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Abstract

Connexins and their channels are involved in the control of all aspects of the cellular life cycle, 

ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular 

communication. These multifaceted aspects of connexin-related cellular signaling obviously 

require strict regulation. While connexin channel activity is mainly directed by posttranslational 

modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over 

the past few years, it has become clear that connexin production is equally dictated by epigenetic 

actions. This paper provides an overview of the role of major determinants of the epigenome, 

including DNA methylation, histone acetylation and microRNA species, in connexin expression.

Keywords

connexin; hemichannel; gap junction; DNA methylation; histone acetylation; microRNA

1. Introduction

Connexins have been first described about 50 years ago and currently this protein family 

fosters 21 members in human [1,2]. They are all named based on their molecular weight as 

predicted by cDNA sequencing and share a common architecture consisting of 4 

transmembrane regions, 2 extracellular loops, 1 cytosolic loop, 1 cytosolic aminoterminal 

tail and 1 cytosolic carboxyterminal tail [3,4]. Throughout the years, connexins have been 

identified as major goalkeepers of tissue homeostasis by acting at 3 communication levels. 

First, at the intracellular level, connexins can physically interact with regulators of the 

cellular life cycle, such as cyclins or B-cell lymphoma 2 proteins, or can affect their 

expression. Second, connexins form hexameric structures called hemichannels that create 

pores at the membrane plasma, providing a pathway for extracellular communication. 

Hemichannels link the cytosol of individual cells and their extracellular environment, and 

convey small (i.e. less than 1 kilodalton) and hydrophilic substances, such as second 

messengers and ions. Third, 2 hemichannels of adjacent cells can dock and generate a gap 

junction that mediates direct intercellular trafficking of permeants similar to those involved 

in hemichannel signaling [5]. Inherent to their role as critical determinants of all aspects of 

tissue homeostasis, connexins and their channels are also frequently involved in disease. In 
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fact, although controversial, it seems that hemichannels, unlike their full channel gap 

junction counterparts, preferentially open up in pathological circumstances, including cell 

death and inflammation [3,6].

The activity and thus the opening of connexin-based channels are regulated by a plethora of 

mechanisms. Short-term control, so-called gating, mainly relies on posttranslational 

modifications of connexin proteins. Connexins can undergo several of such modifications, 

including glycosylation, N-acetylation, ubiquitination, lipidation, hydroxylation, 

methylation, deamidation, S-nitrosylation, sumoylation and phosphorylation [2,7]. The 

latter, typically occurring at their carboxyterminal tail, has been best studied thus far and 

may have various effects depending on the identity of the connexin and kinase as well as the 

cellular context [2]. Long-term control of hemichannel and gap junction activity involves 

regulation of connexin expression. The architecture of most connexin genes is simple, 

consisting of a first exon that harbors the 5′-untranslated region (UTR), which is separated 

by an intron of varying length from a second exon, bearing the complete coding sequence 

and the 3′-UTR. Connexin gene promoters display binding affinity for several general 

transcription factors, including activator protein 1, yin yang 1 and specificity protein 1. 

Furthermore, a number of tissue-specific transcription factors control connexin gene 

transcription, like hepatocyte nuclear factor 1α in liver [8,9].

In the last decade, epigenetic mechanisms, including DNA methylation, histone acetylation 

and microRNA-related control, have also joined in as master regulators of connexin 

expression. These mechanisms will be discussed in detail in the following sections. Specific 

attention will be paid to microRNA-related control, which has become particularly studied 

in the connexin field in recent years.

2. DNA methylation

Hypermethylation of gene promoters, catalyzed by DNA methyltransferase (DNMT) 

enzymes, is typically linked to transcriptional silencing [10]. The negative correlation 

between DNA methylation and gene expression is mediated by methylated DNA-binding 

proteins that concentrate at hypermethylated CpG dinucleotides and that recruit 

transcriptional suppressors [11].

The role of DNA methylation in the control of connexin expression has been mainly studied 

in a pathological context. In a rat model of D-galactose-induced presbycusis, gradual 

downregulation of Cx26 expression was seen in cochlear tissue, which was associated with 

increased methylation of its gene promoter [12]. Along the same line, Cx32 and Cx43 

mRNA levels progressively decrease in human gastric mucosa during Helicobacter pylori 
infection, an event that goes hand in hand with hypermethylation of their gene promoters 

[13]. It should be mentioned that the latter is probably not due to infection per se, but rather 

to tumor progression. Indeed, methylation-driven suppression of connexin expression has 

been most extensively demonstrated for carcinogenic events. Abrogation of expression of 

Cx26, Cx32, Cx36, Cx43 and Cx45 has been associated with the accumulation of 

methylated CpG dinucleotides in the corresponding connexin gene promoters in a variety of 

human malignant cells, including lung cancer cells [14,15], renal carcinoma cells [16-18], 
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esophageal cancer cells [19], breast cancer cells [20], nasopharyngeal cancer cells [21], 

colon cancer cells [22,23] and glioma cells [24] as well as in other species [25-29]. 

Accordingly, hypomethylating agents that act by inhibiting DNMTs, such as the drugs 5-

azacytidine and 5-aza-2-deoxycytidine (i.e. decitabine), have been found to upregulate 

connexin expression in many of those cancer cells (Table 1), which often results in enhanced 

gap junction activity [16,21], although this occurs in a cell type-dependent and connexin-

specific fashion [16,19,20,25,30]. However, methylation of connexin gene promoters, 

including Cx30, Cx36 and Cx37, during cancer is not always accompanied by their 

downregulated expression [23]. In physiological conditions, such as during murine 

embryogenesis, decitabine was even found to suppress the production of Cx31, Cx43 and 

Cx45 in mouse embryos [31].

Although the mechanism of DNA methylation causing connexin gene silencing is clear, the 

true triggers of this epigenetic process remain more elusive. Decreased expression of 

connexins, in casu Cx26, in liver cancer has been casually linked to elevated DNMT1 

mRNA levels [26]. Furthermore, aberrant binding of transcription factors to methylated 

connexin gene promoters could underlie poor connexin expression in cancer cells. In this 

respect, decreased Cx43 gene transcription in human non-small cell lung cancer cells is 

accompanied by DNA methylation and correlates with reduced binding of activator protein 1 

to the its gene promoter [32]. Furthermore, methylated CpG dinucleotides are preferentially 

located in the specificity protein 1 cis-acting elements of the Cx26 gene promoter and the 

Cx32 gene promoter in human breast cancer cells [33] and rat liver cancer cells [25], 

respectively.

3. Histone modifications

The vast majority of data that show the involvement of histone modifications in connexin 

expression comes from studies using modifiers of these particular epigenetic mechanisms. 

This is specifically the case for reversible histone acetylation, which is catalyzed by histone 

acetyltransferases and that usually is paralleled by transcriptional activation through 

chromatin decondensation, while the opposite reaction, driven by histone deacetylase 

(HDAC) enzymes, frequently underlies suppression of gene expression [34].

Inhibitors of HDAC enzymes have been demonstrated to increase connexin production 

[35-47], often associated with induction of gap junction opening [35-41,44,48-50] in various 

experimental settings (Table 2). As seems to hold for DNMT inhibitors, the effects of HDAC 

inhibitors are dictated by the nature of the connexin species and epigenetic modifier as well 

as the cellular environment. In this respect, the prototypical class I and II HDAC inhibitor 

trichostatin A positively affects Cx36 expression in mouse pancreatic cell lines, but not in 

mouse fibroblasts, neuronal cells and pituitary cells [30]. On the other hand, sodium butyrate 

and 4-phenylbutyrate, but not trichostatin A, increase Cx43 protein levels in human 

nasopharyngeal tumor cells [51]. Also, suberoylanilide hydroxamic acid leaves Cx43 and 

Cx45 unaffected, but upregulates Cx32 and Cx37 expression and simultaneously reduces 

Cx40 protein amounts in cardiodystrophic mice [52]. HDAC inhibitors hereby directly affect 

connexin gene transcription. Indeed, trichostatin A-mediated induction of Cx43 in human 

prostate cancer cells relies on the recruitment of p300/cyclic adenosine monophosphate 
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response element-binding protein, a transcriptional coactivator displaying histone 

acetyltransferase activity, and the transcription factors activator protein 1 and specificity 

protein 1 to the Cx43 gene promoter. This is associated with hyperacetylation of histone H4 

surrounding binding sequences of both transcription factors [37]. Likewise, suberoylanilide 

hydroxamic acid triggers accumulation of acetylated histones H3 and H4 in the Cx43 gene 

locus, leading to its enhanced expression in human peritoneal mesothelial cells [41]. Cx36 

expression in pancreatic cells is controlled, at least in part, by the RE-1 silencing 

transcription factor, a transcriptional repressor consisting of 2 independently acting HDAC-

recruiting repression domains [53,54]. Active Cx36 production in these cells is featured by 

the presence of trimethylated lysine 4 residues in histone H4 near its gene promoter, an 

epigenetic marker of actively transcribed genes, and is inducible by trichostatin A [30].

A number of reports have documented the identity of the HDAC enzymes that are involved 

in the regulation of connexin expression. Specific deletion of HDAC1 and exposure to 

trichostatin A diminish Cx43 mRNA levels in mouse embryonic stem cells. In fact, loss of 

HDAC1 increases trimethylation of lysine 9 residues in histone H3 surrounding the Cx43 

gene promoter region, an epigenetic signature of silenced genes, and only slightly reduces 

histone H3 and H4 acetylation. This indicates that the Cx43 gene requires both HDAC1 

presence and activity for its transcription, but histones H3 and H4 are merely minor targets 

in this regulatory process [55]. In line with this finding, silencing of HDAC1 production 

substantially decreases expression of Cx43 in murine induced pluripotent stem cells [56]. By 

contrast, small interfering RNA-mediated knockdown of HDAC1 during differentiation of 

rat bone mesenchymal stem cells into cardiomyocytes increases Cx43 expression [57]. Upon 

transfection, the breast cancer metastasis suppressor 1 protein localizes in the cell nucleus, 

and restores gap junction activity in human breast cancer cells [58-60] and in melanoma 

cells [61]. In the former case, this coincides with elevated Cx43 mRNA levels and 

concomitant Cx32 gene transcription [58,60]. It has been further found that breast cancer 

metastasis suppressor 1 interacts with the large mammalian Sin3 HDAC complex, which 

contains both HDAC1 and HDAC2, but also forms smaller complexes with HDAC1 [62]. 

The mammalian Sin3 HDAC complex is also involved in the repression of Cx43 expression 

in human telomerase-immortalized myometrial cells by progesterone. The latter hereby 

binds to the Cx43 gene promoter through a protein-protein interaction with activator protein 

1 [63]. MC1568, a selective class II HDAC inhibitor, promotes expression of Cx37 and 

Cx43 in lung artery endothelial cells of pulmonary arterial hypertension patients. This 

results from inhibition of HDAC4 and HDAC5, both which regulate the activity of the 

transcription factor myocyte enhancer factor 2, known to control expression of Cx37 and 

Cx40. This is further substantiated by the observation that experimental suppression of 

HDAC4 and HDAC5 upregulates production of both connexins in these cells [45].

It should be mentioned that HDAC inhibitors can act at levels of connexin expression other 

than the transcriptional one. Thus, trichostatin A enhances gap junction opening in cultured 

rat hepatocytes, a finding associated with differential effects on Cx26, Cx32 and Cx43 

protein contents, but not with alterations in the corresponding mRNA amounts [49]. 4-

phenylbutryate increases gap junction activity in rat corpora smooth muscle cell cultures, 

with no effect on Cx43 protein levels and even a decline in Cx43 mRNA transcript number. 

This could point to stabilization of the existing Cx43 pool or alterations in functional 
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channel amounts [64]. In addition, HDAC inhibitors can interfere with posttranslational 

connexin control, as they both increase [36,39-41] and decrease [38] the abundance of 

phosphorylated Cx43 isoforms in different cell types. Sodium butyrate prevents tumor 

promoter-mediated inhibition of gap junction activity via extracellular signal-regulated 

kinase 1/2 inactivation, while trichostatin A restores gap junctional communication and 

induces Cx43 hyperphosphorylation by preventing p38 mitogen-activated protein kinase in 

cultured rat liver epithelial cells [65]. HDAC inhibitors may also affect subcellular 

localization of connexin proteins both in vitro [49,50] and in vivo [52]. Curiously, the 

interaction between histone acetylation and connexins can also occur in the opposite 

direction. In this regard, transfection of metastatic human pulmonary giant cells carcinoma 

cells with the gene encoding Cx43 increases acetylation of histones H3 and H4 in the 

promoter of the follistatin-like 1 gene, which in turns affects invasive and metastatic 

potential [66].

4. MiRNA-related control

In the last few years, microRNA (miRNA) species have emerged as critical 

posttranscriptional regulators of connexin expression. Following their synthesis in the cell 

nucleus and processing in the cytoplasm, miRNAs bind to complementary sequences in 

target mRNA molecules and either suppress their translation or cleave mRNAs as such [67].

A plethora of miRNAs have been reported to directly bind to the 3′-UTR region of Cx43 

mRNA and thereby to suppress its translation (Table 3). This type of regulation has been 

studied both in a physiological and a pathological context. Regarding the former, miR-206 

production is upregulated upon perinatal skeletal muscle development in mice in vivo and 

both miR-1 and miR-206 downregulate Cx43 expression during myoblast fusion in vitro 
[68,69]. Mice that overexpress miR-206 show decreased Cx43 expression and impaired bone 

formation [70]. Similarly, Cx43 levels increase during differentiation of bone cells, a process 

counteracted by miR-23a [71]. Of note, miRNAs may be involved in establishing gender-

specific differences in connexin production. This has been shown for miR-1, which regulates 

Cx43, being expressed to a higher extent in female rat cardiomyocytes compared to male 

counterparts [72].

MicroRNAs can also act as positive regulators of connexin expression. In this light, miR-145 

upregulates Cx43 production upon differentiation of human corneal epithelial progenitor 

cells [73]. Likewise, miR-208a seems to promote cardiac Cx40 expression [74]. 

Furthermore, microRNAs can indirectly affect connexin production. Thus, miR-103/107 

directly targets the expression of receptor M type protein tyrosine phosphatase in limbal 

derived corneal epithelial cells, which in turns affects Cx43-based gap junctions [75]. 

Similarly, myocardin downregulates Cx43 expression via miR-1 upregulation in bladder 

capacity during development [76]. Also, miR-200 regulates production zinc finger E-box 

binding homeobox proteins 1 and 2, which transcriptionally repress Cx43 expression in 

human myometrial cells [77]. From the pathological perspective, miRNAs underlie 

modifications in connexin production during the onset and progression of several diseases, 

in particular cardiac pathologies. MiR-1 gained quite some attention in this respect. Its 

overexpression slows down conduction and depolarizes the cytoplasmic membrane [78], 
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resulting in atrioventricular block in rodents [79]. This is due, at least in part, to the direct 

negative impact of miR-1 on cardiac Cx43 production [79,80]. Furthermore, hypertrophic 

stimulation of cardiomyocytes induces miR-1 downregulation both in vitro and in vivo, 

subsequently modifying the expression of Cx43, which in turn is phosphorylated by the 

hypertrophic stress-induced mitogen-activated protein kinase and as such displaced from the 

gap junction configuration [80,81]. Aberrant production or processing of miR-1 

accompanied by altered Cx43 levels has also been observed in viral myocarditis in mouse 

[82] and in myotonic dystrophy in human [83]. In addition, miR-1 as well as miR-206 are 

downregulated in patients suffering from tetralogy of Fallot [84]. Other miRNAs have also 

been related to cardiac tachycardia and/or arrhythmias, such as miR-130a [85] and 

miR-19a/b [86], respectively. Several studies have documented roles for miRNAs as tumor 

suppressors or promoters. MiR-125b [87] and miR221/222 [88] promote cell cycling and/or 

invasion in glioma cell cultures, thereby suppressing Cx43 expression. Likewise, miR-20a is 

highly expressed in human cancer cells and negatively affects Cx43 production [89]. Both 

miR-200a [90] and miR-206 [91] also modify Cx43 expression during carcinogenesis. More 

recently, it was found that miR-206 and miR-1 diminish Cx43 levels during experimentally 

induced alkali burn injury in mouse cornea [92] and in chronic neuropathy in rat sciatic 

nerves [93], respectively.

It should be mentioned that the interaction between miRNAs and connexins can occur in 

both directions. Indeed, forced expression of Cx43 in glioma cell cultures antagonizes 

miR-125b-mediated cell growth [87]. On the other hand, silencing of Cx43 production 

reverses the protective effect of miR-206 downregulation in alkali-burned cornea [92]. 

Interestingly, besides acting as regulators of the production of their building stones, miRNAs 

can also permeate gap junctions. In this regard, miR-5096 is conveyed via gap junctions 

between glioma cells and as such exerts proinvasive effects [94]. Antiproliferative 

miR-124-3p travels through Cx43-based gap junctions in glioblastoma cells [95]. Gap 

junctions also transfer miR-210 in cocultures of mesenchymal stem cells and 

cardiomyocytes [96] as well as miR-142 and miR-223 between macrophages and 

hepatocellular carcinoma cells [97].

5. Conclusions and perspectives

Connexins and their channels control all facets of the cellular life cycle by acting at multiple 

communication platforms [5]. A strict and well-coordinated regulation is compulsory their 

appropriate expression and functioning. Considerable efforts have yet been focused 

throughout the years on the elucidation of the cis/trans machinery that drives connexin gene 

transcription [8,9]. A large body of evidence also points to the involvement of epigenetic 

phenomena in this process, including DNA methylation and histone acetylation at the 

pretranscriptional level and miRNAs at the posttranscriptional level. These mechanisms may 

also act in concert while controling connexin expression. This has been recently exemplified 

for miR-1298, which is regulated by DNA methylation and that directly binds to Cx43 

mRNA in vascular smooth muscle cells, resulting in its reduced expression and gap junction 

channel activity [98]. As a matter of fact, a major challenge lies ahead in deciphering the 

global epigenetic codes that determine connexin expression, including other histone 

modifications, such as histone methylation, which also emerge as regulators of connexin 
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production [99]. Such research is often complicated by the observation the methylation and 

acetylation not only affect connexin genes, but also their proteins. In this respect, HDAC3, 

HDAC4, HDAC5 and p300/cyclic adenosine monophosphate response element-binding 

protein colocalizes with Cx43 in cardiac tissue of dystrophic mice. They control Cx43 

protein acetylation, which in turn determines its interaction with other junctional proteins, 

such as N-cadherin, and association with gap junctions [46]. Furthermore, bioinformatic 

analysis showed that specific Cx26 gene mutations known to be associated with human 

disease can directly trigger loss or gain of posttranslational Cx26 methylation [100].

Epigenetic modifiers are indispensable tools during further research of the role of the 

epigenome in connexin expression. In addition to the conventional and widely used 

inhibitors of DNMT and HDAC enzymes, such as decitabine and trichostatin A, 

respectively, several dietary compounds have been characterized as epigenetic modifiers that 

affect connexin expression. Epigallocatechin-3-gallate, a major constituent of green tea, 

decreases DNA methylation in the Cx32 gene promoter and increases its protein levels in 

human renal carcinoma cells [18]. Sulforaphane, an organosulfur HDAC inhibitor present in 

cruciferous vegetables, upregulates Cx43 protein amounts and induces gap junction opening 

in human cancer cells by affecting the phosphorylation status [43]. Resveratrol, which acts 

on histone acetylation and that is found in grapes and red wine, opens gap junctions in 

human glioblastoma cells [101] rat liver epithelial cells [102-104]. Like sulforaphane, this 

occurs independently of changes in Cx43 mRNA levels [103] and is allied with altered Cx43 

phosphorylation [101-103].

Overall, the interplay between epigenetic mechanisms and their modifiers on the one hand, 

and connexin expression and signaling on the other hand has been predominantly studied in 

pathological scenarios. Typically, the epigenetic machinery during cancer triggers the 

silencing of tumor suppressor genes, including those coding for connexins [105,106]. 

Connexins have indeed repeatedly been demonstrated to possess potent antitumor properties 

by inducing cell cycle arrests, differentiation and apoptosis in neoplastic cells [5,106,107]. 

Upregulation of connexin expression using epigenetic modifiers may therefore represent an 

attractive anticancer therapy [106,108]. In addition, HDAC inhibitors have lately gained 

attention for the potential treatment of cardiac diseases, thereby also affecting connexins. In 

cardiodystrophic mice, Cx40 protein production is increased, while Cx43 shows 

lateralization. Administration of suberoylanilide hydroxamic acid to these animals restores 

normal Cx40 protein amounts and reestablishes the physiological Cx43 distribution pattern 

[52]. Likewise, trichostatin A reverses atrial arrhythmia inducibility and fibrosis in cardiac 

hypertrophy by normalizing Cx40 production [47]. It can be anticipated that further 

exploration of the effects of epigenetic modifiers on connexin production and channel 

activity in the upcoming years will open promising perspectives for the therapy of many 

other diseases.
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List of abbreviations

4-PB 4-phenylbutyrate

AZA 5-azacytidine

Cx connexin

DAC decitabine

DNMT(i) DNA methyltransferase (inhibitor)

EG epigallocatechin-3-gallate

HDAC(i) histone deacetylase (inhibitor)

HMBA hexamethylene bisacetamide

J-1 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxamide

miRNA microRNA

NaB sodium butyrate

SAHA suberoylanilide hydroxamic acid

SR sulforaphane

TSA trichostatin A

UTR untranslated region
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Highlights

- Connexin expression is controlled by DNA methylation, histone 

acetylation and microRNAs.

- The role of epigenetics in the regulation of connexin expression has been 

mainly studied in vitro.

- Epigenetically modifying connexin expression might be a potential 

clinical therapy for several pathologies.
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Figure 1. 
A. Architecture of connexin channels and aspects of connexin signaling. Gap junctions are 

formed by the interaction between 2 hemichannels of adjacent cells and mediate intercellular 

communication (red arrow). Hemichannels are built up by 6 connexin proteins and support 

extracellular communication (blue arrow). Connexins as such may be involved in intacellular 

communication (green arrow).

B. Topology of connexin proteins. Connexins all consist of 4 transmembrane domains (TM), 

2 extracellular loops (EL), 1 cytosolic loop (CL), 1 carboxyterminal cytosolic (CT) and 

aminoterminal (NT) tail.
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Table 1

Effects of DNA methyltransferase inhibitors on connexin expression.

Model DNMTi Upregulation Downregulation No effect Reference

Human colon cancer cells DAC Cx43** [23]

Human esophageal cancer cells DAC Cx26**/Cx43** [19]

Human lung carcinoma cells DAC Cx26** [14]

Human renal carcinoma cells DAC Cx32*,** [16,109]

EG Cx32* [18]

Human proximal tubular cells DAC Cx32*,** [16]

Human breast cancer cells DAC Cx26** [20]

DAC Cx26** [33]

Human cervical carcinoma cells DAC Cx43* [110]

Human nasopharyngeal cancer cells DAC Cx43*,** [21]

Rat liver epithelial cells DAC Cx43** Cx32** [25]

Mouse pancreatic cancer cells AZA Cx36** [30]

Mouse pituitary corticotrophic cells AZA Cx36** [30]

Mouse neuronal cells AZA Cx36** [30]

Mouse fibroblasts AZA Cx36** [30]

Mouse embryonic cells DAC Cx31**/Cx43**/Cx45** [31]

*
protein level;

**
mRNA level; AZA, 5-azacytidine; Cx, connexin; DAC, decitabine; DNMTi, DNA methyltransferase inhibitor; EG, epigallocatechin-3-gallate.
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Table 2

Effects of histone deacetylase inhibitors on connexin expression.

Model HDACi Upregulation Downregulation No effect Reference

Human glioblastoma cells NaB Cx43* [111]

4-PB Cx43* [36]

Human pancreatic cancer cells 4-PB Cx43* [42]

SR Cx43* [43]

Human prostate carcinoma cells TSA Cx43*,** [37]

Human prostate epithelial cells TSA Cx43*,** [37]

Human cervical carcinoma cells 4-B Cx43* [44]

Human nasopharyngeal tumor cells 4-PB/NaB Cx43* [51]

TSA Cx43* [51]

Human peritoneal mesothelial cells HMBA Cx43*,** [39,40]

SAHA Cx43*,** [41]

Human lung artery endothelial cells MC1568 Cx37**/Cx40** [45]

Human embryonic kidney cells 4-PB Cx43* [44]

Human neural progenitor cells 4-PB/TSA Cx43* [38]

Human liver cancer cells TSA Cx43** Cx26**/Cx32** [112]

Rat glioma cells NaB Cx43* [111]

4-PB Cx43* [35]

Rat colon cancer cells NaB Cx43** [113]

Rat transformed epithelial cells SAHA Cx43*,** [41]

Rat hepatocytes TSA Cx32*/Cx43* Cx26* [49]

J-1 Cx32* Cx26*/Cx43* [50]

Rat corpora smooth muscle cells 4-PB Cx43** Cx43* [64]

Mouse pancreatic cancer cells TSA Cx36** [30]

Mouse pituitary corticotrophic cells TSA Cx36** [30]

Mouse neuronal cells TSA Cx36** [30]

Mouse fibroblasts TSA Cx36** [30]

Mouse embryonic cells TSA Cx43** [55]

Cardiodystrophic mdx mice SAHA Cx32*/Cx37* Cx40* Cx43*/Cx45* [52]

HopX cardial hypetrophic mice TSA Cx40* Cx43** [47]

*
protein level;

**
mRNA level; 4-PB, 4-phenylbutyrate; Cx, connexin; HDACi, histone deacetylase inhibitor; HMBA, hexamethylene bisacetamide; J-1, 5-(4-

dimethylaminobenzoyl)aminovaleric acid hydroxamide; NaB, sodium butyrate; SAHA, suberoylanilide hydroxamic acid; SR, sulforaphane; TSA, 
trichostatin A.
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Table 3

MicroRNA species experimentally shown to directly bind the 3′-UTR of Cx43 mRNA in different cell types.

MiRNA species Cell type Reference

MiR-1 Human breast cancer cells [90]

Rat myocardial cells [80,82]

MiR-19a/b Human embryonic kidney cells [86]

MiR-20a Human prostate cancer cells [89]

MiR-23a Human osteosarcoma cells [71]

Human breast cancer cells [90]

MiR-125b Human embryonic kidney cells [87]

MiR-130a Mouse embryonic fibroblasts [85]

Mouse cardiomyocyte tumor cells [85]

MiR-186 Human breast cancer cells [90]

MiR-200a Human breast cancer cells [90]

MiR-206 Human breast cancer cells [90,91]

Rat vascular smooth muscle cells [92]

Mouse corneal cells [92]

Mouse osteoblasts [70]

Mouse myoblasts [68,69]

MiR-218 Human nasopharyngeal carcinoma [114]

Human breast cancer cells [114]

Human cervical cancer cells [114]

MiR-222 Human glioblastoma cells [88]

Rat vascular smooth muscle cells [92]

MiR-381 Human breast cancer cells [90]

MiR-1298 Rat vascular smooth muscle cells [98]

miRNA, microRNA.
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