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An Ultra-thin Amniotic Membrane 
as Carrier in Corneal Epithelium 
Tissue-Engineering
Liying Zhang1,2,4, Dulei Zou1,2,4,5, Sanming Li1,2,4, Junqi Wang1,2,4, Yangluowa Qu1,2,4, 
Shangkun Ou1,2,4, Changkai Jia1,2,4, Juan Li1,2,4, Hui He1,2,4, Tingting Liu1,2,4, Jie Yang1,2,4,6, 
Yongxiong Chen1,2,4, Zuguo Liu1,2,3,4 & Wei Li1,2,3,4

Amniotic membranes (AMs) are widely used as a corneal epithelial tissue carrier in reconstruction 
surgery. However, the engineered tissue transparency is low due to the translucent thick underlying 
AM stroma. To overcome this drawback, we developed an ultra-thin AM (UAM) by using collagenase 
IV to strip away from the epithelial denuded AM (DAM) some of the stroma. By thinning the stroma to 
about 30 μm, its moist and dry forms were rendered acellular, optically clear and its collagen framework 
became compacted and inerratic. Engineered rabbit corneal epithelial cell (RCEC) sheets generated 
through expansion of limbal epithelial cells on UAM were more transparent and thicker than those 
expanded on DAM. Moreover, ΔNp63 and ABCG2 gene expression was greater in tissue engineered cell 
sheets expanded on UAM than on DAM. Furthermore, 2 weeks after surgery, the cornea grafted with 
UAM based cell sheets showed higher transparency and more stratified epithelium than the cornea 
grafted with DAM based cell sheets. Taken together, tissue engineered corneal epithelium generated 
on UAM has a preferable outcome because the transplanted tissue is more transparent and better 
resembles the phenotype of the native tissue than that obtained by using DAM for this procedure. UAM 
preserves compact layer of the amniotic membrane and maybe an ideal substrate for corneal epithelial 
tissue engineering.

Corneal epithelial stem cells serve as the ultimate source for constant corneal epithelial renewal. Severe ocular 
surface diseases such as chemical or thermal injuries, Stevens-Johnson syndrome, and ocular cicatricial pem-
phigoid can cause total limbal stem cell deficiency, which will result in conjunctivalization, neovascularization 
and chronic inflammation of the ocular surface, eventually leading to severe vision loss or blindness1. In recent 
years, ex-vivo construction and transplantation of tissue engineered corneal epithelium has become a significant 
treatment strategy for restoring normal corneal epithelial surface integrity on these limbal-deficient corneas2–8.

To construct the tissue engineered corneal epithelium, limbal epithelial cells or limbal biopsy specimens were 
normally cultivated on certain carrier. Different substrates such as amniotic membrane3,9–14, or other biolog-
ical15,16 and non-biological synthetic materials17–23 have been used in different studies. Among them, human 
amniotic membrane (AM) is the most widely used substrate. Histologically, the human AM is consist of 5 layers, 
a single epithelial layer, thick basement membrane, compact layer, fibroblast layer and spongy layer24. Among 
these layers, the basement membrane contains abundant proteoglycans, such as laminin, perlecan. The adjacent 
compact layer is composed of compact and well-organized collagen fibers without cells. The outer fibroblast layer 
contains mesenchymal cells and the spongy layer is so named because of its loose matrix. Both of these layers 
account for most of the AM tissue thickness.

In corneal epithelial tissue engineering, intact AM (IAM), composed of devitalized amniotic membrane 
stroma and overlaying epithelial cells, or epithelial denuded AM (DAM), were commonly used in different stud-
ies2,9. Transplantation of AM based tissue engineered corneal epithelium often results in postoperative reposition-
ing of AM within the visual field for prolonged or indefinite periods25. Therefore, in order to obtain a good visual 
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outcome after transplantation of tissue engineered corneal epithelium, AM transparency is required. However, 
different studies have shown that the AM transparency is not consistent after its removal various from its original 
location in the fetal sac and its thickness renders the tissue translucent26. These two attributes account for why the 
AM transparency in the clinic is less than that of the human cornea. These considerations reduce the desirability 
of using AMs as a supportive layer in corneal epithelial tissue engineering.

Based on the presence of appreciable amounts of hyaluronic acid in the loose matrix within the fibroblast and 
spongy layers, we hypothesized that these two layers account for the AM transparency. On the other hand, the 
compact layer alone may have a higher optical transmittance which makes it an ideal carrier in the construction 
of tissue engineered corneal epithelium. Therefore, in this study, we describe a method to generate an ultra-thin 
AM (UAM) composed of just the compact layer of the amniotic membrane, and show that its biomaterial charac-
teristics are ideal for it to be used in the construction of tissue engineered corneal epithelium.

Results
The production of UAM.  After dissociating the AM epithelial cells with 0.02% EDTA, they were removed 
with a cell scraper to generate denuded AM (DAM). H&E staining (Fig. 1B), phase contrast (Fig. 1D) and scan-
ning electron microscope images (Fig. 2) confirmed complete AM epithelial stripping. We further digested the 
stroma of the DAM by placing its stromal side on type IV collagenase soaked sponge and incubated it at 37 °C for 
different durations. The AM thickness gradually decreased from about 150 μ m to 30 μ m after 75 min digestion, 
and remained stable after 75 to 90 min digestion (Fig. 1A). The preparation obtained after 75 min digestion is 
designated the ultra-thin amniotic membrane (UAM) which is used in this study.

Biological and physical characteristics of the UAM.  The optical properties of the moist and freeze 
dried forms of IAM, DAM and UAM were evaluated based on scanning images and light microscopic images. As 
shown in Fig. 1C, the light transmission of moist form increased from the IAM to DAM and showed best trans-
mission of UAM. After lyophilization, the IAM was fully opaque and the typescript “A” beneath the membrane 
was totally invisible. Despite epithelial stripping, the DAM remained opaque. This lack of a change indicates that 
the underlying stromal collagen fibrils contribute to the AM opaqueness. However, the typescript “A” is clearly 
observed in the UAM group as the membrane is markedly transparent. This finding suggests that the epithelial 
layer, fibroblast layer, spongy layer and the compact layer in the AM affect the optical property of AM to varying 
degrees.

H&E staining of the AM tissues revealed intact epithelial and stromal layers of the IAM, with scattered mes-
enchymal cells distributed throughout the stroma (Fig. 1B). After epithelial denudation, the epithelial cells were 
completely removed in the DAM. After further collagenase digestion, the sponge layer and fibroblast layer with 
all the mesenchymal cells were removed leaving a remaining acellular homogeneous thin compact layer. Masson 

Figure 1.  The characteristics of ultra-thin amniotic membrane. (A) The thickness change of amniotic 
membrane after digestion with collagenase type IV for different time durations. (B) H&E and Masson trichrome 
staining of IAM, DAM and UAM tissues (Bar: 100 μ m). (C) Macroscopic views of IAM, DAM and UAM were 
evaluated by photography scanning in moist form and light microscope in freeze dry form. (D) Hoechst whole 
mount staining of IAM, DAM and UAM (Bar: 100 μ m).
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trichrome staining also demonstrated loosened collagen fibers in the sponge layer and fibroblast layer of IAM and 
DAM, along with condensed collagen staining in the UAM compact layer (Fig. 1B).

The amniotic membrane contains a single layer of epithelial cells and stromal fibroblasts that are devitalized 
after preservation. Although the antigenicity of AM is low, the presence of cell membrane epitopes and allogeneic 
DNA could induce an adverse immune response upon implantation. Therefore decellularization is broadly used 
in preparation of AM27. A phase contrast image clearly showed intact AM epithelial cells on the surface of IAM, 
while both DAM and UAM displayed collagen fibrils and the stromal cells are no longer visible (Fig. 1D). With 
Hoechst 33342 whole mount staining of the AM tissues, the ovoid epithelial nuclei in the IAM are well organized 
and spindle shaped stromal fibroblasts are evident in the DAM. However, there is no nuclear staining in the UAM, 
indicating complete cell removal of the UAM tissue (Fig. 1D).

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation was further 
performed to show detailed changes in IAM, DAM and UAM ultrastructure (Fig. 2). SEM identified changes in 
AM ultrastructure of the epithelial side and stromal side surface. The IAM epithelial side cells were consistently 
hexagonal while on this side both DAM and UAM there was a continuous flattened matrix layer with dense and 
crossed fibroid structure. On the stromal side, compared to the irregular and loosen collagen fibrils appeared in 
the IAM, the UAM exhibited a highly packed dense smooth surface and the collagen fibrils were compacted in 
a regular pattern (Fig. 2). TEM provided a cross sectional view of the changes in the AM ultrastructure (Fig. 3). 
The IAM possessed an epithelial layer whereas it was absent in the DAM and UAM. High magnification showed 
dense collagen fibril packing in the compact layer (Fig. 3a,c,e), while it was loose in the IAM (Fig. 3b) and DAM 
(Fig. 3d) fibroblast and sponge layers. However, in the UAM fibroblast and sponge layers were absent and the 
collagen fibrils were densely packed in a regular orthogonal lamellar array (Fig. 3f).

Ultra-thin amniotic membrane components.  To identify any changes in the extracellular matrix com-
ponents of the UAM, we performed immunohistochemical staining of the stromal collagen markers (collagen 
I, collagen III) and immunofluorescent staining of the basement membrane markers (collagen IV, collagen VII, 
laminin 5, perlecan) on the AM tissues. As shown in Fig. 4, both IAM and DAM expressed all the markers. In 
contrast, basement membrane components collagen IV, collagen VII, and perlecan became negative, and laminin 
5 was greatly diminished in UAM, while collagen I and collagen III were still present in UAM and had a homog-
enous expression pattern. These results indicate that the basement membrane components were largely removed 
during the processing procedure of UAM, while the compact layer of the AM was well preserved.

Construction of tissue-engineered corneal epithelium with UAM.  Rabbit limbal epithelial cells 
were expanded on UAMs to determine if this tissue could serve as a carrier to construct tissue engineered cor-
neal epithelium. Rabbit limbal epithelial cells reached confluence on both DAM and UAM on day 10 (Fig. 5A). 
Microscopic views showed that the UAM with epithelial cells are more transparent than DAM with epithelial 
cells (Fig. 5B). H&E staining displayed a stratified epithelium consisting of 3 to 5 layers on DAM and 5 to 7 layers 
on UAM. Moreover, epithelial cells on the UAM had better polarity than on DAM (Fig. 5C). TEM observation 
revealed that the inter-cell spaces between epithelial cells on UAM was obviously smaller than that on DAM, indi-
cating a more compact sheet on UAM. TEM also showed there was space between the basal epithelial cells and the 
underlying DAM stroma, while the basal cells on UAM were firmly attached to the AM stroma. Moreover, TEM 
revealed that there was decrease of the thickness of both DAM and UAM after cultivation of corneal epithelium 
(Fig. 5D). We further performed immunostaining of Connexin 43, β -catenin, and Claudin-1 to investigate the cell 

Figure 2.  Representative scanning electron microscopic images of IAM, DAM and UAM tissues. The IAM 
epithelial side showed hexagonal cells and dense microvilli on the apical surface of the epithelial cells. Both 
DAM and UAM showed a continuous flattened matrix layer with dense and crossed fibroid structure. On the 
stromal side, irregular and loosen collagen fibrils were appeared in the IAM and UAM, while the stromal side of 
UAM exhibited smooth surface and the collagen fibrils were compact (Bar: 100 μ m).
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junction formation of the tissue-engineered corneal epithelium, and found that all these proteins showed weaker 
expression in DAM based epithelium, compared with that of UAM based epithelium (Fig. 5E).

To determine the cell phenotype of the tissue-engineered corneal epithelium, we performed immunofluo-
rescent staining and Western blot analysis to probe for definitive cell differentiation and proliferation markers 
such as K12, K3, K14, and Δ Np63. The results showed that K12, a corneal epithelial cell terminal differentiation 
marker, was weakly expressed in the epithelium on DAM, while it was negative on UAM. K3, another corneal 
epithelial cell marker, was expressed in the superficial cell layers on both carriers. Interestingly, K14, an epithelial 
progenitor cell marker, was expressed in the full thickness epithelial sheet and it was stronger in the basal layer in 
UAM compared to the DAM (Fig. 6A). Western blot analysis confirmed weak expression of K12 in tissue engi-
neered epithelium on DAM and UAM, and similar expression levels of K3 and K14. However, another epithelial 
progenitor marker Δ Np63 expression level was higher in the epithelium on UAM than that on DAM (Fig. 6B). 
Relative quantitative real-time PCR showed that DAM and UAM based epithelium expressed similar level of 
PCNA, while p63 and ABCG2 genes showed higher expression in UAM based epithelium (Fig. 6C), indicating 
early differentiation phenotype of UAM based epithelium.

We then transplanted the tissue engineered corneal epithelium with DAM or UAM carrier to the ocular sur-
face of the rabbit total limbal stem cell deficiency (LSCD) model to determine the efficacy of these epithelia on 
ocular surface reconstruction. One week after the surgery, since the ocular surface was covered by another layer 
of patch IAM, there was no significant difference between DAM-graft and UAM-graft group. At 2 weeks after the 
operation, the patch AMs were removed, slit-lamp microscope observation showed that DAM-grafts were mildly 
opaque and the corneal epithelial surface was not smooth. Fluorescein staining revealed weak positive staining 
in peripheral cornea, indicated there may have corneal epithelial cell junction defect. However, in the UAM-graft 
group, the cornea was transparent and the grafted epithelium appeared smooth under a slit-lamp microscope, 

Figure 3.  Representative transmission electron microscopic images of IAM, DAM and UAM tissues. The 
magnified image of superficial layer (red inserts) and bottom layer (blue inserts) of IAM, DAM and UAM 
tissues were observed respectively. The collagen fibrils of superficial layer in all groups (a,c,e) showed densely 
packed in a regular orthogonal lamellar array. Loose collagen fibrils packing was showed in bottom layer in both 
IAM (b) and DAM (d) tissue, while same dense collagen fibrils packed pattern was showed in whole layer of 
UAM tissue (f).
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fluorescein staining was negative, indicated that the epithelial layer was completely intact. No obvious signs of 
rejection were observed in both groups, however, there was mild neovascularization of the peripheral cornea 2 
weeks after the surgery in DAM-graft group (Fig. 7A).

To confirm the survival of tissue engineered epithelium on ocular surface reconstruction, we performed cell 
tracing before transplantation. Two weeks after surgery the animals were sacrificed and the corneas were har-
vested. Whole-mount tissue and cross-section of the cornea viewing under a fluorescence microscope showed 
that the transplanted epithelia remained on the recipient corneal surface in both groups (Fig. 7B). H&E staining 
showed that 2 weeks after transplantation, DAM-graft group exhibited 2 to 3 layers epithelium in central cornea, 
and 4 to 5 layers epithelium in the limbal area. However, UAM-graft group exhibited 5 to 6 layers epithelium in 
central cornea, and 6 to 7 layers epithelium in the limbal area (Fig. 7C).

We further performed immunofluorescent staining of K3, K14 and Δ Np63 on the corneal tissues 2 weeks after 
ocular surface re-construction with tissue engineered corneal epithelium. The results showed that K3 expression 
was present in the full thickness of both the central and limbal corneal epithelium. K14 was mainly expressed in 
the central corneal epithelium and weakly expressed in the basal layer of the limbal epithelium in both groups. 
Δ Np63 was expressed in the basal and suprabasal layers of both the central and limbal epithelial cells in both 
groups, indicating enriched progenitor cells in both groups (Fig. 8). Nuclear DAPI staining clearly demonstrated 
that there was a thick acellular zone between epithelium and the underneath corneal stroma in the central cornea 
of DAM-graft group, indicating residual DAM. However, the acellular zone was much thinner in the same area 
of UAM-graft group (Fig. 8).

Discussion
In this study, we used collagenase to selectively thin epithelial denuded AM by stripping away the underlying 
basement membrane, spongy layer and fibroblast layer. This digestive procedure generated an UAM which only 
contained a highly transparent, acellular and homogenous compact layer. This preparation is very advantageous 
in corneal epithelial reconstruction surgery because it remains transparent subsequent to serving as a tissue car-
rier. Accordingly, the visual acuity of the recipient would be much better than if a full thickness AM is used in this 
surgical procedure.

The thinning protocol for generating the UAM preparation employed a low collagenase IV concentration 
which time dependently gradually decreased the AM stroma thickness. After digesting for 75 min, its thickness 
remained stable from 75 min to 90 min (Fig. 1A), indicating that the compact layer is much less sensitive to the 
action of collagenase than the spongy and fibroblast layers.

Figure 4.  Immunohistochemical staining of the stromal collagen components collagen I and collagen 
III, and immunofluorescent staining of the basement membrane components collagen IV, collagen VII, 
laminin 5, and perlecan in cryosections of the IAM, DAM, and UAM tissues. Nuclei of the cells were stained 
with DAPI (Bar: 100 μ m).



www.nature.com/scientificreports/

6Scientific Reports | 6:21021 | DOI: 10.1038/srep21021

H&E staining and Masson staining demonstrated the homogenous matrix structure of the compact layer 
(Fig. 1B). SEM showed that the ultrastructure of both UAM surface sides were smooth and flat (Fig. 2). TEM 
images of the UAM revealed that it was composed of densely and regularly packed collagen fibers, organized in an 
orthogonal lattice array (Fig. 3). This reorganized uniform arrangement accounts for improved optical transpar-
ency and resistance to collagenase-induced digestion and degradation. Despite undergoing this thinning process, 
the UAM easily and firmly attached to the corneal stroma during transplantation surgery.

After collagenase digestion, the basement membrane components such as collagen IV, collagen VII, Laminin 5,  
and perlecan on the UAM were largely removed (Fig. 4). One may have concern that loss of basement membrane 
components may affect epithelial proliferation and may compromise tissue engineered epithelial integrity and 
functionality. We dealt with this concern in our previous study by showing that during limbal epithelial ex vivo 
expansion on AM, the basement membrane of amniotic membrane is initially degraded and then replaced with a 
newly synthesized basement membrane by the expanded epithelial cells within 4 weeks28. Therefore, it is expected 
that corneal epithelial reconstruction surgery outcome will not be impacted by transient loss of basement mem-
brane support. Although our study did not prove the reassembly of the basement membrane in tissue engineered 
corneal epithelium due to lack of commercial available rabbit basement membrane component antibody, TEM 
observation actually clearly demonstrated the firm attachment of basal epithelial cells to the underneath UAM, 
which is better than that of DAM (Fig. 5D). The smooth corneal surface reconstructed 2 weeks after the surgery 
also supported the notion that basement membrane removal during UAM processing did not affect the integrity 
and functionality of the tissue engineered corneal epithelium. On the contrary, if may facilitate the attachment 
of epithelial cells.

Even though both DAM and UAM tissue are effective surfaces for limbal epithelial expansion, the UAM 
is preferable since the transparency of UAM based epithelium was obviously higher that of DAM based epi-
thelium (Fig. 5A), although tissue engineered corneal epithelium was thicker on UAM compared with DAM 
(Fig. 5C). Despite an epithelial thickness that is somewhat greater than normal, there are other indications that 

Figure 5.  Morphologic features of tissue engineered corneal epithelium. (A) Phase-contrast observation of 
rabbit limbal epithelial cells grown on DAM or UAM carrier for 2 weeks (Bar: 100 μ m). (B) Optical property of 
tissue engineered corneal epithelium grown on DAM and UAM inserts respectively. (C) H&E stained sections 
of tissue engineered corneal epithelial cell sheets generated on DAM and UAM (Bar: 50 μ m). (D) Representative 
transmission electron microscopic images of tissue engineered corneal epithelial cell sheets generated on DAM 
and UAM. The superficial cell layer (red insert) and basal cell layer (blue insert) were observed under different 
magnifications, respectively. Arrow heads in superficial layer demonstrated cell-cell junction space, and arrow 
heads in basal layer demonstrated basal cell-AM junction space. (E) Connexin 43, β -catenin, and Claudin-1 
immunostaining showed weaker expression in DAM based epithelium, compared with that of UAM based 
epithelium (Bar: 50 μ m).
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Figure 6.  Phenotype evaluation of tissue engineered corneal epithelium grown on DAM and UAM.  
(A) Immunofluorescent staining of K12, K3, and K14 of tissue engineered corneal epithelium (Bar: 50 μ m).  
(B) Western blotting demonstrated K12, K3, K14, and Δ Np63 expression in tissue engineered corneal 
epithelium. β -actin was used as the loading control. (C) Relative quantitative real-time PCR showed that DAM 
and UAM based epithelium expressed similar level of PCNA, while p63 and ABCG2 genes showed higher 
expression in UAM based epithelium.

Figure 7.  Rabbit ocular surface reconstructed with tissue engineered corneal epithelium grown on 
DAM and UAM. (A) Slit lamp microscopy images showed quiescent ocular surface and the surface protected 
amniotic membrane was not dissolved one week after surgery. Post operatively 2 weeks, the surface protected 
amniotic membrane was removed, diffused light images (left column), slit light images (middle column) and 
fluorescein staining images (right column) showed more transparent cornea and intact epithelium after UAM 
based tissue engineered corneal epithelium transplantation. There was mild neovascularization in the peripheral 
cornea after DAM based epithelium transplantation (arrow head). (B) CFDA SE successfully labeled epithelial 
cells (green) before transplantation. Two weeks after surgery, fluorescein dye remained in the central cornea and 
limbal region, and was confirmed by cryosection observation (Bar: 100 μ m). (C) H&E staining of corneal and 
limbal epithelial cells at 2 weeks after surgery (Bar: 100 μ m).
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the engineered epithelial layer mimics more closely the normal in vivo condition. Firstly, expanded cells had nor-
mal epithelial cell polarity. Namely, the cells on the superficial layer were flattened and basal cells were columnar. 
Secondly, cell-cell attachments of the UAM based epithelium were more condensed than those on the DAM based 
epithelium (Fig. 5D). One reason for the better mimicry of the in vivo condition may be that UAM nutrient epi-
thelial support is better than on DAM. This difference may exist because nutrient access is better across a thinner 
UAM. Another possibility is that hyaluronic acid in the thick DAM stroma could absorb growth factors and may 
inhibit cell proliferation and metabolism.

Corneal epithelial phenotype preservation following its transplantation on UAM tissue was validated by 
demonstrating K12, K3, K14 and Δ NP63 expression. The presence of these markers indicates that on UAM engi-
neered epithelium undergo normal differentiation which mimics this in vivo response by limbal epithelial cells 
(Fig. 6A). The basal cells were K3 negative but K14 was highly expressed. This cytokeratin expression pattern is 
indicative of an undifferentiated progenitor phenotype. On the other hand, the suprabasal cells were K3 positive 
with a low K14 expression level, indicating a corneal lineage differentiated cell phenotype. Δ NP63 and ABCG2 
was highly expressed in UAM based tissue engineered epithelium (Fig. 6B,C), supporting the notion that UAM 
facilitates maintaining limbal progenitor cell status.

UAM and DAM based tissue engineered epithelium were transplanted onto a limbal stem cell deficient rabbit 
model. Two weeks after the surgery, the ocular surface epithelial cells formed an intact continuous layer. Cell 
tracing results documented that these cells were the same as those transplanted two weeks earlier (Fig. 7A). The 
outcome of UAM-graft transplantation was more favorable because the corneas were transparent whereas corneas 
that received a DAM-graft transplant were translucent. The poorer outcome obtained with the DAM procedure 
is in agreement with the more poorly organized epithelial structure suggesting defective tissue function. The 
AM fibroblast and sponge layers are enriched with hyaluronic acid, which has the tendency to imbibe fluid after 
transplantation leading to increases in thickness and declines in transparency. Previous studies have shown that 
after AM based tissue transplantation neovascularization gradually increases29. In our study, we also found there 
was mild neovascularization of the peripheral cornea 2 weeks after the surgery in DAM-graft transplantation 
group (Fig. 7A). We suspect that hyaluronic acid enriched softened DAM stroma may affect the attachment of the 
graft to the host corneal stroma, which is compact and relatively stiff compared with DAM. It is also evident that 
blood vessel endothelial cells migrate more readily into the unconsolidated interface between the AM stroma and 
cornea stroma. DAPI staining confirmed that the thick DAM stroma remained underneath the corneal epithe-
lium 2 weeks after transplantation (Fig. 8). Previous study also demonstrated that amniotic membrane remained 
structurally unchanged and intact within the corneal stroma up to 10 months after transplantation25. Therefore it 
is very likely that epithelial denuded corneas which received UAM-graft transplants of limbal epithelial cells will 
regain their transparency for an extended period beyond the two weeks of follow-up in this study.

In conclusion, we designed a novel controlled digestive protocol for thinning epithelial denuded amniotic 
membranes so as to increase their transparency. This resulting ultra-thin amniotic membrane is composed of a 

Figure 8.  Corneal epithelial phenotype after tissue engineered corneal epithelium transplantation. 
Immunofluorescent staining showed that K3 (red) was present in the full thickness of both central and limbal 
corneal epithelium in both DAM and UAM groups. K14 (red) was highly expressed in the central corneal 
epithelium, while Δ Np63 (red) was mainly expressed in the basal cells of limbal and central epithelia in both 
groups. The white arrows indicated undissolved AM tissues in central cornea at postoperatively 2 weeks  
(Bar: 100 μ m). Nuclei of the cells were stained with DAPI.
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compact transparent layer, which markedly improves the outcome of limbal tissue transplantation surgery in rab-
bits. The corneas receiving tissue engineered corneal epithelium on UAM carriers are transparent whereas they 
are translucent if this procedure uses instead non-modified DAM. This marked improvement suggests that UAM 
may be an ideal carrier for construction of tissue engineered corneal epithelium in humans. We also expect that 
UAM could be used in constructing other ocular tissues for cell based therapy, such as tissue engineered corneal 
endothelium and retinal pigmented epithelium, both are urgent demands in the treatment of sight threatening 
eye diseases.

Materials and Methods
Animals.  A total of 28 male New Zealand white rabbits (weighing 2 ~ 2.5 kg, aging 3 ~ 4 months) were 
obtained from the Animal Center of Xiamen University (Xiamen, China). All animal experiments were con-
ducted in accordance with the Association for Research in Vision and Ophthalmology (ARVO) statement for 
the use of animals in ophthalmic and vision research. The study received the approval of the Animal Ethical 
Committee of Xiamen University.

Preparation of amniotic membrane.  Human placentas were obtained at the time of Cesarean sec-
tion from healthy donors in accordance with the tenets of the Declaration of Helsinki for research involv-
ing human subjects and received an approval from the institutional review board of Cheng-gong Hospital 
of Xiamen University (Xiamen, Fujian, China). Written informed consent was acquired from the donors. 
Placentas were preserved in − 80 °C within 1 week before processing. The AM was prepared as previously 
reported with modification30. In brief, the fetal membrane containing AM, chorion and decidua was cut into 
3 cm ×  3 cm pieces. Afterwards the AM was separated from the underlying chorion tissue and washed in 
Hank’s balanced salt solution (HBSS, Invitrogen, Carlsbad, USA) 3 times for 5 min each. The AM was then 
mounted on a nitrocellulose membrane with its epithelial side facing up and stored at − 80 °C in a 1:1 mixture 
of DMEM and glycerol. All the procedures were performed under aseptic conditions to prevent microbial 
contamination during preparation.

Production of ultra-thin amniotic membrane (UAM).  Cryo-preserved AM was incubated with 0.02% 
EDTA (Invitrogen, Carlsbad, USA) at 37 °C for 1 h, followed by gentle cell scraping with a cell scraper to remove 
AM epithelial cells to generate DAM. After that, the DAMs were washed with HBSS 3 times for 10 min each. To 
generate the UAM, DAMs were mounted on the culture inserts with stromal side down, placed on the surface of 
sponge soaked with 0.5 mg/ml type IV collagenase (Invitrogen, Carlsbad, USA) and incubated at 37 °C for differ-
ent durations from 15 to 90 min. Finally, the inserts bearing AM were washed with HBSS 3 times for 10 min each. 
The UAMs were then either histologically evaluated or used for cell culture.

The optical transmittance property of AMs.  To estimate the optical transmittance of intact AM (IAM), 
denuded moist AM (DAM) and ultra-thin AM (UAM), scanning images were obtained. Afterwards, AM tissues 
were lyophilized for 12 h at − 70 °C and their optical transmittance was evaluated with a digital camera.

The histology of AMs.  AM tissues were fixed in 4% paraformaldehyde for 30 min at 4 °C, and then embed-
ded in OCT Compound (SAKURA, Tissue-Tek, Torrance, USA), stored at − 80 °C. Cryosections of 6 μ m thick-
ness were fixed in acetone at − 20 °C for 10 min. Subsequently, hematoxylin-eosin staining (H&E, Sangon biotech, 
Shanghai, China) and Masson trichrome staining (Biohao Inc., Guangzhou, China) were performed and observed 
under a light microscope (Nikon Eclipse 50i, Tokyo, Japan).

Decellularization analysis.  AM tissue sections were stained with Hoechst 33342 (Sigma Aldrich, St. 
Louis, USA) at room temperature for 3 min and observed under a laser confocal microscope (Fluoview FV1000; 
Olympus, Tokyo, Japan) to evaluate tissue decellularization.

Ultrastructure of AMs.  AM tissues or tissue engineered corneal epithelium were fixed in a mixture of 2.5% 
glutaraldehyde and 4% paraformaldehyde in PBS (pH 7.4) at 4 °C for 2 h. Samples were prepared for scanning 
electron microscopy (SEM) or transmission electron microscopy (TEM) as previously reported31. The ultrastruc-
ture of the AM or tissue engineered corneal epithelium were examined and photographed with scanning electron 
microscope (JSM6390LV, JEOL, Tokyo, Japan) or transmission electron microscope (JEM2100HC, JEOL, Tokyo, 
Japan).

Immunofluorescent and immunohistochemical staining.  For immunofluorescent staining, 6 μ m 
thick cryosections were fixed in acetone for 10 min at − 20 °C, and incubated in 1% Triton X-100 for 10 min. After 
three rinses with PBS for 5 min each and pre-incubation with 2% bovine serum albumin (BSA), they were incu-
bated at 4 °C for 16 h with anti-type IV collagen (1:250, Sigma, USA), anti-type VII collagen (1:500, Sigma, USA), 
anti-laminin 5 (1:100, Abcam, Cambridge Science Park, UK), anti-perlecan (1:50, Invitrogen, Carlsbad, USA), 
anti-K12 (1:50, Santa Cruz, CA), anti-K3 (1:50, Santa Cruz, CA), anti-K14 (1:50, Santa Cruz, CA), anti-Connexin 
43 (1:50, Millipore, Massachusetts, USA), anti-β -catenin (1:50, Santa Cruz, CA), anti-Claudin-1 (1:100, 
Invitrogen, Carlsbad, USA), or anti-Δ NP63 (1:50, Santa Cruz, CA) antibodies. After three washes with PBS for 
10 min each, the samples were incubated with AlexaFluor 488-conjugated IgG (1:300, Invitrogen, Carlsbad, USA) 
and AlexaFluor 594-conjugated IgG (1:300, Invitrogen, Carlsbad, USA) for 1 h at room temperature. After three 
additional rinses with PBS for 10 min each, sections were counterstained with DAPI (Vector, Burlingame, USA), 
mounted, and examined with laser confocal microscope.

For immunohistochemical staining, the endogenous peroxidase activity was blocked with 0.6% hydrogen 
peroxide for 30 min, then permeated with 1% Triton X-100 for 10 min. After three washes with PBS for 5 min 
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each, they were incubated with 2% BSA for 30 min, followed by anti-type I collagen antibody (1:50, Proteintech, 
China), and anti-type III collagen antibody (1:50, Santa Cruz, CA, USA) at 4 °C for 16 h. After three rinses with 
PBS for 10 min, the sections were further incubated with biotinylated anti-mouse IgG (1:50) or anti-rabbit IgG 
(1:50) for 1 h, followed by Vectastain Elite ABC reagent for 30 min. The reaction product was then developed with 
diaminobenzidine (DAB) for 1 min, mounted with mounting medium (H-5000, Vector, Burlingame, USA), and 
examined under a light microscope.

Western blot analysis.  At the end of epithelial cultivation, epithelial cell sheets from the DAM and UAM 
were collected by cell scraper and extracted in a cold lysis buffer composed of 50 mmol/L Tris-HCl (pH 7.5), 
150 mmol/L NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and protease inhibitor cocktails. 
Protein concentration was measured by BAC protein assay. Equal amounts of protein extracts (20 μ g) were sub-
jected to Western blot analysis using anti-K12 (1:1000, Santa Cruz, CA, USA), anti-K3 (1:1000, Santa Cruz, CA, 
USA), anti-K14 (1:1000, Santa Cruz, CA, USA), anti-Δ NP63 (1:500; Abcam, Cambridge Science Park, UK), and 
anti-β -actin (1:10,000; Sigma, USA) antibodies. The results were visualized by enhanced chemiluminescence 
reagent (Lulong Inc., Xiamen, China) and recorded by the transilluminator (ChemiDoc XRS, Bio-Rad, Hercules, 
CA, USA).

RNA isolation and real-time polymerase chain reaction.  Epithelial cell sheets from the DAM and 
UAM were collected by cell scraper and the RNA was isolated using TRIzol® (Invitrogen, CA). RNA sample 
parameters and concentrations were detected by Du® 800 Nucleic Acid/protein Analyzer (Beckman coulter, 
US). The equal amount of RNA was reverse transcribed to cDNA using the Thermo Scientific RevertAid H 
Minus Reverse Transcriptase. Real-time polymerase chain reaction (PCR) was performed with a StepOne plus 
Real-Time PCR detection system (Applied Biosystems, Darmstadt, Germany) using a SYBR Premix Ex Taq Kit 
(TAKARA, Japan), according to the manufacturer’s instructions. For each experiment, template-minus controls, 
i.e., reaction system without template, are included to provide negative controls for subsequent PCR reactions. 
The amplification program included an initial denaturation step at 95 °C for 10 s, followed by denaturation at 95 °C 
for 15 s, and annealing and extension at 60 °C for 35 s, for 40 cycles. SYBR Green fluorescence was measured after 
each extension step, and the specificity of amplification was evaluated by melting curve analysis. The results of the 
relative quantitative real-time PCR were analyzed by the comparative CT method and normalized to β -actin as 
an internal control. The primer sequence pairs used were: PCNA, sense 5′ -GGGTGAAGTTTTCCGCCAGT-3′  
and antisense 5′ -CTGTAGGAGAAAGCGGAGTGG-3′. p63, sense 5′ -CGCCCCTTTCGTCA GAACAC-3′  and 
antisense 5′ -GTGCTGAGGAAGGTACTGCAT-3′. ABCG2, sense 5′ -ACTACCCATGCGGATGTTGC-3′  and 
antisense 5′ -GCCACGGACACTA CACTCTG-3′. β -actin, sense 5′ -TGACGTGGACATCCGCAAAG-3′  and 
antisense 5′ -CTGGAAGGTGGACAGCGAGG-3′.

Construction of tissue engineered corneal epithelium.  New Zealand white rabbit was sacrificed and 
its limbal tissues were harvested by removal of central corneas with a 9.25 mm diameter trephine, residual limbal 
tissue was cut into tissue blocks about 2 mm ×  2 mm in size. The tissue blocks were then incubated with 2 mg/ml  
dispase II (Roche, Basel, Switzerland) in supplemental hormonal epithelial medium (SHEM) at 4 °C for 16 h. 
The epithelial cell sheets were isolated and cultured on the surface of DAM or UAM inserts in 6-well plate with 
SHEM, which was made of an equal volume of HEPES-buffered DMEM containing bicarbonate and Ham’s F12, 
0.5% DMSO, 10 ng/ml mouse epidermal growth factor, 10 μ g/ml insulin, 5.5 μ g/ml transferin, 6.7 ng/ml sele-
nium, 0.5 μ g/ml hydrocortisone, 25 mM HEPES, 5% FBS and 1% SPA. The medium was changed every two days. 
After 10 days cultivation, the epithelium was air lifted and cultured for 3 days to promote stratification. In some 
experiments, the epithelium was labelled with CFDA SE cell trace kit (Invitrogen, Camarillo, USA) one day before 
transplantation.

Transplantation of tissue engineered corneal epithelium in rabbit total LSCD model.  Sixteen 
rabbits were anesthetized via an intramuscular injection of ketamine hydrochloride (14 mg/kg) and xyla-
zine hydrochloride (7 mg/kg). One eye of each animal was subjected to a 2 mm wide and 0.2 mm deep lim-
bal lamellar keratectomy and central corneal epithelial scraping to generate LSCD model, as previously 
reported9,32. The animals were then randomly divided into two groups, one group of animals was trans-
planted with tissue engineered corneal epithelium generated with DAM as its carrier (DAM-graft), while 
the other group of animals was transplanted with tissue engineered corneal epithelium generated with UAM 
as its carrier (UAM-graft). The tissue engineered corneal epithelia were mounted on the recipient corneal 
stroma surface using fibrin glue (Puji Biotechnology LLC, Hangzhou, China) as previously reported33. After 
that, another layer of intact AM was sutured on bulbar conjunctiva and covered the whole cornea as a patch 
to protect the underlying transplanted epithelium, as routinely performed in ocular surface reconstruc-
tion surgery34. Postoperatively, the eyes were administered TorbraDex eye gel (Alcon, Fort Worth, USA) 
once a day, TorbraDex eye drops (Alcon, Fort Worth, USA) twice a day and cyclosporine eye drops (NCPC, 
Shijiazhuang, China) twice a day. The eyes were observed and photograghed under a slit-lamp microscope 
(Kanghua Science & Technology, Chongqing, China) every 2 days. One week after the surgery, the patch AM 
was removed. The animals were sacrificed 2 weeks after the surgery and the corneal and limbal tissues were 
harvested for histological examination.

Statistic Analysis.  Summary data are reported as means ±  S.D. Group means were compared using the 
appropriate version of Student’s unpaired t-test. Test results are two-tailed, where p <  0.05 is considered statisti-
cally significant.
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