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Abstract
Alcoholic liver disease (ALD) remains an important health 
problem worldwide. The disease spectrum is featured 
by early steatosis, steatohepatitis (steatosis with infla-
mmatory cells infiltration and necrosis), with some 
individuals ultimately progressing to fibrosis/cirrhosis. 
Although the disease progression is well characterized, 
no effective therapies are currently available for the 
treatment in humans. The mechanisms underlying the 
initiation and progression of ALD are multifactorial and 
complex. Emerging evidence supports that adipose 
tissue dysfunction contributes to the pathogenesis of 
ALD. In the first part of this review, we discuss the 
mechanisms whereby chronic alcohol exposure contri-
buted to adipose tissue dysfunction, including cell death, 
inflammation and insulin resistance. It has been long 
known that aberrant hepatic methionine metabolism 
is a major metabolic abnormality induced by chronic 
alcohol exposure and plays an etiological role in the 
pathogenesis of ALD. The recent studies in our group 
documented the similar metabolic effect of chronic 
alcohol drinking on methionine in adipose tissue. In 
the second part of this review, we also briefly discuss 
the recent research progress in the field with a focus 
on how abnormal methionine metabolism in adipose 
tissue contributes to adipose tissue dysfunction and liver 
damage. 
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featured by early steatosis, steatohepatitis (steatosis with 
inflammatory cells infiltration and necrosis), with some 
individuals ultimately progressing to fibrosis/cirrhosis. 
Although the disease progression is well characterized, 
no effective therapies are currently available for the 
treatment in humans. The mechanisms underlying the 
initiation and progression of ALD are multifactorial and 
complex. Emerging evidence supports that adipose 
tissue dysfunction contributes to the pathogenesis of 
ALD. In this review, we discuss the mechanisms whereby 
chronic alcohol exposure contributed to adipose tissue 
dysfunction, as well as their contribution to ALD.
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ALCOHOLIC LIVER DISEASE
Sustained and excessive alcohol consumption is often 
accompanied with pathological changes in the liver, 
termed alcoholic liver disease (ALD). The spectrum of 
ALD encompasses steatosis, steatohepatitis (steatosis 
with inflammatory cells infiltration and hepatocyte 
necrosis), with some individuals ultimately progres
sing to fibrosis/cirrhosis, leading to increased risk of 
hepatocellular carcinoma[13]. The earlystage ALD, 
including steatosis and early steatohepatitis, is clinically 
reversible after termination of alcohol drinking, although 
the latter takes longer time for the recovery. The 
pathomechanism implicated in the development of ALD 
is complex and believed to involve multiple pathogenic 
factors. Although much progress has been made over 
last three decades of research on the mechanisms 
underlying the disease, ALD remains an important health 
problem worldwide. It ranks among the major causes of 
morbidity and mortality in the world, and affects millions 
of patients worldwide each year and there is currently 
no Food and Drug Administrationapproved therapy 
available to halt or reverse this process in humans. 

PATHOGENESIS OF ALD
Steatosis
Hepatic steatosis, characterized by the excessive 
accumulation of fat in hepatocytes, is the most common 
and earliest response of the liver to chronic alcohol 
consumption. Although “pure” steatosis is clinically 
considered to be a benign condition, excessive fat accu
mulation makes hepatocytes vulnerable to the attack 
of “the second hit”, such as proinflammatory cytokines 
and oxidative stress, leading to the progression to 
steatohepatitis[4,5]. The mechanisms involved in the 
development of alcoholinduced hepatic steatosis 
are multifactorial and remain to be fully elucidated. 

Sterol regulatory element binding proteins (SREBP)
1c, a master transcription factor controlling de novo 
lipogenesis, is upregulated in the liver of mice chronically 
exposed to ethanolcontaining diet[6]. Importantly, 
liverspecific knockout of SREBP1c protected mice 
against alcoholinduced fatty liver and liver damage[7], 
supporting the notion that enhanced hepatic de 
novo lipogenic process plays a pivotal role in alcohol
triggered fat accumulation in the liver. Moreover, chronic 
alcohol exposure is associated with impaired fatty 
acid βoxidation, contributing to fat accumulation in 
hepatocytes. Suppressions of both adenosine monophos
phateactivated protein kinase (AMPK) and peroxisome 
proliferatoractivated receptoralpha (PPARα), two 
regulatory proteins of fatty acids oxidation, are me
chanistically involved in this process[8,9]. Furthermore, 
longterm alcohol consumption is reported to enhance 
uptakes of free fatty acids (FFAs) and triglyceriderich 
lipoproteins by hepatocytes[10,11] and impair hepatic 
verylowdensity lipoprotein secretion via suppressing 
microsomal triglyceride transfer protein activity[12], 
thereby contributing to fatty liver after chronic alcohol 
exposure.

Steatohepatitis
Steatohepatitis is characterized by fatty liver, hepatic 
neutrophil infiltration, and hepatocyte cell death. 
The stage is a prerequisite for progression to fibrosis 
and cirrhosis[13]. The molecular mechanism for the 
progression from steatosis to steatohepatitis involve 
complicated interactions between the direct effects 
of toxic ethanol metabolites on different cell types in 
the liver, overproduction of reactive oxygen species 
(ROS), and overactivated inflammatory responses[1421]. 
Acetaldehyde, the major product of ethanol metabolism 
in the liver, plays an important role in the development 
of alcoholic steatohepatitis. Acetaldehyde is a reactive 
compound and highly toxic to hepatocytes. It binds 
to both proteins and DNA, leading to not only their 
functional changes but also activation of adaptive 
immune system and immune cell infiltration to the 
damaged liver[22,23]. Moreover, acetaldehyde also impair 
mitochondrial integrity and function, leading to oxidative 
stress and cell death[2426]. Oxidative stress, derived 
from an imbalance between ROS production and cellular 
antioxidant capability, is believed to play a critical role in 
the transition from simple steatosis to steatohepatitis[27]. 
Many pathways have been suggested to contribute to 
the occurrence of oxidative stress in response to chronic 
ethanol exposure. In hepatocytes, the cytochrome P450 
2E1 (CYP2E1) activation and mitochondria dysfunction 
seem to play central roles in inducing cellular oxidative 
stress state. CYP2E1 is highly inducible and has high 
catalytic activity for ethanol. During its catalytic circle, 
CYP2E1 generate significant amount of ROS, which can 
subsequently leads to cellular injury, lipid peroxidation, 
and mitochondrial damage[2831]. Chronic alcohol consum
ption is associated with increased CYP2E1 expression 
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and activity[32], partially resulting from increased protein 
stability due to decreased proteasomal degradation[33,34]. 
CYP2E1 activity correlates with ethanolinduced liver 
injury and lipid peroxidation, which was reduced by the 
inhibition of CYP2E1 using either chemical inhibitors 
or genetic knockout of CYP2E1 gene[3538]. The detrim
ental effects of chronic alcohol consumption on liver 
mitochondria have been well documented. Longterm 
alcohol exposure is associated with reduced activity of 
key enzymes in mitochondrial respiratory chain and 
decreased mitochondria oxygen utilization[39,40]. Alcohol 
also leads to disruption between complex Ⅰ and complex 
Ⅲ of the mitochondrial electron transport chain, 
leading to elevated superoxide anion production[41]. 
Furthermore, chronic alcohol drinking is associated 
with damaged mitochondrial membrane integrity, 
possibly due to acetaldehyde accumulation, leading to 
defective mitochondrial GSH uptake, which sensitizes 
hepatocytes to TNFαinduced cell death[42,43]. In addition 
to hepatocytes, accumulated evidence identified Kupffer 
cells (KCs) activation to be a central element in the 
development of steatohepatitis. Chronic alcohol exposure 
not only results in intestinal gramnegative bacterial 
overgrowth but also increases gut permeability, leading 
to the translocation of bacteriaderived LPS from the 
gut lumen to the blood[4446]. The increased circulating 
LPS induces inflammatory actions in KCs in the liver 
via interacting with tolllike receptor (TLR)4, resulting 
in production of oxidative stress and proinflammatory 
cytokines, including TNFα, which plays a pivotal role in 
alcoholinduced hepatocyte cell death[4750].

Fibrosis
Liver fibrogenesis is a woundhealing response to 
chronic liver injury. It is featured by excessive extrace
llular deposition of collagen and other extracellular 
matrix proteins, mainly derived from activated hepatic 
stellate cells (HSCs)[5153]. The major stimuli for HSCs 
activation during chronic alcohol consumption include 
acetaldehyde[54,55], the main ethanol metabolite, and 
proinflammatory cytokines produced by KCs in response 
to gutderived products via LPSTLR4 interactions[56,57]. 

ADIPOSE TISSUE REGULATES WHOLE 
BODY LIPID HOMEOSTASIS
Adipose tissue plays a central role in regulating whole 
body lipid and energy homeostasis. The modern concept 
viewed adipose tissue as a complex, essential, and 
highly active metabolic and endocrine organ, not only 
as a reservoir for energy storage[58,59]. Adipose tissue 
communicates with other tissues and organs, including 
the liver, to integrate total body lipid homeostasis via 
both controlling circulating FFAs levels and synthesizing 
and releasing a host of secreted molecules, collectively 
designated as adipokines, including leptin, adiponectin, 
resistin, to name a few[58,60]. Adipose tissue stores 
excess energy in the form of triglycerides (TGs) and rele

ases it in the form of FFAs, a process called lipolysis, to 
meet other tissues or organs’ energy requirements[61]. 
Under physiological conditions, lipid storage and release 
are both coordinated and tightly regulated so that 
lipid fuels are stored during postprandial periods and 
released during fasting states. When the regulation 
of TG storage and FFAs release by adipose tissue is 
perturbed, particularly when release of FA becomes 
dissociated from energy requirements in extraadipose 
tissues, plasma FA levels are elevated and excessive 
storage of TGs in these tissues, such as the liver, 
ensues, leading to hepatic steatosis (fatty liver). The 
critical role of adipose tissue in regulating hepatic lipid 
homeostasis can be best manifested by the facts that 
both longterm fasting and lipodystrophy (adipose 
tissue deficiency) results in fatty liver[6264]. Insulin plays 
a dominant role in suppressing adipose tissue lipolysis 
during postprandial periods[65,66]. Therefore, adipose 
tissue insulin resistance is associated with elevated 
circulating FFAs levels due to uncontrolled lipolysis. 

ADIPOSE TISSUE DYSFUNCTION IN ALD
Although it has been wellestablished that chronic alcohol 
consumption exerts a detrimental effect on hepatic fat 
synthesis and disposal, leading to the development 
of hepatic steatosis, emerging evidence supports that 
adipose tissue dysfunction also plays an important role 
in the pathogenesis of ALD. In the clinic setting, it has 
been reported that visceral fat accumulation is positively 
related to the onset of alcoholic liver damage and body 
mass index represents an independent risk factor for 
fibrosis in alcoholic patients[6770]. Moreover, adipose 
tissue inflammation is correlated with the severity 
of pathological features in the liver of patients with 
ALD[69]. Experimentally, longterm alcohol consumption 
is associated with adipose tissue oxidative stress, 
insulin resistance, inflammation, adipocyte cell death, 
and adiponectin decline[7175]. Chronic alcohol feeding 
results in hyperlipolysis (degradation of TGs) in adipose 
tissue, leading to elevated circulation FFAs concentra
tions and a significant loss of white adipose tissue[10]. 
A recent study demonstrated that moderate obesity 
and alcohol synergistically induced steatohepatitis[76], 
further supporting the critical role of adipose tissue 
(dys)/function in the development of ALD. Importantly, 
both rosiglitazone (a PPARγ agonist mainly targeting 
adipocytes)[77] and recombinant adiponectin (an adipo
kine exclusively secreted by adipocytes)[78] improved 
ALD, suggesting that improving adipose tissue function 
represents a potential therapeutic approach for ALD. 

EFFECTS OF CHRONIC ALCOHOL 
CONSUMPTION ON ADIPOSE TISSUE 
FUNCTION
Oxidative stress, cell death, and inflammation
Although the liver is the major organ for ethanol me
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development of obesityrelated nonalcoholic fatty 
liver disease[97100]. Insulin signaling in adipocytes plays 
a central role in controlling FFAs release by adipose 
tissue via lipolysis[65,66]. Peripheral insulin resistance 
derived from obesity compromises the suppressive 
effect of insulin on lipolysis, leading to increased 
exposure of the liver to circulating FFAs with subsequent 
development of fatty liver. The effect of chronic alcohol 
consumption on adipose tissue insulin sensitivity 
remains to be fully characterized; however, existing 
evidence supports that chronic alcohol consumption 
is associated with adipose tissue insulin resistance. In 
rats, chronic ethanol feeding results in impaired insulin
stimulated glucose transport in adipocytes, which is 
associated with a disruption of insulinmediated Cbl/
TC10 signaling and actin polymerization[97]. Moreover, 
chronic ethanol feeding compromises the suppression 
of the antilipolytic effects of insulin in adipocytes in 
both rats and mice, leading to enhanced triglyceride 
degradation in adipose tissue[10,73]. Interestingly, in 
comparison to subcutaneous fat, visceral white adipose 
tissue seems to be more susceptible to alcoholinduced 
lipolysis enhancement, which may involve increased 
acetaldehyde production[100]. In contrast to adipose 
tissue insulin resistance in obese animals which is 
associate with an increase in body weight and adipocyte 
size, chronic alcohol consumption leads to reduced 
adipose tissue mass and adipocyte size[10], indicating 
that distinct mechanism(s) are involved in the initiation 
of adipose tissue insulin resistance. Adipose triglyceride 
lipase and hormone sensitive lipase (HSL) are two 
critical enzymes catalyzing fatty acids release from the 
adipose tissue. Both enzymes are found to be activated 
in mice chronically fed with alcohol. Interestingly, 
chronic alcohol feeding has no effect on plasma 
catecholamine and insulin levels, while PTEN and SOC3, 
two negative regulators of insulin signaling pathway, are 
upregulated, leading to insulin resistance[10]. 

ABERRANT METHIONINE METABOLISM 
AND ALCOHOL-INDUCED ADIPOSE 
TISSUE DYSFUNCTION
Methionine metabolism abnormality in ALD: Aberrant 
hepatic methionine metabolism is a major metabolic 
abnormality induced by chronic alcohol exposure 
and plays an etiological role in the pathogenesis of 
ALD[101104]. As illustrated in Figure 1, intracellular 
methionine metabolism involves two major pathways, 
transmethylation reaction and transsulfuration reaction. 
The first step in methionine metabolism is the formation 
of Sadenosylmethionine (SAM) in a reaction catalyzed 
by methionine adenosyltransferase. Under physiological 
conditions, most of the SAM generated per day is used 
in transmethylation reactions in which methyl groups 
are added to a vast number of molecules, including 
DNA, RNA, phospholipids, histones, and other proteins, 
via specific methyltransferases. In this process, SAM is 

tabolism, accumulated evidence supports that chronic 
alcohol feeding is also associated with increased 
oxidative stress, cell death, and inflammatory response 
in adipose tissue. Upregulation of CYP2E1 seems to 
play an important role in these events. Chronic eth
anol feeding of rats causes increased expression and 
enzymatic activity of CYP2E1 in adipocytes/adipose 
tissue[72,79], leading to oxidative stress induction, 
which is evidenced by elevated 4HNE production and 
protein carbonyls. When fullydifferentiated 3T3L1 
adipocytes with CYP2E1 overexpression were exposed 
to ethanolcontaining medium, increased oxidative 
stress was observed[72]. In contrast, overexpression 
of antisense CYP2E1 in adipocytes prevented ethanol
triggered oxidative stress[72]. Adipocyte cell death plays 
a pivotal role in triggering adipose tissue inflammatory 
responses[80,81]. Chronic alcohol consumption results in 
CYP2E1/Bid cascadedependent adipocyte cell death 
in adipose tissue of rats, which contributes to adipose 
tissue inflammation in response to chronic alcohol 
exposure in that both Cyp2e1 and Bid knockout mice 
are protected from adipose tissue inflammation[72]. 
Interestingly, C1q, a component of the classical path
way of complement, seems to represent a critical link 
between cell death and inflammation in the setting of 
chronic alcohol consumption[72]. 

Adipokines
Alcohol consumption is known to disrupt adipokine 
release from adipose tissue[82,83]. Adiponectin and leptin 
are key adipokines that modulate hepatic lipid hom
eostasis. Reduced circulating leptin and adiponectin 
levels are observed in chronic alcohol exposed rodents, 
which contribute to the development of ALD[72,8486]. 
Via binding with adiponectin receptor on hepatocytes, 
adiponectin activates AMPK pathway to stimulate 
FA oxidation, leading to reduced fat accumulation in 
the liver[87,88]. Indeed, either exogenous adiponectin 
administration or endogenously stimulating adiponectin 
production attenuate alcohol induced fatty liver in 
mice[78,84,89,90]. Mechanisms underlying alcoholtriggered 
adiponectin decline are multifactorial, including oxidative 
stress[79,91], hyperhomocysteinemia (HHcy)[84], and 
hemeoxygenase1 dependent pathway[92]. Other than 
adiponectin, leptin is another adipokine reported to be 
affected by chronic alcohol consumption and contribute 
to ALD. Animal studies showed that chronic alcohol 
consumption decreases circulating leptin levels[80,93,94], 
which is associated with adipose tissue mass reduction. 
Importantly, exogenous leptin administration restored 
plasma leptin reduction triggered by chronic alcohol 
feeding and alleviated hepatic steatosis[95]. It is no
teworthy here that clinical investigations support that 
moderate alcohol consumption is associated with 
increased adiponectin levels[95,96]. 

Lipolysis
Uncontrolled adipose tissue lipolysis, mainly due 
to insulin resistance, plays an etiological role in the 
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converted to Sadenosylhomocysteine (SAH), followed 
by homocysteine (Hcy) and cysteine, a precursor for 
glutathione biosynthesis, via transsulfuration path
way. SAH is a potent competitive inhibitor of most 
methyltransferases studied and decreased SAM:SAH 
ratio has been widely employed as an indicator of 
suppressed transmethylation reactions[105,106]. While 
chronic alcohol exposure leads to hepatic SAM deficiency, 
both SAH and Hcy are increased in the liver in response 
to alcohol[101,104,107]. HHcy is associated with ER stress 
induction, leading to hepatocyte dysfunction[108], while 

increased intracellular SAH level enhances the sensitivity 
of hepatocytes to TNFαinduced hepatotoxicity[104], both 
contributing to the pathogenesis of ALD. 

Aberrant adipose methionine metabolism and 
hyperlipolytic response in adipose tissue: Studies 
using both genetic and dietary animal models dem
onstrated that HHcy is associated with adipose tissue 
dysfunction[71,108112], suggesting that methionine meta
bolism regulates adipose tissue function. We are the 
first to report that, similar to its effect on the liver, 
chronic alcohol feeding induces methionine metabolism 
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Figure 1  Intracellular methionine metabolism. Chronic alcohol consumption causes SAM deficiency, but enhancement of homocysteine and SAH. MAT: 
Methionine adenosyl-transferase; SAM: S-adenosylmethionine; SAH: S-adenosylhomocysteine; Hcy: Homocysteine; CBS: Cystathionine beta synthase; SAHH: 
S-adensylmonocysteine hydrolase; MS: Methionine synthase; BHMT: Betaine-homocysteine methyltransferase.
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abnormality in adipose tissue, which is characterized by 
SAM deficiency, and accumulation of Hcy and SAH[71,113], 
leading to significant decrease of the SAM/SAH ratio, a 
strong indicator of inhibitory transmethylation reactions 
(hypomethylation). HSL is considered a ratelimiting 
lipase for adipose tissue lipolysis[114]. Upon lipolytic 
hormone stimulation, such as with catecholamine, 
cAMP/PKAmediatedphosphorylations in certain 
serine residues activate HSL[115]. In contrast, protein 
phosphatase 2A catalyzed dephosphorylation at Ser660 
leads to HSL inactivation[116,117]. PP2A is a heterotrimeric 
protein phosphatase. The catalytic and scaffold subunits 
of PP2A are ubiquitously expressed and have remarkable 
sequence conservation within eukaryotes. Interestingly, 
accumulating evidence reveals that PP2A activation is 
under control of intracellular methylation status[118,119]. 
Carboxyl methylation of the PP2A catalytic subunit, 
catalyzed by PP2Aspecific methyltransferaseleucine 
carboxyl methyltransferase1, plays a critical role in 
regulating holoenzyme assembly[120]. These previous 
studies provide rational for us to posit that altered 
intracellular methylation status in adipocytes may affect 
adipose tissue lipolytic response. In a very recent study, 
we provided evidence supporting that intracellular 
hypomethylation status in adipocytes in the setting of 
chronic alcohol feeding contributes to adipose tissue 
hyperlipolytic response in ALD via suppressing PP2A 
activity, leading to HSL overactivation[114] (Figure 2). Our 
data support that rectification of methionine metabolism 
through dietary supplementation of betaine protects 
against alcoholinduced liver damage, at least partially 
via improving adipose tissue function. Taken together, 
the recent research in our group suggest that aberrant 
methionine metabolism in adipocytes contributes to 
alcoholelicited adipose tissue dysfunction and liver 
damage. 

CONCLUSION
Despite its high prevalence, ALD has received limited 
attention during past decades and no major break
through in terms of its clinical management. Emerging 
evidence shows that adipose tissue plays an important 
role in both initiation and progression of liver damage 
induced by chronic alcohol consumption. However, the 
exact underlying cellular/molecular mechanisms involved 
in adipose tissue dysfunction in ALD remain to be fully 
elucidated. Future efforts in identifying the common 
factors that promote dysfunctions in both adipose tissue 
and the liver in response to chronic alcohol consumption 
will pave the way for the discovery of new therapeutic 
approach. 
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