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Schizophrenia is a mental disorder characterized by 
impairments in behavior, thought, and neurocognitive per-
formance. We searched for susceptibility loci at a quantita-
tive trait locus (QTL) previously reported for abstraction 
and mental flexibility (ABF), a cognitive function often 
compromised in schizophrenia patients and their unaf-
fected relatives. Exome sequences were determined for 134 
samples in 8 European American families from the original 
linkage study, including 25 individuals with schizophrenia 
or schizoaffective disorder. At chromosome 5q32–35.3, we 
analyzed 407 protein-altering variants for association with 
ABF and schizophrenia status. For replication, significant, 
Bonferroni-corrected findings were tested against cognitive 
traits in Mexican American families (n = 959), as well as 
interrogated for schizophrenia risk using GWAS results 
from the Psychiatric Genomics Consortium (PGC). From 
the gene SYNPO, rs6579797 (MAF = 0.032) shows signifi-
cant associations with ABF (P = .015) and schizophrenia 
(P = .040), as well as jointly (P = .0027). In the Mexican 
American pedigrees, rs6579797 exhibits significant associ-
ations with IQ (P = .011), indicating more global effects on 
neurocognition. From the PGC results, other SYNPO vari-
ants were identified with near significant effects on schizo-
phrenia risk, with a local linkage disequilibrium block 
displaying signatures of positive selection. A  second mis-
sense variant within the QTL, rs17551608 (MAF = 0.19) 
in the gene WWC1, also displays a significant effect 
on schizophrenia in our exome sequences (P  =  .038). 
Remarkably, the protein products of SYNPO and WWC1 
are interaction partners involved in AMPA receptor traf-
ficking, a brain process implicated in synaptic plasticity. 
Our study reveals variants in these genes with significant 

effects on neurocognition and schizophrenia risk, identify-
ing a potential pathogenic mechanism for schizophrenia 
spectrum disorders.
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Introduction

Schizophrenia is a complex, highly heritable brain disor-
der characterized by disturbances in behavior, thought, 
and emotion.1 Although a number of genes and neuro-
biological pathways have been implicated in linkage and 
genome-wide association studies, much of the genetic 
liability of schizophrenia remains to be explained,2,3 sug-
gesting a polygenic architecture,4 likely confounded by 
the clinical heterogeneity of the disorder.5

Deficits in cognitive functions have been commonly 
observed in schizophrenia patients, and in smaller mag-
nitude in unaffected family members, especially for execu-
tive function, learning, and memory,6–10 which may reflect 
innate, underlying differences that mediate the familial 
risk of schizophrenia. Analysis of such endophenotypes 
can delineate the psychiatric phenome and allow for iden-
tification of etiological mechanisms that are more proxi-
mate to gene action than disease endpoints.11 Thus, genes 
that moderately influence the risk of schizophrenia may 
exhibit substantially stronger effects on cognition, making 
them easier to detect at genome-wide significance levels.

This approach was employed by Almasy et  al12 who 
conducted a genome-wide linkage screen of schizo-
phrenia and cognitive performance in affected families, 
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discovering a quantitative trait locus (QTL) for abstrac-
tion and mental flexibility (ABF) on chromosome 5q 
(log of odds [LOD]  =  3.43; P  =  .011), with effects on 
schizophrenia risk revealed through bivariate analysis. 
Although several linkage studies of schizophrenia have 
implicated chromosome 5q,13–20 these findings provide 
insight into the potential neuropathology of the region, 
as the neural underpinnings for ABF have been localized 
primarily to the prefrontal brain circuitry,21 including the 
dorsolateral and superior prefrontal cortices,22 whose 
anatomical abnormalities and activity levels have been 
strongly associated with schizophrenia.23–27

The specific genetic variants contributing to this broad 
linkage region have yet to be determined. Previous endo-
phenotype studies that have targeted schizophrenia 
candidate genes have been successful in identifying risk 
variants, including ones for cognitive traits.28–38 In this 
article, we investigate the QTL at chromosome 5q, focus-
ing on nonsynonymous variation from 238 local genes. 
Exome sequencing was conducted on 134 samples from 
8 European American families drawn from the original 
linkage study, including 25 diagnosed with schizophrenia 
or schizoaffective disorder. Significant SNP associations 
for ABF and schizophrenia were followed up in indepen-
dent Mexican American families for select neurocognitive 
measurements, as well as examined among the GWAS 
results from the Psychiatric Genomics Consortium 
(PGC). We identify a number of potential risk loci, with 
implications for the neurobiological basis of cognitive 
impairment as observed in schizophrenia patients.

Methods

Family Samples

The Multiplex-Multigenerational Genetic Investigation 
of Schizophrenia (MGI) has been described previ-
ously.12,39 Families were recruited through a European 
American individual with schizophrenia, who had at least 
1 first-degree relative with schizophrenia or schizoaffec-
tive disorder (SAD), depressed type. From the extended 
families, all the available first-, second- and third-degree 
relatives 15  years of age or older were invited to par-
ticipate. MGI was approved by the Institutional Review 
Board of each of the 3 collaborating institutions, with all 
participants providing informed consent. In the case of 
minors under age 18 who provided assent, consent was 
obtained from a parent. Of the 43 MGI families (n = 676 
participants), 8 of the largest, most densely affected ones 
were analyzed in this study. A total of 134 samples were 
exome sequenced, including 23 diagnosed with schizo-
phrenia and 2 with SAD (see supplementary table S1 for 
pairwise familial relationships). Based on the original 
ABF linkage,12 5 of the families selected exhibit appre-
ciable pedigree-specific LOD scores at the QTL, ranging 
from 0.16 to 0.33, representing 37.8% of the overall signal 
(LOD = 3.43; supplementary table S2).

Phenotyping

DSM-IV diagnoses were determined from: (1) the 
Diagnostic Interview for Genetics Studies, version 2.040; 
(2) the Family Interview for Genetics Studies41; and (3) 
reviews of medical records. Lifetime best-estimate diag-
noses were arrived at by 2 investigators, each blind to the 
familial relationships among participants (kappa > 0.8). 
In total, 106 individuals were diagnosed with schizophre-
nia or SAD, with 75% undergoing treatment at the time 
of assessment. Effects of medication on neurocognitive 
measures have been shown to be negligible or subtle.42–44 
In addition to schizophrenia, other psychiatric conditions 
identified included schizotypal personality disorder, psy-
chotic disorder, and different forms of bipolar disorder.

Participants completed a computerized test battery45,46 
designed to evaluate 9 neurocognitive domains.39 ABF 
was assessed using the Penn Conditional Exclusion Test 
(PCET),47 for which participants are required to select 
one of 4 shapes for exclusion based on a sorting principle. 
An efficiency score was calculated as the average z score 
for performance accuracy and speed.

Exome Sequencing

We used the Illumina TruSeq platform (Illumina) for sam-
ple preparation, exome enrichment, and sequencing on 
the Illumina HiSeq 2000 instrument. In total, 62 Mb were 
sequenced, yielding uniform coverage of 201 121 exons 
from 20 794 genes. FASTQ files of demultiplexed paired 
sequencing reads of 100 bp were produced by CASAVA 1.8 
suite and mapped to the UCSC human genome reference 
assembly 19 (hg19) using BWA (v. 0.6.1).48 Mapped reads 
were analyzed with SAMtools (v. 0.1.12a)49 and Picard (v. 
1.56) (http://picard.sourceforge.net) to mark likely PCR 
duplicates and ensure consistency of the mapped data, 
with the output processed with the GATK (v. 1.6) pack-
age50 (for more detail, see supplementary methods).

We called a total of 380 895 high-quality SNPs, with an 
average of 35 reads per variant, each functionally anno-
tated with ANNOVAR.51 At the QTL for ABF efficiency 
at 5q32–35.3, spanning approximately 35 Mb, 6518 SNPs 
were called, encompassing 366 different genes. To focus 
on sites of potential functional relevance, sequence data 
were filtered for variant quality LOD scores of 4.0 or 
greater, have no missing genotype data, and represent 
nonsynonymous mutations, leaving 407 SNPs available 
for association analysis. Mendelian consistency of these 
loci was confirmed with Sequential Oligogenic Linkage 
Analysis Routines (SOLAR).52

Replication Samples

For any significant, Bonferroni-corrected associations 
for ABF and/or schizophrenia risk, replications were 
sought in independent Mexican American families from 
the Genetics of Brain Structure and Function (GOBSF) 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
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study for select neurocognitive measurements53,54: PCET 
accuracy (n = 519 subjects), Wechsler Adult Intelligence 
Scale II (WAIS-II; n  =  430), Wechsler Test of Adult 
Reading (WTAR) (n = 264), California Verbal Learning 
Test (CVLT) total recall (n  =  520), and CVLT delayed 
recall (n  =  518). Unlike MGI, these families were not 
ascertained based on schizophrenia probands. Genotypes 
were obtained from whole genome sequences and imputed 
data (n = 959).55

For potential risk effects related to schizophrenia, we 
interrogated GWAS results from the PGC (available at 
http://www.med.unc.edu/pgc/downloads). Specifically, 
we examined 2 data sets: stage I, representing 17 popula-
tion samples of European ancestry (n = 9394 cases and 
12 462 controls), with imputation based on HapMap3 
reference panel56; and stage I  plus additional Swedish 
cohorts (n = 5001 cases and 6243 controls), using 1000 
Genomes phase 1 data for imputation.57

Statistical Analysis

All genetic analyses were performed in SOLAR, using 
a maximum likelihood (ML), variance decomposition 
approach. To evaluate ABF as an endophenotype to 
schizophrenia, both the genetic correlation and endophe-
notype ranking variable (ERV) were computed.58 SNP 
association testing was performed using measured geno-
type analyses.59 This single degree of freedom test assumes 
genetic additivity and compares a model saturated for 
both the random effects of kinship and the main effect of 
a SNP genotype to a null model with the SNP effect con-
strained to 0.  Covariates include sex, age, age squared, 
and their interactions. P values were adjusted for mul-
tiple testing (n  =  407 SNPs) via Bonferroni correction, 
corresponding to an alpha threshold of approximately 
1.2 × 10−4. Bivariate models of ABF and schizophrenia 
were also examined for any SNPs of interest. Tail area-
based false discovery rate (FDR) q-values were computed 
in the R package fdrtool.60 Multimarker, gene-based anal-
yses were conducted using the sequence kernel associa-
tion tests (SKAT) with the R script famSKAT.61 Diversity 
and neutrality test statistics were computed for genomic 
regions of interest using PopGenome,62 with coalescent 
simulations (1000 iterations) based on Hudson’s MS algo-
rithm63 performed to evaluate significance of observed 
deviations from the neutral evolutionary model.

Results

Descriptive Statistics and Heritability Estimates

Measures of ABF efficiency were available for 113 of the 
134 sequenced individuals, with a mean of −0.45 ± 0.11, 
ranging from −2.03 to 1.39, with no evidence of kurto-
sis (g2 = −1.55). No significant differences are observed 
between the sexes. Age is negatively correlated with ABF 
(r  =  −.34; P  =  2.0 × 10−4). For schizophrenia, affected 

individuals (n = 21) scored significantly worse for ABF 
efficiency (μ  =  −1.41 ± 0.24) than unaffected individu-
als (μ  =  −0.24 ± 0.12; P  =  1.3 × 10−4). Both ABF and 
schizophrenia are significantly heritable, with respective 
estimates of 0.53 ± 0.19 (P  =  1.8 × 10−3) and 0.84 ± 0.40 
(P = 8.6 × 10−3). The genetic correlation between the traits 
is −0.19 ± 0.11 (P = .34; ERV = 0.13), with a more robust 
genetic correlation of −0.47 ± 0.15 (P = .021; ERV = 0.28) 
observed for the entire set of MGI families.

Genetic Associations at 5q32–35.3

In total, 407 nonsynonymous variants from the QTL 
at 5q32–35.3 were tested for association with ABF 
(λ  =  1.09; supplementary table S3). After Bonferroni 
adjustment for multiple testing, 1 SNP, rs6579797 
(MAF = 0.032) from the gene SYNPO, was significantly 
associated with ABF, with the minor allele showing 
poorer performance (βABF = −2.01 ± 0.48; P = 3.70 × 10−5; 
corrected P = .015; q = 0.014). This SNP, along with 23 
others that exhibit nominal association with ABF (ie, 
P < .05), were also tested for association with schizo-
phrenia, of which 7 show evidence of risk (table 1 and 
figure 1A). Of these, 2 SNPs remained significant after 
Bonferroni correction: the top hit for ABF, rs6579797 
(βSCZ = 1.84 ± 0.63; P =  .0017; corrected P =  .040) and 
the SNP rs17551608 (MAF = 0.19), located in WWC1, 
with its minor allele associated with improved ABF per-
formance (βABF  =  0.42 ± 0.21; P  =  .041) and decreased 
liability for schizophrenia (β = −1.09 ± 0.39; P =  .0016; 
corrected P = .038). When considered jointly in a bivari-
ate model, the 2 traits are significantly associated with 
both rs6579797 (βABF = −1.95 ± 0.47; βSCZ = 1.75 ± 0.55; 
P  =  1.11 × 10−4) and rs17551608 (βABF  =  0.45 ± 0.19; 
βSCZ = −1.00 ± 0.22; P = .0048). These 2 SNPs are in link-
age equilibrium (r2 = .019).

Based on SIFT64 and PolyPhen265 algorithms, which 
predict the effects of amino acid substitutions on protein 
function, 2 SNPs from table 1 are considered potentially 
deleterious: rs17551608, and rs17660042 from the gene 
SLC36A3 (PABF  =  .0018; PSCZ  =  .010). Interestingly, in 
addition to rs17551608, 7 other missense variants were 
identified in WWC1 (figure 1B), representing a high con-
centration of protein-altering variation (top 10th percen-
tile for genes in the region, accounting size). Of these 7 
variants, 4 are observed among the 25 schizophrenia 
cases, 3 of which are predicted to impact protein func-
tion. The most noteworthy of these are: rs145963282 
(MAF = 0.0083), which is nominally associated with ABF 
(βABF = −2.30 ± 0.72; P = .0029), and nearly so with schizo-
phrenia risk (βSCZ = 1.44 ± 0.82; P = .070; bivariate asso-
ciation P =  .026) and rs3822659 (MAF = 0.076), which 
shows increased risk of schizophrenia (βSCZ = 0.99 ± 0.41; 
P  =  .012). Interestingly, genetic interactions between 
rs17551608 and these other WWC1 missense variants 
were detected, notably rs3822659 for both ABF (P = .054) 

http://www.med.unc.edu/pgc/downloads
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and schizophrenia (P  =  .057), as well as rs61730019 
(PABF = .039; PSCZ = .0042; supplementary table S4), with 
no significant ablation of the main effects of rs17551608.

To assess the independence of these WWC1 variants, 
haplotypes were phased using MERLIN v.  1.1.2.66 With 
the exception of rs3822659, which is in perfect linkage dis-
equilibrium (LD) with an adjacent SNP, rs3822660, each 
of the missense variants were phased to separate haplo-
types. Collectively, the haplotypes account for 10.2% of the 
variation in ABF (P = 5.95 × 10−5) and 20.3% of the risk for 
schizophrenia (Kullback-Leibler R2 value; P = 4.40 × 10−7) 
in our families. Based on multimarker SKAT analyses of 
ABF, WWC1 yielded the fifth strongest association among 
genes tested from the QTL region (P  =  .11; supplemen-
tary table S5), with the lone, nominally significant result 
belonging to the gene SLC36A3 (P = .029).

Replication of Neurocognitive Effects in GOBSF 
Families

The 2 SNPs showing significant effects on ABF and/or 
schizophrenia risk in our MGI families, rs6579797 (SYNPO) 
and rs17551608 (WWC1), were tested against neuro-
cognitive measurements obtained in Mexican American 
pedigrees from GOBSF. Although PCET efficiency, repre-
senting a z score of performance accuracy and speed, was 
not assessed in these independent samples, accuracy scores 
were available (n = 519). However, we found no evidence 
of association with either rs6579797 (β  =  −0.041 ± 0.18; 
P = .82) or rs17551608 (β = −0.14 ± 0.12; P = .24).

Given the broad cognitive impairment typically 
observed in schizophrenia, which extends beyond execu-
tive functions, such as ABF, we examined a pair of IQ 
measures for general intelligence (table 2), revealing sig-
nificant, detrimental effects of rs6579797 (WAIS-II: 

β  =  −6.28 ± 2.79, P  =  .025; WTAR: β  =  −7.54 ± 2.96, 
P = .011). Also, with previous research strongly implicating 
WWC1 in verbal memory performance (see “Discussion” 
section), we examined CVLT scores, with the WWC1 vari-
ant rs61730019 showing significant association with both 
delayed recall (P = .0031) and total recall (P = .0091).

PGC GWAS Results for Schizophrenia

To investigate the effects of SYNPO and WWC1 on schizo-
phrenia, we interrogated GWAS results from the PGC. For 
stage I analyses (n = 21 856), as reported by Ripke et al,56 
rs6579797 (SYNPO) was neither directly genotyped nor 
imputed from HapMap 3 data, however a near signifi-
cant risk effect was observed for a nearby tagging vari-
ant (r2 = 1.0), intronic SNP rs9324647 (OR = 4.90 ± 0.91; 
P = .080; MAF = 0.0046). More recently, the PGC sample 
collection has expanded to include large Swedish cohorts 
(total n = 32 143), for which Ripke et al57 have reported 
updated association results (supplementary table S6). 
Based on 1000 Genomes phase 1 data, rs6579797 was 
successfully imputed but failed to show evidence of risk 
effects (OR = 1.04 ± 0.070; P =  .61; MAF = 0.02). For 
other nearby SYNPO variants (±10 kb from rs6579797), 
a near significant association was identified for a rare 
intronic SNP, rs192542133 (OR = 0.79 ± 0.08; P = .0025; 
corrected P = .059; MAF = 0.015). As for WWC1 vari-
ants, including rs17551608, no evidence was found.

Population Genetics and Signatures of Positive 
Selection

According to 1000 Genomes data, the putative risk 
allele of rs6579797 shows marked frequency differences 
between global populations (supplementary table S7). 

Table 1. Top Association Results for ABF and Schizophrenia at 5q32–35.3

Function Prediction ABF Schizophrenia

dbSNP 137 Position (bp) Gene MAF SIFT PolyPhen2 Beta (SE) P Value Beta (SE) P Value

rs6579797a 149 998 128 SYNPO 0.032 Tolerated Benign −2.01 (0.48) 3.7 × 10−5c 1.84 (0.63) .0017c

rs17660042 150 666 946 SLC36A3 0.073 Deleterious Probably damaging −1.02 (0.32) .0018 0.94 (1.00) .010
rs2303063 147 480 027 SPINK5 0.47 Tolerated Benign 0.41 (0.18) .023 −0.52 (1.03) .033
rs2303067 147 480 955 SPINK5 0.47 Tolerated Benign 0.41 (0.18) .023 −0.52 (1.03) .033
rs2961944 159 835 658 SLU7 0.20 Tolerated Benign −0.40 (0.18) .027 0.49 (0.24) .037
rs61740602 150 646 888 GM2A 0.12 Tolerated Benign −0.56 (0.26) .028 0.79 (0.29) .0068
rs17551608b 167 835 539 WWC1 0.19 Deleterious Possibly damaging 0.42 (0.21) .041 −1.09 (0.39) .0016c

Note: The table lists nonsynonymous variants from 5q32–35.3 with at least nominal evidence (P < .05) for association with ABF and 
schizophrenia. SNP rs numbers are based on dbSNP build 137. MAFs are based on maximum likelihood estimates that account for 
familial relationships. Predicted effects of amino acid changes on protein function are based on the SIFT and PolyPhen2 algorithms, 
which were obtained with the Ensembl online tool Variant Effect Predictor (VEP). For the association results, positive beta estimates (SE 
in parentheses) for schizophrenia correspond to increased risk. All 7 of the SNP variants presented here show the expected directions 
of effect for the 2 traits (ie, decrease in ABF performance corresponds with an increase in schizophrenia risk, and vice versa). ABF, 
Abstraction and Mental Flexibility; MAFs, Minor Allele Frequencies; 
aG199A; aspartic acid substituted for asparagine, D67N.
bC798T; arginine substituted for cysteine, R250C.
cSignificant after Bonferroni correction for multiple testing (α = .05): 407 tests for ABF; 24 tests for risk of schizophrenia.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
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Among Europeans (EUR) and admixed Americans 
(AMR), the respective frequencies are 0.015 and 0.039, 
whereas higher frequencies are observed for African 

(AFR) and Asian (ASN) populations, around 0.25, 
yielding substantial pairwise FST scores with the EUR 
groups (0.22 and 0.21, respectively). As for rs17551608, 

Fig. 1. (A) Plot of association P values for missense SNPs from chromosome 5q32–35.3 (n = 407) for ABF. Variants that are also 
nominally associated with schizophrenia risk (P < .05) are represented as diamonds. (B) Regional plot of association results for dbSNP 
137 variants from WWC1 and neighboring genes for schizophrenia. Recombination rate based on hg19 assembly for 1000 Genomes data 
(2012) for European populations. Plotted using LocusZoom.149

Table 2. Association Results for rs6579797 and WWC1 Variants for Select Cognitive Measures in Mexican American Families

T2D-GENES Families (n = 959)

IQ CVLT

WASI-II (n = 430) WTAR VIQ (n = 264) Total Recall (n = 520) Delayed Recall (n = 518)

dbSNP 137 Gene MAF Beta (SE) P Value Beta (SE) P Value Beta (SE) P Value Beta (SE) P Value

rs6579797 SYNPO 0.022 −6.28 (2.79) .025 −7.54 (2.96) .011 −1.55 (1.96) .43 −0.38 (0.56) .50
rs17551608 WWC1 0.077 −2.86 (1.78) .11 0.74 (1.53) .63 −1.60 (1.26) .20 −0.52 (0.36) .15
rs61730019 WWC1 0.015 1.58 (3.71) .67 5.24 (3.71) .16 7.63 (2.57) .0031 1.93 (0.74) .0091

Note: The table presents association results between SYNPO and WWC1 variants and measures of IQ and verbal memory in Mexican 
American families using whole genome sequences and imputed data from the T2D-GENES consortium. Two measures of IQ were tested 
for genetic association: WAIS II and WTAR verbal IQ. For verbal memory, total and delayed recalls for the CVLT were examined. 
MAFs are based on maximum likelihood estimates that account for familial relationships. Significant association P values (< .05) are 
highlighted in bold. CVLT, California Verbal Learning Test; IQ, Intelligent quoteint; MAFs, Minor allele frequencies; WAIS, Wechsler 
Adult Intelligence Scale; WTAR, Wechsler Test of Adult Reading.
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population differentiation is also evident, with its minor 
allele ranging in frequency from 0.16 in EUR populations 
to its complete absence in the ASN samples.

Interestingly, the minor risk allele (A) of rs6579797 
appears to be the ancestral state, as determined from phy-
logenetic sequence alignments of nonhuman primate spe-
cies, a possible signature of selection. To investigate this 
further, we computed the local LD structure of rs6579797 
for the 5 EUR populations from 1000 Genomes (fig-
ure  2), observing a cluster of ancestral minor alleles in 
strong LD (r2 > .9), indicative of an evolutionary sweep. 
Diversity and neutrality test statistics support this, as the 
EUR groups exhibit low nucleotide diversity within the 
LD block (π =  7.36), with highly significant deviations 
from the neutral evolutionary model, including Tajima’s 
D (P = .010) and Fu and Li’s F (P = .001) (table 3 and 
supplementary table S8). Similar negative deviations 
from neutrality are observed in admixed American popu-
lations, a likely reflection of their European origins.

Discussion

Synaptopodin: Neurocognitive Implications for 
Schizophrenia Risk

From our analysis of exome sequence data for chro-
mosome 5q32–35.3, a region encompassing a QTL for 

neurocognition,12 we identified nonsynonymous variants 
from 2 genes, SYNPO and WWC1, which are signifi-
cantly associated with ABF and/or schizophrenia risk. 
Of these, rs6579797 (SYNPO) is particularly compel-
ling. The minor allele is carried by 6 heterozygotes in 3 
MGI families, representing a modest enrichment relative 
to EUR populations. Four of the carriers are affected, 
corresponding to significantly decreased ABF perfor-
mance (corrected P  =  .015) and heightened risk for 
schizophrenia (corrected P = .040). Based on the original 
linkage results for ABF, 2 of the 3 families harboring the 
rs6579797 risk allele have pedigree-specific LODs of 0.33 
and 0.28. In the third family, a near zero LOD score was 
observed, with 2 heterozygote carriers, both unaffected 
for schizophrenia, although one diagnosed with severe 
major depression with symptoms of psychosis.

With genome-wide microsatellite data available for 
many of the MGI samples,12 we estimated identity-by-
descent sharing for chromosome 5, allowing us to impute 
ML genotypes (.95 probability threshold) for rs6579797 
for an additional 82 individuals in our 8 study families 
(see supplementary methods). Combining the exome 
sequence data and imputed genotypes, the association 
signals at rs6579797 remained significant for both ABF 
(corrected P  =  .0031) and schizophrenia (corrected 
P = .024; supplementary table S9).

Fig. 2. Plot of pairwise LD correlations for rs6579797 with local SYNPO variants, based on population samples of European ancestry 
from 1000 Genomes data. Ancestral minor alleles (frequency < 0.05) are highlighted.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
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When examined in Mexican American pedigrees from 
GOBSF, the SYNPO variant showed significant asso-
ciation with IQ measures (smallest P  =  .011), indicat-
ing more generalized cognitive effects. This is consistent 
with the overlapping signals observed at the QTL, rang-
ing in LODs from 1.05 to 1.70, for various neurocogni-
tive traits: verbal memory, spatial processing, language 
and reasoning, and attention. Interestingly, when tested 
against these other measurements in the MGI families, 
rs6579797 showed significant detrimental effect on ver-
bal memory accuracy (β  =  −1.44 ± 0.45; P  =  .031). As 
for schizophrenia risk, we found suggestive evidence for 
SYNPO variants from GWAS results reported by the 
PGC, although rs6579797 displayed no association in the 
most current data.

Remarkably, SYNPO appears to be under selective pres-
sure, further hinting at its potential relevance. The putative 
risk allele of rs6579797 represents the ancestral evolution-
ary state, yet is uncommon in EUR and AMR populations 
from 1000 Genomes. Pairwise correlations with rs6579797 
reveal an LD block enriched with minor ancestral alleles, 
a potential footprint of an evolutionary sweep. Neutrality 
test statistics for EUR and AMR support this, revealing 
significant deviations from the neutral model. Notably, 
negative deviation was not observed for Fay and Wu’s H, 
which, when coupled with the negative score for Zeng’s E, 
suggests that the locus may be entering a recovery phase (ie, 
accumulation of neutral genetic variation).67 This finding 
adds to a growing list of genes implicated in neurocogni-
tion and brain development that appear to have undergone 
selection over the course of human evolution.68

Although SIFT and PolyPhen2 yield low probabilities 
that rs6579797 is damaging, both algorithms have false 

negative rates >10%69 and thus do not necessarily pre-
clude it from having important functional consequences. 
The product of SYNPO, synaptopodin, is an actin-
binding protein found in the dendritic spines of telence-
phalic neurons,70 with the D67N substitution encoded by 
rs6579797 situated within a PEST motif, which may serve 
as a molecular signal for proteasomal degradation.71 
Interestingly, when we re-examined SYNPO variants 
excluded from our analyses (eg, those without SIFT and 
PolyPhen2 scores), we discovered a splice site variant, 
rs59962087, that is 469 bp upstream of rs6579797 and in 
perfect LD, with an ancestral minor allele, thus represent-
ing another functional candidate for the observed asso-
ciation signal.

What makes this result compelling for the pathol-
ogy of schizophrenia is that within the dendritic spine, 
synaptopodin is believed to be an essential component 
of the spine apparatus (SA), influencing local calcium 
storage72 and protein synthesis,73 with synaptopodin-
deficient mice exhibiting deficits in synaptic plasticity 
and spatial learning.74,75More specifically, synaptopodin 
directly regulates the release of calcium76 and the accu-
mulation of glutamate receptor 1 (GluR1) in the spine 
head, a subunit of the α-amino-3-hydroxyl-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor induced 
during long-term potentiation (LTP). This establishes a 
potential mechanistic link with synaptic plasticity,77 a key 
neural process that underlies ABF and mediates synaptic 
dynamics in the prefrontal cortex (PFC),78 a brain region 
strongly implicated in schizophrenia.79–87

Moreover, in a recent exome sequencing study by 
Timms et al,88 protein-altering variants in genes involved 
in N-methyl-d-aspartate (NMDA) receptor hypofunction 

Table 3. Diversity and Neutrality Test Scores Based on 1000 Genomes Data for LD Block of SYNPO Variant rs6579797

1000 Genomes Populationsa N S π Tajima’s D Fu and Li’s F Fu and Li’s D Fay and Wu’s H Zeng’s E

African 246 211 34.36 −0.04 0.07 0.18 0.73 −0.66
Admixed American 181 156 10.91 −1.89** −2.83** −2.83** 0.43c −2.06**
East Asian 286 107 26.59 1.66 1.53 0.90 −4.44 5.14b

European 379 116 7.36 −1.75** −3.02** −3.37** 0.44c −1.90**
Total 1092 298 23.04 −1.19 −2.15** −2.81** 0.69 −1.59*

Note: Diversity measurements (segregating sites [S], nucleotide diversity [π]), and neutrality test statistics, as determined by differences 
in unbiased estimators of θ = 4 Neμ, were computed for variants found within an observed LD block for rs6579797 in the gene SYNPO 
(pairwise r2 > .90, carrying ancestral minor alleles), corresponding to hg19 coordinates chr5: 149 992 784–150 013 606 (delineated by 
SNPs rs10074935 and rs61051686).
a1000 Genomes phase 1 version 3 data for 4 “super populations”: African (AFR), representing Yoruba in Nigeria (YRI), Luhya in 
Kenya (LWK), and Americans of African ancestry from southwestern United States (ASW); Admixed American (AMR), representing 
Colombians from Medellin, Colombia (CLM), Puerto Ricans (PUR), and Americans of Mexican ancestry from Los Angeles (MXL); 
East Asian (ASN), representing Han Chinese from Beijing (CHB), Southern Han Chinese (CHS), and Japanese from Tokyo (JPT); and 
European (EUR), representing Utah residents with Northern and Western European ancestry (CEU), Toscani in Italy (TSI), British in 
England and Scotland (GBR), Iberian population in Spain (IBS), and Finnish in Finland (FIN).
bFor the other tail of the distribution (ie, positive), this score is significant, with an empirical P value of .034.
cPositive deviation Fay and Wu’s H, a statistic that utilizes information from the intermediate- and high-frequency parts of the frequency 
spectrum, coupled with the negative score for Zeng’s E based on low- and high-frequency variant classes, suggests that the locus may be 
entering a recovery phase for these 2 populations.
*Empirical P value (1-tailed) <0.05, ** <0.01, based on an observed distribution for 1000 samples generated via coalescent simulation.
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were found to segregate in schizophrenia families, sup-
porting the glutamatergic dysfunction hypothesis for 
schizophrenia,89,90 which ties in well with our findings. 
NMDA and AMPA are the 2 primary types of receptors 
activated by glutamate in the mammalian brain, each play-
ing a critical, interrelated role in calcium-induced poten-
tiation. Antagonists of NMDA receptors can replicate 
schizophrenia symptomatology in healthy people, includ-
ing deficits in mental flexibility,91,92 whereas enhancers 
have been found to reduce negative features and improve 
cognition in patients.93,94 Studies of knockout mice have 
revealed impairments in behavioral flexibility,95–97 with 
effects on potentiation.98,99 In postmortem brain tissue of 
schizophrenia patients, altered mRNA and protein levels 
of glutamate receptors have been observed,100 including 
irregularities in AMPA receptor trafficking and localiza-
tion, particularly in the PFC.101–104 Association studies 
of schizophrenia have identified a number of SNPs and 
copy number variants (CNVs) in genes involved in gluta-
matergic neurotransmission,105–109 including the synaptic 
adhesion molecule neurexin,110,111 which has been found 
to regulate AMPA receptor endocytosis and control 
excitatory synaptic strength.112

WWC1: Another Regulator of AMPA Receptor 
Trafficking

The other gene implicated in our analysis, WWC1, shows 
an enrichment of protein-altering variation in our MGI 
families, including 3 independent SNPs with significant 
or suggestive associations with ABF and schizophrenia, 
maintained by the imputed data (supplementary table S9): 
rs17551608, rs145963282, and rs3822659. Collectively, 
the WWC1 variants account for significant portions of 
the variability in ABF and schizophrenia risk, with evi-
dence of genetic interaction effects. Interestingly, when 
affection status was broadened to include other schizo-
phrenia spectrum diagnoses in these pedigrees, namely 
schizotypal personality disorder (n  =  7) and psychosis 
disorder (n = 6), a stronger association was observed for 
rs17551608 (P = 3.80 × 10−4; β = −1.07 ± 0.08). However, 
these findings were not independently replicated in the 
GOBSF families for PCET accuracy and IQ, as well as 
among the GWAS results for schizophrenia from the 
PGC, perhaps a reflection of the genetic loads carried by 
our multiplex families.

Nonetheless, WWC1 remains intriguing. Its protein 
product, the WW domain containing protein 1 (WWC1), 
a postsynaptic scaffolding molecule expressed in the 
human brain, exhibits protein-protein interactions (PPIs) 
with other postsynaptic proteins, most notably dendrin 
and synaptopodin,70 via its WW domains.113,114 Other 
binding features include a C2-like motif  that interacts 
with phospholipids115 and a region that binds protein 
kinase C (PKC)ζ,116 a molecule integral for neuronal plas-
ticity117 and known to affect long-term memory.118 Based 

on the online database BioGRID (v. 3.2.102),119 other 
PPIs have been detected for synaptopodin and WWC1, 
including proteins of genes implicated in schizophrenia 
risk (supplementary table S10).120–127 However, no genetic 
interaction effects were detected between rs6579797 and 
WWC1 missense variants for ABF or schizophrenia risk, 
as well as with other variants from these PPI networks 
(supplementary table S11).

The influence of WWC1 on neurocognition, however, is 
well supported. In a seminal paper by Papassotiropoulos 
et al,128 an intronic SNP within WWC1, rs17070145, was 
reported to be associated with human memory, with allelic 
differences in hippocampal activations during memory 
tasks. This finding has been replicated in multiple stud-
ies involving both healthy subjects and patients with mild 
cognitive impairment,129–134 with differential effects on 
memory in psychotic individuals,135 as well as a predispo-
sition for late-onset Alzheimer’s disease.136 Remarkably, 
rs17070145 has also been linked to cognitive flexibility, 
with tobacco use possibly modulating this effect,137 a nota-
ble interaction given its prevalence among schizophrenia 
patients,138 although we found no such effects. However, 
the chromosome 5 QTL does show suggestive linkage for 
verbal memory accuracy in MGI, as measured by the 
Penn Word Memory Test (LOD = 1.50, P = .0043), with 
a near significant association (β = −1.05 ± 0.55, P = .059) 
detected for the WWC1 missense variant rs61730019 
(MAF = 0.061), that also displays significant effects on 
CVLT total recall (P = .0031) and delayed recall (.0091) 
scores in GOBSF.

Despite the convincing case for its neurocognitive 
implications, how WWC1 controls higher brain function 
at the molecular level remains to be elucidated. Research 
has shown that it binds to PICK1,139 a synaptic protein 
involved in AMPA receptor trafficking140 and considered 
crucial for hippocampal synaptic plasticity,141 as WWC1 
knockdown accelerates the rate of AMPA receptor recy-
cling, with knockout mice exhibiting profound learning 
and memory impairment. It has been hypothesized that 
WWC1 may serve as a docking station for AMPA recep-
tors,142 mediating linkage between endosomes contain-
ing phosphatidylinositol-3-phosphate, a key regulator of 
vesicular traffic in excitatory neurons,143 and components 
of the postsynaptic cytoskeleton that include dendrin 
and synaptopodin.

Conclusion

From our analysis of exome sequence data from chro-
mosome 5q32–35.3, a region linked to neurocognition in 
families impacted by schizophrenia, we identify missense 
variants in 2 genes involved in AMPA receptor trafficking 
and neuronal plasticity, SYNPO and WWC1, that are asso-
ciated with ABF performance and schizophrenia suscepti-
bility. When examined in Mexican American pedigrees, the 
SYNPO variant, rs6579797, shows deleterious effects on 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbv135/-/DC1
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general intelligence, with evidence of selection operating 
at this locus. Thus, these findings suggest that disruptions 
in AMPA receptor turnover in the postsynaptic cell have 
important pathological consequences on neurocognition, 
lending support to the glutamatergic dysfunction hypoth-
esis. Recognizing that functional improvement in schizo-
phrenia patients is likely to require treatment of cognitive 
capabilities,144,145 as global impairment represents a core 
feature,146 augmenting synaptic transmission and plastic-
ity may have therapeutic potential, with a diverse class of 
allosteric agents available for modulating AMPA receptor 
activity.147 Of course, schizophrenia is a highly complex 
disorder involving perhaps thousands of risk alleles4 from 
genes involved in other neurotransmitter systems, with 
increasing evidence for the central importance of calcium 
channel signaling,148 thus necessitating an integrated, neu-
robiological approach to developing effective treatment 
strategies for this devastating mental illness.

Supplementary Material

Supplementary material (references 150–152 are cited in 
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