions look similar among the limited number of monkeys tested, 

economic theory prohibits their quantitative comparison between individuals.

The dopamine reward prediction error signal reflects the nonlinear shape of measured utility 

functions (Stauffer et al. 2014). With free, unpredicted rewards, utility prediction errors 

increase in a nonlinear fashion defined by the measured utility function, and dopamine 

responses show a very similar nonlinear increase with increasing amounts of unpredicted 

reward and thus correlate well with those utility prediction errors (Fig. 6A). Binary gambles 

result in positive prediction errors for the larger reward outcome and negative errors for the 

smaller reward. In three gambles with the same physical range (±0.15 ml), physically 

identical prediction errors induce nonlinear changes in utility (due to non-monotonic 

marginal utility) (Fig. 6B top, grey rectangles). Dopamine prediction error responses to the 

higher gamble outcomes mimic the non-monotonic changes in the utility slope and correlate 

well with the increments on the utility axis (Fig. 6C). With all other contributions to utility 

kept constant, including reward type, delay and cost, these data suggest the coding of a 

prediction error in income utility by dopamine neurons. Thus, the dopamine reward 

prediction error response is, specifically, a utility prediction error signal that reflects 

marginal utility. Thus, the strictest and most theory-constrained definition of reward value 

applies to the dopamine coding of reward.

Although utility is a measure of subjective value, a neuronal utility signal reflecting a 

mathematical function of objective value goes well beyond subjective value coding derived 

from simple behavioral preferences. Thus, the identification of a dopamine utility prediction 

error signal suggests that the enigmatic and elusive utility, whose mere existence is often 

questioned by economists, is implemented in the brain as a physical, measurable signal.
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SUMMARY

The description of the phasic dopamine reward prediction error signal in substantia nigra 

and ventral tegmental area has advanced on two major points, the component structure of the 

signal and the form of reward information conveyed. Dopamine neurons show two response 

components, analogous to neurons in higher order sensory and cognitive brain regions. The 

initial component consists of a fast increase in activity (activation) that is unselective and 

highly sensitive to factors related to rewards. It detects all environmental stimuli of 

sufficient physical intensity, including rewards, unrewarded stimuli and punishers, and 

transiently codes several forms of salience until the second response component appears. 

Activations by punishers reflect physical impact rather than aversiveness. Through the early 

onset, unselectivity, high sensitivity and beneficial salience effects on neuronal processing, 

the initial response enhances the speed, efficacy and accuracy of reward processing, and thus 

reward acquisition. The second response component codes subjective reward value derived 

from different rewards and delays. Further tests using behavioral tools from economic 

decision theory suggest that this component constitutes a utility prediction error signal. With 

the dual component structure, the dopamine signal detects rewards at the earliest possible 

moment and allows behavioral initiation mechanisms to begin already while the rewards are 

still being identified; the subsequent value response occurs early enough to prevent 

confusion with unrewarded and aversive objects. This is a very interesting computational 

mechanism for efficiently reacting to external stimuli. Stimulation and lesion experiments 

suggest that the phasic dopamine signal is sufficient and necessary for driving behavioral 

actions. With its formal utility coding, the dopamine signal constitutes the first known 

neuronal utility signal that is directly compatible with basic foundations of economic 

decision theory; it constitutes a biological implementation of utility, which for economists is 

purely theoretical.
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Figure 1. Stimulus components and their neuronal processing
A: Scheme of sequential processing steps of individual stimulus components.

B: Time course of target discrimination during visual search in monkey frontal eye fields 

neuron. The response initially detects the stimulus indiscriminately (blue zone) and only 

later differentiates between target and distractor (red). From Thompson et al. (1996).

C: Distinction of initial indiscriminate detection response (blue) from main response 

component coding reward prediction error (red) in monkey dopamine neurons during 

temporal discounting. Reward value increases from blue via orange and green to red, 

inversely with delays of 2, 4, 8 and 16 s. From Kobayashi & Schultz (2008).

D: Better distinction of the two dopamine response components in more demanding random 

dot motion discrimination task. Better dot motion discrimination with increasing motion 

coherence (0%, 50%) results in increasing reward probability (from p=0.49 to p=0.99). 

Neuronal activity shows an initial, non-differential increase (blue), a decrease back to 

baseline, and then a second, graded increase reflecting reward value (due to increasing 

reward probability, red). Vertical dotted line marks onset of discriminating ocular saccade 

and indicates that assessment of the reward value of the identified motion direction requires 

several hundred milliseconds. From Nomoto et al. (2010).
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Figure 2. High sensitivity of initial dopamine detection response component
Left: Enhancement by reward generalization. In the red trials, both rewarded and aversive 

conditioned stimuli are visual. In the blue trials (covering large parts of red trials except the 

peak), the conditioned aversive stimulus remains visual, but the rewarded conditioned 

stimulus is auditory. The activating response to the identical visual aversive stimulus is 

higher when the rewarded stimulus is also visual (red peak) rather than auditory (blue), 

demonstrating response enhancement by sensory similarity with rewarded stimulus. The 

blue activity depression reflects the second component. From Mirenowicz & Schultz (1996).

Right: Enhancement by reward context. Left: in an experiment that separates unrewarded 

from rewarded contexts, dopamine neurons show only small activations to unrewarded large 

and small pictures (blue and black; red: response to liquid reward). Three distinct contexts 

are achieved by three well separated trial blocks, three different background pictures and 

removal of liquid spout in the picture trial types (center and bottom, blue and black). Right: 

by contrast, in an experiment using a common reward context without these separations, 

dopamine neurons show substantial activations to unrewarded large and small pictures. Each 

of the six picture pairs shows the trial background on a large computer monitor (left) and the 

continuing background together with the specific reward or superimposed picture (right). 

Each of the six neuronal traces shows the average population response from 31–33 monkey 

dopamine neurons. From Kobayashi & Schultz (2014).
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Figure 3. 
Accurate dopamine value coding after initial detection response. Both rewarded and 

unrewarded conditioned stimuli (CS+, CS−) elicit a common initial increase of neuronal 

activity (blue). This activation continues after the CS+ (top, red), but turns into a depression 

after the CS− (bottom, red). In CS+ trials, the fully predicted reward elicits no response (no 

prediction error, right), whereas in CS- trials, a surprising (identical) test reward induces an 

activation (positive prediction error). Thus, correct, positive or negative reward value coding 

begins immediately after the common initial response and early enough for initiating 

corresponding behavioral reactions (green arrow); correct value coding continues until the 

time of reward (red arrow). From Waelti et al. (2001).
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Figure 4. 
Phasic activation of dopamine neurons to aversive stimulus reflects physical salience rather 

than aversiveness. The increased aversiveness generated by the more concentrated bitter 

decatonium solution decreases the dopamine response (physical impact of liquid delivery 

remains constant), suggesting an inverse relationship between aversiveness and dopamine 

activation. The increased depression from the higher aversiveness reduces the activation 

generated by the physical stimulation from the liquid drops. Average population responses 

from 19 and 14 monkey dopamine neurons, respectively.b From Forillo et al. (2013b).
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Figure 5. Dopamine neurons code subjective rather than objective reward value
A: Neuronal coding of common currency subjective value. Stimulus responses follow 

preferences among different liquid and food rewards. Rewards were different quantities of 

blackcurrant juice (top: blue) and liquified mixture of banana, chocolate and hazelnut food 

(yellow banana), color bars below rewards at top refer to color of neuronal responses, 

curved arrows indicate behavioral preferences assessed in binary behavioral choices 

between the indicated rewards.

B: Increase of stimulus responses with risky compared to safe rewards (vertical arrows). 

Blue and green colors indicate blackcurrant juice (more preferred = higher value) and orange 

juice (less preferred = lower value), respectively, S and R indicate safe reward amounts and 

binary, equiprobable gambles between two reward amounts of same reward juice with 

identical expected value, respectively. A and B from Lak et al. (2014).

C: Temporal discounting: decreasing responses of dopamine neurons to stimuli predicting 

increasing reward delays of 2–16 s (red), corresponding to subjective value decrements 

measured by intertemporal choices (blue), contrasted with constant physical amount (black). 

Y-axis shows behavioral value and neuronal responses in % of reward amount at 2 s delay 

(0.56 ml). From Kobayashi & Schultz (2008).
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Figure 6. Dopamine neurons code formal economic utility
A: Positive utility prediction error responses to unpredicted juice rewards (black), 

superimposed on nonlinear utility function in same monkey (red). Psychophysically varied 

behavioral choices between a variable safe reward and a specific binary, equiprobable 

gamble (p=0.5 each outcome) served to assess its certainty equivalent (subjective value of 

gamble indicated by amount of safe reward at choice indifference); the certainty equivalents 

of specifically placed gambles served to estimate the utility function according to the 

structured 'fractile' procedure (Caraco 1980; Machina 1987).

B: Top: three conditioned stimuli indicating three binary, equiprobable gambles (0.1–0.4 ml; 

0.5–0.8 ml; 0.9–1.2 ml juice); bar height specifies juice volume. In pseudorandom 

alternation, one of these stimuli is shown to the animal, followed 1.5 s later by one of the 

two specified juice volumes. Bottom: nonlinear utility function (same as in A). Delivery of 

higher reward in each gamble generates identical positive physical prediction error (0.15 ml, 

red, black and blue dots). However, due to different positions on the utility function, the 

prediction errors vary non-monotonically in utility ΔRu). Shaded areas indicate physical 

volumes (horizontal) and utilities (vertical) of gambles.

C: Dopamine coding of utility prediction error (same animal as in B). The red, black and 

blue traces indicate responses to the higher outcomes of the three gambles shown as colored 

fat dots in B (0.4 ml, 0.8 ml, 1.2 ml). These responses reflect the positive utility prediction 

errors that vary according to the slope of the utility function (ΔRu in B), rather than the 

identical positive physical prediction errors of +0.15. A–C from Stauffer et al. (2014).

Stauffer et al. Page 22

J Comp Neurol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


