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Abstract

The amino acid glutamate is a major metabolic hub in many organisms and as such is involved in 

diverse processes in addition to its role in protein synthesis. Nitrogen assimilation, nucleoside, 

amino acid, and cofactor biosynthesis, as well as secondary natural product formation all utilize 

glutamate in some manner. Glutamate also plays a role in the catabolism of certain amines. 

Understanding glutamate's role in these various processes can aid in genome mining for novel 

metabolic pathways or the engineering of pathways for bioremediation or chemical production of 

valuable compounds.

Introduction

Organisms ranging from Escherichia coli to humans contain large intracellular pools of the 

amino acid glutamate [15,6,83]. In E. coli, glutamate is encoded only by roughly 6% of the 

codons in the genome [53], whereas the concentration of glutamate in its cytosol (96 mM) is 

over two orders of magnitude higher than that of the most commonly encoded amino acid, 

leucine [6]. Given the levels of glutamate present, it is perhaps not surprising that this 

metabolite plays a role in chemical transformations far beyond protein synthesis.

Amino acid biosynthesis and nitrogen metabolism

Glutamate is commonly produced through two pathways, both of which result in the overall 

conversion of 2-oxoglutarate, a citric acid cycle intermediate, to glutamate. One route is the 

reductive amination of 2-oxoglutarate with ammonium as the nitrogen donor via glutamate 

dehydrogenase (GDH) (Fig. 1) [4]. GDH belongs to a family of amino acid dehydrogenases, 

other members of which act on leucine, phenylalanine, or valine and physiologically tend to 

operate in the deamination direction [8,81]. The second route to glutamate is by way of the 

glutamate synthase (GltS)-catalyzed reductive amination of 2-oxoglutarate using glutamine 

as the nitrogen donor (Fig. 1) [4]. GltS is a flavin dependent iron sulfur cluster protein [86]. 

It is worth noting that the reverse of these reactions, producing 2-oxoglutarate, allows the 

carbon from glutamate to enter the citric acid cycle and many organisms are capable of 

using glutamate as their sole carbon source, possibly even preferring it over glucose [84].

Glutamate biosynthesis is not only important for production of glutamate; it is also the major 

route for the assimilation of nitrogen [50]. Glutamine is produced by the action of the 
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glutamine synthetase (GS), which catalyzes the ATP-dependent amidation of glutamate 

using ammonium as the nitrogen source [4]. GS is one of the most ancient functioning 

enzymes [39], and homologous enzymes are involved in other pathways of glutamate 

metabolism, as described in this review. While glutamine serves as the nitrogen donor for 

about half of the nitrogens in purines and pyrimidines, glutamate serves as the nitrogen 

donor for the remaining nitrogens in purines and pyrimidines (Fig. 2a) and the amino groups 

of all the amino acids, making the GS/GltS glutamate biosynthesis pathway, also known as 

the GS-GOGAT pathway, a major route for nitrogen assimilation [4]. Transaminases 

catalyze the transfer of the amine from glutamate to the 2-oxo precursors of serine, 

aspartate, alanine, valine, leucine, isoleucine, phenylalanine, and tyrosine (Fig. 2b) [82]. 

Additionally, all of the other amino acids are synthesized from these amino acids and 

therefore indirectly obtain their amine nitrogen from glutamate. Furthermore, all of the 

carbons in proline and the majority of carbons in arginine are also derived from glutamate in 

addition to their amino group (Fig. 2c).

When organisms support both the GDH and GS-GOGAT glutamate biosynthetic routes, the 

choice of pathway depends on the nutrient availability. As the GS-GOGAT pathway 

consumes an ATP per ammonium assimilated, it is used under energy-rich conditions, while 

the GDH functions under energy limited conditions [28]. In fact it has been estimated that 

15% of the ATP produced by E. coli under energy rich growing conditions is devoted to 

ammonium assimilation through the GS-GOGAT pathway [64]. In addition, the affinity of 

the GS for ammonium is higher than that of the GDH [51], such that the GS-GOGAT 

pathway is employed under ammonium limiting conditions [28].

Nitrogen availability can also play an important role in secondary metabolism [7,85]. The 

biosynthesis of many secondary natural products is reduced or stopped altogether when the 

producing microbe is cultured in a medium with a readily assimilable nitrogen source such 

as ammonium [65]. When Streptomyces clavuligerus, a producer of the β-lactam antibiotic 

cephamycin and the β-lactamase inhibitor clavulanic acid, is grown with different amino 

acids as the sole nitrogen source, levels of production of these metabolites vary widely and 

not necessarily in the same manner. It is possible that the responses are related to guanosine 

tetra or pentaphosphate (ppGpp) signaling. When the available pool of amino acids drops to 

the point at which tRNA amino acylation is unable to support protein synthesis, the ppGpp 

synthetase RelA begins to produce ppGpp, which induces large changes in processes such as 

transcription and growth [62]. When a strain of Streptomyces coelicolor with a disrupted 

relA gene was grown under nitrogen limiting conditions both ppGpp and secondary 

metabolite production were greatly reduced compared to a strain with an intact relA gene 

[9]. Likewise, heterologous expression of RelA or a constitutively active truncated version 

of RelA in S. coelicolor led to increased production of ppGpp and secondary metabolites 

under nitrogen sufficient conditions [29].

Glutamate as a building block in biosynthesis

Nature has developed ways to use glutamate as a building block for the biosynthesis of 

molecules with complex structures beyond proteins. For example, glutathione is a low 

molecular weight thiol present in organisms ranging from bacteria to mammals [11]. 
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Glutathione is a tripepide composed of cysteine, glycine and a γ-linked glutamate (Fig. 3). 

During the first step in glutathione biosynthesis γ-glutamylcysteine ligase, which is related 

to GS enzymes, catalyzes the ATP-dependent ligation of the γ-carboxylate of glutamate to 

the amine of cysteine. In the next step, glutathione synthetase ligates glycine to the cysteinyl 

carboxyl group to produce glutathione. Glutathione synthetase is a member of the ATP-

grasp superfamily of proteins, which catalyze the ATP-dependent ligation of a carboxylic 

acid of one substrate to an amine, imine, alcohol or thiol of another molecule (or within the 

same molecule) [20] and are another class of enzymes that play a large role in the 

metabolism of glutamate. Glutathione is used to maintain redox homeostasis within the cell 

and to protect from oxidative damage [63,3]. It has been observed that the thiol group of 

glutathionine is oxidized less readily than that of cysteine, due to the protection of the free 

amine of cysteine by glutamylation [75,27].

Several cofactors have been discovered that contain polyglutamate chains. Folate is an 

important cofactor in one-carbon metabolism of amino acids, nucleotides, and other 

metabolites [22]. In vivo folate exists as a pool of polyglutamylated derivatives with 2-8 γ-

linked glutamate moieties (Fig. 3) [22]. The enzymes that produce these glutamylated 

derivatives are related to the amino acid ligases involved in the production of the bacterial 

cell wall precursor, UDP-N-acetylmuramoyl-pentapeptide [73]. These glutamate moieties 

are thought to be important for preventing the diffusion of folate out of cells and for enzyme 

recognition of the cofactor [67]. Other polyglutamylated cofactors include methanofuran, 

which is involved in the reduction of carbon dioxide to methane by methanogens [42]. 

Although different organisms produce different methanofurans [88], these cofactors share a 

common core structure that contains two γ-linked glutamate moieties. The enzyme from 

Methanocaldococcus fervens that installs one of these glutamates has been identified and is 

an ATP-grasp protein [87]. The redox cofactor F420 is also polyglutamylated and widely 

distributed in archaea [47]. During its biosynthesis, the intermediate F420-0 is glutamylated 

twice through γ-carboxylate linkages [45]. The enzyme that catalyzes the addition of these 

glutamates, CofE, phosphorylates F420-0 and F420-1 in a GTP-dependent manner to ligate 

the two glutamates [54]. Methanococcus jannaschii produces F420-3, which in addition 

contains an α-linked glutamate moiety [26].

Beyond primary metabolism, glutamate is also used as a building block by nonribosomal 

peptide synthetases (NRPS) [71]. The adenylation domains of these multimodular enzymes 

activate the α-carboxylate of their respective amino acids in an ATP-dependent manner, 

producing an amino acid adenylate. This activated amino acid is then transferred to the thiol 

of a phosphopantetheine prosthetic group of the peptidyl carrier protein domain of the NRPS 

forming a thioester. The condensation domain subsequently catalyzes the formation of an 

amide bond between the newly activated amino acid and the growing peptide chain residing 

on the peptidyl carrier protein domain of the previous module. Glutamate-specific 

adenylation domains can be identified through bioinformatic analysis of conserved residues 

in their active sites [10]. One example of a nonribosomal peptide containing a glutamate is 

the lipopeptide surfactin, produced by Bacillus subtilis (Fig. 3) [61].

Glutamate can also play a role in the biosynthesis of polyketide natural products. The 

formation of macrolactam polyketides often commences with an amino acid starter unit [52]. 
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Labeling studies suggested that the starter unit of the antibiotic macrolactam vicenistatin 

arises from a glutamate precursor [59]. When the biosynthetic cluster vicenistatin was 

identified it was found to contain genes encoding a glutamate mutase, which rearranges 

glutamate to 3-methylaspartate [55]. Decarboxylation of the 3-methylaspartate during the 

course of vicenistatin biosynthesis results in the 3-amino-2-methylpropionate derived moiety 

present in the final product (Fig. 4) [70]. The glutamate-derived starter unit of the cytotoxic 

macrolactam incednine (Fig. 4) is produced through a different route. The gene cluster was 

found to encode a glutamate 2,3-aminomutase and a decarboxylase [79]. The presence of 

these genes suggests glutamate is transformed to γ-glutamate by the aminomutase, which is 

then converted to 3-aminobutyrate by the decarboxylase, a route that was confirmed by 

labeling studies [78]. Genome mining for these glutamate-processing enzymes can be used 

to identify biosynthetic clusters for new macrolactams [72].

A more complex example of a glutamate-derived building block is found in the tetramic acid 

antibiotic streptolydigin, which contains a 5-membered lactam moiety that is partially 

derived from glutamate (Fig. 4). The biosynthetic cluster contains the genes for a glutamate 

mutase as well as a GltS [56]. These enzymes produce 3-methylaspartate, which is then 

loaded onto a peptidyl carrier protein of an NRPS module [30]. On the peptidyl carrier 

protein the 3-methylaspartate moiety is amidated to produce a 3-methylasparagine moiety, 

which is then N-methylated. This building block is subsequently incorporated during the 

final extension step in the pathway followed by cyclization to produce the lactam and 

release the product from the peptidyl carrier protein.

Glutamate as a protecting group and/or scaffold

Several pathways have been identified where glutamate is added to a compound, some 

transformations are performed on the glutamylated molecule, and then the glutamate is 

removed unchanged. In this context glutamate appears to be acting as a protecting group, 

preventing off-pathway reactions. Alternatively, instead of a protecting role, it is also 

possible that glutamate provides a scaffold for substrate recognition and that the enzymes 

acting on the glutamylated substrates were recruited from other pathways involving 

glutamate.

One type of off-pathway reaction that glutamylation can prevent is intramolecular 

cyclization. Putrescine is a diamine produced by a wide array of organisms that plays a role 

in a variety of biological processes [77]. Certain bacteria are capable of growing on 

putrescine as the sole nitrogen source [76]. A pathway for the catabolism of putrescine that 

proceeds through a γ-glutamylated species has been identified in E. coli and Pseudomonas 

aeruginosa wherein putrescine is oxidized to succinate, which can enter the citric acid cycle, 

releasing two equivalents of ammonium in the process [40,89]. The first enzyme in the E. 

coli pathway, PuuA, catalyzes the γ-glutamylation of putrescine in an ATP-dependent 

manner to produce γ-glutamylputrescine (Fig. 5a); it belongs to the GS family of enzymes 

[41]. In the next step γ-glutamylputrescine is oxidized to γ-glutamyl-γ-aminobutyraldehyde. 

This aldehyde is oxidized again to give γ-glutamyl-γ-aminobutyrate, at which point the 

glutamate is hydrolyzed by an enzyme belonging to the glutamine aminotransferase (GAT) 

superfamily to produce γ-aminobutyrate, which is then further catabolized. The glutamate in 
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this pathway is installed before the production of the γ-aminobutyraldehyde species and 

removed as soon as that species is consumed, suggesting γ-aminobutyraldehyde is being 

protected. Indeed, E. coli also uses an alternate putrescine utilization pathway that proceeds 

through the same steps without glutamylation, and in that pathway γ-aminobutyraldehyde 

spontaneously cyclizes to form Δ1-pyrroline [68]. The relative roles of these two pathways 

in E. coli remain to be determined.

Another example of glutamylation as potential protection against undesired cyclization 

comes from the biosynthesis of butirosin (Fig. 5b). Butirosin is an aminoglycoside antibiotic 

produced by Bacillus circulans [16]. It contains an unusual (2S)-4-amino-2-hydroxybutyryl 

moiety that protects it from certain aminoglycoside modifying enzymes [37]. During the 

synthesis of this moiety, an ATP-grasp enzyme, BtrJ, activates the γ-carboxylate of 

glutamate by ATP-dependent phosphorylation and ligates it to the phosphopantetheine 

prosthetic group of an acyl carrier protein (ACP), BtrI [46]. In the next step, a PLP-

dependent decarboxylase, BtrK, decarboxylates the γ-glutamyl-ACP to produce γ-

aminobutyryl-ACP. Interestingly, when BrtK and BtrJ were co-incubated in an in vitro 

reaction, a second glutamate was appended to the γ-aminobutyryl-ACP, generating γ-

glutamyl-γ-amidobutyryl-ACP. The next enzyme in the pathway, the flavin dependent 

monooxygenase BtrO, then hydroxylates the 2 position of the γ-glutamyl-γ-amidobutyryl-

ACP. BrtO is not capable of carrying out this reaction on the γ-aminobutyryl-acyl carrier 

protein, suggesting that the second glutamylation is on pathway for the production of the 

(2S)-4-amino-2-hydroxybutyryl moiety. The γ-glutamyl-γ-amidobutyryl group is then 

transferred to the aminoglycoside core of butirosin by the N-acetyltransferase, BtrH, 

followed by removal of the glutamate by a cyclotransferase to yield pyroglutamate and 

mature butirosin [48]. In the absence of a glutamate protecting group the γ-aminobutyryl 

thioester produced in the second step of the pathway could cyclize to form a 5-membered 

lactam, cleaving the group from the acyl carrier protein and aborting the synthesis of the 

moiety. However, the amide linkage of the γ-aminobutyryl group in the final product should 

be stable to such cyclization events.

Glutamate might also have a role as a protecting group preventing off-pathway N-oxidation. 

Aniline and its derivatives are involved in many industrial and agricultural processes and are 

often found in the environment [1]. These compounds can be toxic, mutagenic, or 

carcinogenic [5]. However, they can be removed from the environment through degradation 

by microorganisms. The bacterium Acinetobacter sp. strain YAA is capable of degrading 

aniline and 2-methylaniline to their respective catechols [23]. The gene cluster responsible 

for aniline degradation contains a gene encoding an enzyme named AtdA1 that is 

homologous to GS enzymes. This enzyme is capable of catalyzing the production of γ-

glutamylaniline in an ATP-dependent manner (Fig. 6a) [80]. AtdA1 was also found to act on 

aniline derivatives such as 2-, 3-, and 4-chloroaniline and 2-, 3-, and 4-methylaniline. Other 

studies have shown that AtdA1 also accepts 2-ethylaniline and 2,4-dimethylaniline [2], 

suggesting this pathway could be involved in the degradation of a range of aniline 

derivatives. After glutamylation by AtdA1, a Rieske non-heme dioxygenase produces 

catechol from γ-glutamylaniline. Rieske non-heme dioxygenases that perform a similar 

reaction on nitrotoluene, producing nitrite and methylcatechol, have been shown to produce 
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nitrobenzyl alcohol as an off-pathway product [60,43]. The nitro moiety cannot be further 

oxidized and therefore does not need not to be protected, however variability in site of 

oxidation by these enzymes could suggest that if a free amine were present in the aniline 

degradation pathway, it might be oxidized to some extent. Finally, a GAT superfamily 

enzyme releases glutamate to produce a 1-amino-1,2-diol-3,5-cyclohexadiene intermediate 

that spontaneously eliminates ammonia to produce catechol (Fig. 6a).

As with anilines, isopropylamine enters the environment through industrial and agricultural 

processes, particularly as part of the active ingredient of the herbicide Roundup. The 

bacterium Pseudomonas sp. Strain KIE171 is capable of degrading isopropylamine to L-

alinol [14]. The gene cluster encoding this pathway contains an enzyme homologous to GS 

enzymes (IpuC), a cytochrome P-450 monooxygenase (IpuD), and a GAT family protein 

(IpuF). IpuC was shown to produce γ-glutamylisopropylamide in an ATP-dependent manner 

(Fig 6b). This enzyme was also capable of glutamylating linear amines, branched amines 

including t-butylamine, and amino alcohols such as ethanolamine, amino-2-propanol, and 2-

amino-1-butanol all with activities similar to or higher than that observed for 

isopropylamine. The next step in the pathway is the oxidation of γ-glutamylisopropylamide 

to γ-glutamylalinol, presumably by the cytochrome P-450 monooxygenase in the cluster. 

IpuF then cleaves off glutamate, releasing alinol. The role of glutamylation in this pathway 

could be to protect the primary amine of isopropylamine from off-pathway oxidation by the 

monooxygenase. This degradation pathway has been identified in Arthrobacter aurescens 

TC1, which is capable of growing on the herbicide atrazine as the sole carbon and nitrogen 

source [69]. The degradation of atrazine releases both ethylamine and isopropylamine, 

which can then be assimilated through the glutamate-dependent pathway.

Interestingly, the use of glutamate as a protecting group and/or scaffold may be much more 

widespread than currently realized. Analysis of genomes revealed a very common 

occurrence of a pair of GS and amide hydrolase or cyclotransferase genes in gene clusters 

[32]. One intriguing example is in a set of five genes that appear to be conserved in clusters 

of natural products containing N-N bonds such as the hydrazine-containing fosfazinomycin 

[24] and the diazo-containing lomaiviticin [35]. Thus, it is possible that glutamate may be in 

some way involved in the process of N-N bond formation.

Use of Glutamyl-tRNA in biosynthesis

While glutamate is the predominant metabolite in many organisms, in E. coli tRNAGlu 

levels are more consistent with the amino acid content of its proteome [19]. Despite the lack 

of a large pool of glutamylated tRNAGlu, pathways have evolved that use it as a substrate.

Tetrapyrroles, such as heme and chlorophyll, are important prosthetic groups in biology. In 

certain organisms, including plants, bacteria, and archaea aminolevulinic acid is synthesized 

from glutamate through a Glu-tRNAGlu intermediate as part of tetrapyrrole biosynthesis 

[34]. The glutamyl-tRNAGlu is produced by the glutamate tRNA synthetase in the same 

manner as for protein synthesis. Then the Glu-tRNAGlu is reduced to glutamate-1-

semialdehyde by glutamyltRNA reductase, thereby freeing it from the tRNA [66]. In the 

next step an aminomutase converts the glutamate-1-semialdehyde to aminolevulinic acid 

(Fig. 7a) [74]. Competition between protein and tetrapyrrole synthesis can be an issue in 
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organisms that produce large amounts of tetrapyrroles. Indeed, the bacterium 

Acidithiobacillus ferrooxidans, which is able to use iron as the terminal electron acceptor 

during respiration requiring a large number of heme proteins to do so, has evolved a 

mechanism for separating heme and protein synthesis [90]. This organism contains two 

glutamyl tRNA synthetases and three tRNAGlu [44]. While all the tRNAGlu isoforms bind to 

elongation factor Tu, one of them is not a substrate for glutamyl-tRNA reductase, allowing it 

to be used solely for protein biosynthesis. Additionally, one of the glutamyl-tRNA 

synthetases does not efficiently activate this tRNA, further allowing specific tRNAs to 

support either tetrapyrrole or protein biosynthesis. We note that a similar mechanism of 

using different glutamylated tRNA molecules for distinct purposes is found in some 

bacteria, archaea and organelles that lack an aminoacyl-tRNA synthetase that can produce 

glutaminyltRNAGln [31]. Instead, the genomes of these cells encode an aminoacyl-tRNA 

synthetase capable of loading glutamate onto both tRNAGlu and tRNAGln. An 

amidotransferase then catalyzes an ATP-dependent transamidation reaction specifically on 

glutamyl-tRNAGln using glutamine as the nitrogen donor, producing Gln-tRNAGln and 

glutamate [12].

The antimicrobial peptide nisin [49] belongs to a class of ribosomally synthesized and post 

translationally modified peptides known as lanthipeptides that are cyclized through thioether 

crosslinks and has been used as a food preservative for over 40 years without the appearance 

of significant bacterial resistance [38]. Two enzymes install the thioether crosslinks on the 

nisin precursor peptide, NisA (Fig. 7b). The enzyme NisB dehydrates eight serine and 

threonine residues, producing dehydroalanine (Dha) and dehydrobutyrine (Dhb) residues, 

respectively. The second enzyme, named NisC, catalyzes the Michael-type addition of 

cysteine thiols onto the dehydrated amino acids, producing the thioether crosslinks. During 

studies of the activity of NisB mutants on NisA in E. coli, adducts corresponding to 

glutamylated NisA were observed [25]. Incubation of these glutamylated species with wild 

type NisB yielded the dehydrated NisA, suggesting these glutamylated species are 

intermediates in the dehydration reaction. Fractionation of the cell extract led to the 

observation that nucleic acids supported dehydration, and glutamylated tRNAGlu was 

identified as being sufficient for NisB to carry out the reaction on NisA (Fig. 7c) [58]. 

Structural characterization of NisB revealed a basic cavity that is likely involved in tRNA 

binding, and docking the structure of a bacterial tRNA onto NisB places the site on the 

tRNA of the activated glutamate near residues in NisB known to be important for 

glutamylation activity.

These studies have laid the groundwork for genome mining for novel lanthipeptides by 

heterologous expression in E. coli. Indeed, analysis of 830 actinobacterial genomes has 

revealed a vast reservoir of previously uncharacterized lanthipeptides [91]. This finding may 

be particularly important given that several such peptides from actinobacteria such as 

microbisporicin (NAI-107) [33,17,18], duramycin [57,36], a semisynthetic derivative of 

actagardine [13], and labyrinthopeptins [21] are all in clinical development. In addition, the 

tRNA-dependent dehydratases are also found in the biosynthetic gene clusters of 

nonlanthipeptide natural products including the thiopeptides [58], which also are widespread 
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in actinobacterial genomes. Hence, the discovery of glutamylation as a cryptic intermediate 

in dehydration may also assist genome mining for this class of natural products.

Conclusion

Glutamate plays a critical role in the central metabolism of many organisms, including 

nitrogen assimilation, amino acid biosynthesis, and cofactor production. It is also involved 

in the production of secondary metabolites such as antibiotics. Whether the large 

intracellular pool of glutamate present in many organisms evolved to support a wide array of 

processes, or whether these processes evolved to make use of the large pool of glutamate is 

unclear. It is possible that the utilization of glutamate in these various processes is 

adaptation of ancient non-enzymatic processes that relied on the unique capability of 

glutamate and aspartate to form cyclic anhydrides. Regardless of the evolutionary history, 

increased understanding of the roles of glutamate could allow for the engineering of 

processes such as bioremediation of industrial contaminates and the production of important 

compounds in heterologous hosts.
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Fig. 1. 
Glutamate biosynthetic pathways. Glutamate is made from the citric acid cycle intermediate 

2-oxoglutarate (2-OG) by reductive amination with either ammonium or glutamine as the 

nitrogen source
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Fig. 2. 
Glutamate is the major nitrogen donor in metabolism. a Glutamate is the nitrogen donor, 

through glycine and aspartate, for about half of the nitrogens, indicated in red, in 

nucleotides. b Glutamate donates nitrogen for other amino acids through the action of 

glutamate transaminases. c Carbons in proline and arginine that come from glutamate are 

indicated by red circles
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Fig. 3. 
Glutamate (shown in red) is used as a building block for the construction of more complex 

molecules
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Fig. 4. 
Glutamate derived building blocks (shown in red) can be used during biosynthesis of 

complex natural products
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Fig. 5. 
Glutamylation (shown in red) serves as a protecting group to prevent cyclization. a During 

putrescine catabolism, intermediates on the pathway are glutamylated to potentially prevent 

the spontaneous cyclization of the γ-aminobutyraldehyde to Δ1-pyrroline. b During butirosin 

biosynthesis, glutamylation may block cyclization of aminobutyryl thioester intermediates to 

5-membered lactams
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Fig. 6. 
Glutamylation (shown in red) may block off-pathway N-oxidation. Intermediates during 

aniline (a) and isopropylamine (b) catabolism are glutamylated, which might prevent N-

oxidation of the amine
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Fig. 7. 
Glutamylated-tRNA is involved in biosynthetic pathways. a The biosynthesis of the 

tetrapyrrole precursor aminolevulinic acid proceeds through a Glu-tRNAGlu intermediate. b 
Biosynthesis of the antimicrobial lanthipeptide nisin. c During biosynthesis of nisin, 

dehydrated amino acids are produced in a Glu-tRNAGlu dependent manner

Walker and van der Donk Page 20

J Ind Microbiol Biotechnol. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


