
The Impact of Quality Assurance Assessment on Diffusion 
Tensor Imaging Outcomes in a Large-Scale Population-Based 
Cohort

David R. Roalfa, Megan Quarmleya, Mark A. Elliottb, Theodore D. Satterthwaitea, Simon N. 
Vandekara,e, Kosha Ruparela, Efstathios D. Gennatasa, Monica E. Calkinsa, Tyler M. 
Moorea, Ryan Hopsona, Karthik Prabhakarana, Chad T. Jacksona, Ragini Vermab,c, Hakon 
Hakonarsond, Ruben C. Gura,b, and Raquel E. Gura,b

aNeuropsychiatry Section, Department of Psychiatry, University of Pennsylvania Perelman School 
of Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA

bDepartment of Radiology, University of Pennsylvania Perelman School of Medicine, Children’s 
Hospital of Philadelphia, Philadelphia, PA 19104, USA

cSection of Biomedical Image Analysis, Children’s Hospital of Philadelphia, Philadelphia, PA 
19104, USA

dCenter for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA

eDepartment of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia PA 
19104, USA

Abstract

Background—Diffusion tensor imaging (DTI) is applied in investigation of brain biomarkers for 

neurodevelopmental and neurodegenerative disorders. However, the quality of DTI measurements, 

like other neuroimaging techniques, is susceptible to several confounding factors (e.g. motion, 

eddy currents), which have only recently come under scrutiny. These confounds are especially 

relevant in adolescent samples where data quality may be compromised in ways that confound 

interpretation of maturation parameters. The current study aims to leverage DTI data from the 

Philadelphia Neurodevelopmental Cohort (PNC), a sample of 1,601 youths ages of 8–21 who 

underwent neuroimaging, to: 1) establish quality assurance (QA) metrics for the automatic 

identification of poor DTI image quality; 2) examine the performance of these QA measures in an 

external validation sample; 3) document the influence of data quality on developmental patterns of 

typical DTI metrics.
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Methods—All diffusion-weighted images were acquired on the same scanner. Visual QA was 

performed on all subjects completing DTI; images were manually categorized as Poor, Good, or 

Excellent. Four image quality metrics were automatically computed and used to predict manual 

QA status: Mean voxel intensity outlier count (MEANVOX), Maximum voxel intensity outlier 

count (MAXVOX), mean relative motion (MOTION) and temporal signal-to-noise ratio (TSNR). 

Classification accuracy for each metric was calculated as the area under the receiver-operating 

characteristic curve (AUC). A threshold was generated for each measure that best differentiated 

visual QA status and applied in a validation sample. The effects of data quality on sensitivity to 

expected age effects in this developmental sample were then investigated using the traditional 

MRI diffusion metrics: fractional anisotropy (FA) and mean diffusivity (MD). Finally, our method 

of QA is compared to DTIPrep.

Results—TSNR (AUC=0.94) best differentiated Poor data from Good and Excellent data. 

MAXVOX (AUC=0.88) best differentiated Good from Excellent DTI data. At the optimal 

threshold, 88% of Poor data and 91% Good/Excellent data were correctly identified. Use of these 

thresholds on a validation dataset (n=374) indicated high accuracy. In the validation sample 83% 

of Poor data and 94% of Excellent data was identified using thresholds derived from the training 

sample. Both FA and MD were affected by the inclusion of poor data in an analysis of age, sex 

and race in a matched comparison sample. In addition, we show that the inclusion of poor data 

results in significant attenuation of the correlation between diffusion metrics (FA and MD) and 

age during a critical neurodevelopmental period. We find higher correspondence between our QA 

method and DTIPrep for Poor data, but we find our method to be more robust for apparently high-

quality images.

Conclusion—Automated QA of DTI can facilitate large-scale, high-throughput quality 

assurance by reliably identifying both scanner and subject induced imaging artifacts. The results 

present a practical example of the confounding effects of artifacts on DTI analysis in a large 

population-based sample, and suggest that estimates of data quality should not only be reported 

but also accounted for in data analysis, especially in studies of development.
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1.0 Introduction

Diffusion tensor imaging (DTI) is an important magnetic resonance imaging (MRI) 

technique in the investigation and identification of brain biomarkers in typical 

neurodevelopment, cognitive aging and neuropsychiatric syndromes. DTI is based on the 

quantification of the random Brownian motion of protons, which enables the measurement 

of the spatial organization of brain tissue (Basser et al., 1994; Le Bihan et al., 2001). 

Specifically, DTI provides contrasts that are sensitive to intra-voxel white matter 

microstructure (Basser and Pajevic, 2000) and produces results that are consistent with the 

major white matter pathways detailed in animal models and in retinotopic studies in the 

human brain (Conturo et al., 1999; Le Bihan, 2003). An extensive DTI literature details 

findings in normal development (e.g. (Ladouceur et al., 2012; Lenroot and Giedd, 2010; 

Oishi et al., 2013; Yoshida et al., 2013) and neuropsychiatric conditions, including 

Roalf et al. Page 2

Neuroimage. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



schizophrenia (Roalf et al., 2015; Wheeler and Voineskos, 2014), autism (Konrad and 

Eickhoff, 2010; Travers et al., 2012) and Alzheimer’s disease (Radanovic et al., 2013; 

Zhang et al., 2014). Moreover, large consortia, such as the Human Connectome Project (Van 

Essen et al., 2012) and the Alzheimer’s Disease Neuroimaging Initiative (Jack et al., 2010) 

rely on DTI data as a major outcome measure. However, DTI is not without practical 

challenges that affect the reliability and reproducibility of results (Le Bihan et al., 2006).

Neuroimaging data confounds, in particular head motion, are quite pertinent in human 

samples (Liu et al., 2015; Power et al., 2012), especially children (Yoshida et al., 2013) and 

adolescents (Satterthwaite et al., 2012). For example, the confounding influence of head 

motion on resting-state functional connectivity has received substantial attention (Power et 

al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Similar effects are evident in 

structural MRI (Reuter et al., 2015) and pediatric DTI samples (Lauzon et al., 2013; Yoshida 

et al., 2013). DTI measurements, in general, are reliable as they are insensitive to B1 errors, 

however, DTI is strongly dependent on gradient calibration and errors in gradient amplitude, 

direction and linearity, can contribute to inaccurate measurement (Conturo et al., 1995). 

Nonetheless, the influence of data quality using DTI is understudied and often ignored. 

Beyond head motion, the quality of DTI measurements is susceptible to several confounds 

including eddy currents, scanner artifacts (e.g. noise spikes) and susceptibility artifacts 

(Anderson, 2001; Bastin et al., 1998; Skare et al., 2000), which have come under scrutiny 

(Heim et al., 2004; Jones et al., 2013; Jones et al.; Lauzon et al., 2013; Owens et al., 2012; 

Tournier et al., 2011; Yendiki et al., 2014), and are the focus of several new methods 

seeking to mitigate their impact (Li et al., 2014; Li et al., 2013; Oguz et al., 2014). These 

confounds likely contribute to inaccuracies in the tensor fitting of DTI data (Le Bihan et al., 

2006). For example, head-motion was found to induce group differences between autistic 

and typically developing children in DTI (Yendiki et al., 2014). Most importantly, the use of 

head-motion as a nuisance regressor during statistical modeling reduced this effect. Yet, 

most developmental and clinical studies using DTI fail to report procedures for quality 

control and its impact on results. It is likely that unaccounted for artifacts result in 

suboptimal tensor estimation and thus may negatively influence commonly derived DTI 

metrics, such as fractional anisotropy, mean diffusivity, and estimates of tractography. In 

addition, because data quality is often systematically related to a phenotype of interest (e.g. 

age, diagnosis, cognition, symptom severity) and that data quality is inherently subject 

dependent (e.g. correlation between age and motion), low quality data has the potential to 

obscure the presence of real effects or produce spurious associations with study phenotypes.

Despite such dangers, automated measures for quality assurance (QA) of DTI data remain 

limited. Manual inspection of multivolume DTI data is time consuming, subjective and 

potentially susceptible to operator bias, and translates poorly to large-scale imaging studies. 

Studies of noise in DTI provide a useful framework for identifying how such noise affects 

diffusion properties (Ding et al., 2005; Farrell et al., 2007; Hasan, 2007; Skare et al., 2000). 

Several recent studies indicate promise for implementing automatically derived quality 

assurance metrics that reduce the amount of manual QA effort, including measures of 

signal-to-noise and the use of outlier detection, to quantify data quality prior to image 

processing (Lauzon et al., 2013; Li et al., 2014; Li et al., 2013; Oguz et al., 2014). However, 

much of this work has used relatively small samples or simulated data, and none have 
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focused primarily on a neurodevelopment sample (although Lauzon et al., 2013 present data 

in a large pediatric sample). Finally, there is lack of corroboration of derived metrics in a 

validation sample.

The overall goal of the current study is to determine which image QA metrics are most 

reliable in the automatic detection of poor DTI data. We manually evaluate over 1,500 DTI 

data sets from the Philadelphia Neurodevelopmental Cohort (PNC; (Gur et al., 2014; 

Satterthwaite et al., 2014), and automatically derive QA measures. This approach will be 

useful in the current cross-sectional sample, in concurrent or longitudinal studies, and 

generalizable to most DTI studies. Importantly, all DTI data in the PNC was acquired within 

a 30-month period using the same MRI scanner, head-coil and DTI protocol. In addition, 

25% of the sample returned for a follow-up DTI scan approximately two years later, thus 

providing a unique validation sample. Our goals are: 1) leverage DTI data from the PNC, a 

sample of 1,601 youth between the age of 8–21 who underwent neuroimaging, to determine 

automated quality assurance metrics that will aid in the automatic identification of poor DTI 

image quality; 2) test these QA measures in a follow-up sample; and, 3) determine the 

influence of data quality on typical DTI metrics (e.g. FA and MD), 4) measure changes 

introduced by including poor data in the correlations between FA/MD and age and 5) 

compare our QA processes to a previous published DTI QA tool, DTIPrep (Oguz et al., 

2014). As described below, results indicate automated QA of DTI can facilitate large-scale, 

high-throughput analysis by reliably identifying poor quality data and systematically 

improving data fidelity.

2.0 Materials & Methods

2.1 Participants

2.1.1 Initial sample—All participants included in this study were enrolled in the PNC 

(Calkins et al., 2015; Calkins et al., 2014; Gur et al., 2014; Satterthwaite et al., 2014). The 

PNC is a large community-based epidemiological sample of 9,498 youths, aged 8–21, who 

underwent clinical and cognitive evaluations. A subset of 1,000 subjects received 

multimodal neuroimaging as part of the initial PNC project. An additional 601 individuals 

underwent the identical neuroimaging protocol as part of extension of the PNC. Data from 

244 individuals was considered unusable (Figure 1). Accordingly, 1,357 individuals 

comprise the initial sample that received the same neuroimaging protocol (Table 1). These 

data were acquired between 2009 and 2012. A description of the PNC is available in: http://

www.med.upenn.edu/bbl/projects/pnc/PhiladelphiaNeurodevelopmentalCohort.shtml and 

the data is available from the National Institutes of Health - dbGaP (http://

www.ncbi.nlm.nih.gov/gap).

2.1.2 Validation sample—Four hundred and four individuals (Table 2) returned 

approximately two years later and underwent the same neuroimaging procedures. Of note, 

these individuals were selected to return based upon successful completion and high data 

fidelity of a structural scan during the initial study. DTI quality during the initial study was 

not a factor in enrollment for follow-up. Thirty individuals did not complete a follow-up 

DTI scan. Thus, the final sample was 374. These data were collected between 2012 and 

2013.
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All enrolled subjects provided informed consent at each visit, or for minors informed assent 

in addition to parental or guardian consent. The Institutional Review Boards of the 

University of Pennsylvania and Children’s Hospital of Philadelphia approved all procedures.

2.1.3 Clinical assessment of the sample—Detailed clinical information on the PNC is 

published (Calkins et al., 2015; Calkins et al., 2014; Gur et al., 2014). While clinical 

diagnosis is not of interest in the current study, it is imperative that clinical diagnosis be 

considered when discerning the contributors to neuroimaging artifact. It is possible that 

individuals with significant clinical symptomatology may have more difficulty completing 

hour-long neuroimaging sessions than healthy individuals. To determine if clinical features 

affect quality of assessment procedures, baseline psychopathology is analyzed as a general 

psychopathology factor score reflecting levels of symptoms across psychopathology 

domains (Calkins et al., in prep).

2.2 Diffusion Tensor Imaging

2.2.1 Diffusion Weighted Imaging Acquisition—Recruitment information and 

detailed neuroimaging scan parameters for all sequences have been described (Satterthwaite 

et al., 2014). Briefly, all MRI scans were acquired on the same 3T Siemens Tim Trio whole-

body scanner and 32-channel head coil at the Hospital of the University of Pennsylvania. 

DTI scans were obtained using a twice-refocused spin-echo (TRSE) single-shot EPI 

sequence (TR=8100 msec, TE=82 mesc, FOV=240mm2/240mm2; Matrix= RL: 128/AP:

128/Slices:70, in-plane resolution (x & y) 1.875mm2; slice thickness=2 mm, gap=0; 

FlipAngle=90°/180° /180°, volumes=71, GRAPPA factor =3, bandwidth=2170 Hz/pixel, PE 

direction=AP). The sequence employs a four-lobed diffusion encoding gradient scheme 

combined with a 90–180–180 spin-echo sequence designed to minimize eddy-current 

artifacts (Reese et al., 2003). The complete sequence consisted of 64 diffusion-weighted 

directions with b = 1000 s/mm2 and 7 interspersed scans where b = 0 s/mm2 (Satterthwaite 

et al., 2014). Scan time was approximately 11 minutes. The imaging volume was prescribed 

in axial orientation covering the entire cerebrum with the topmost slice just superior to the 

apex of the brain. The diffusion encoding orientations are provided in Table 4.

In addition to the DTI scan a map of the main magnetic field (i.e. B0) was derived from a 

double-echo, gradient-recalled echo (GRE) sequence (Satterthwaite et al., 2014). Both 

magnitude and phase images were selected for image reconstruction since it is the phase 

signal that contains information about the magnetic field. A user-modified version of the 

multi-echo GRE sequence that enabled advanced shimming feature was used instead of the 

Siemens product B0 mapping sequence as this product was not available at study initiation. 

This procedure performs multiple passes of the automated shim current optimization, 

resulting in improved magnetic field homogeneity across the cerebrum. The field-of-view of 

this scan was chosen to be larger than that of the DTI scans in order to obtain a field map 

that covered all of the volumes of interest across all functional MRI and DTI sequences 

obtained during the imaging session.

2.2.2 Diffusion Tensor Imaging Quality Assurance (QA)—DTI data QA occurred in 

three steps. Initial visual QA was done to ensure data fidelity. Thus, individuals with 
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structural abnormalities were excluded. In addition, any data collected without the default 

scan parameters was excluded. Data passing initial QA were passed to manual QA, where a 

trained analyst inspected each DTI series in detail. In parallel, an automated QA process was 

run on each DTI series to extract QA metrics. These steps are detailed below.

2.2.3 Initial QA—Initial quality assurance (n=1601), which targeted gross abnormalities or 

deviations in protocol, is documented in Figure 1. As the DTI sequence was obtained toward 

the end of the neuroimaging session, this scan was sometimes not completed (n=162, 10%) 

or terminated prematurely due to time constraints (n=20, 1%). Individual MRI sessions with 

incidental findings (n=20, 1%) or a failure to collect a corresponding field map (n=22, 1%) 

were excluded from further analysis. Finally, alterations to the DTI acquisition parameters, 

such as a change in the echo time, also resulted in exclusion (n=20, 1%). After these 

exclusions 1,357 DTI scans were available for manual inspection.

2.2.4 Visual QA—A trained analyst visually inspected all 71 volumes for each DTI scan. 

Any volume that appeared to contain artifact was recorded. Two main types of artifacts were 

observed. Volumes failed QA due to signal dropout likely caused by the interaction of 

subject motion and diffusion encoding. Less common was image striping, which was likely 

caused by defective gradient performance (Figure 2). This is likely related to mechanical 

vibrations at the interface of the gradient cables and the magnet bore (Satterthwaite et al., 

2014). Individual datasets were scored based on the number of volumes that included 

artifact. This scoring was based on previous work detailing influence of removing image 

volumes when estimating the diffusion tensor (Chen et al., 2015; Jones and Basser, 2004). 

Data was considered: 1) “Poor” if more than 14 (20%) volumes contained artifact; 2) 

“Good”, if one or more, but less than 15 volumes contained artifact; and 3) “Excellent”, if 

no volumes were flagged as containing artifact. This procedure was followed for both the 

initial and follow-up sample; a process that took approximately three months to complete by 

a trained reviewer.

2.2.5 Automated QA—Four image quality metrics were automatically computed from 

each DTI scan: 1) mean voxel outlier count (MEANVOX), 2) maximum voxel outlier count 

(MAXVOX), 3) mean relative motion (MOTION) and 4) temporal signal-to-noise ratio 

(TSNR). This automated QA script is freely available (cmroi.med.upenn.edu/QAscripts) and 

runs on NIFTI file format data.

2.2.5.1 Voxel intensity: The AFNI (Cox, 1996) tool 3dToutcount was used to determine the 

number of intensity outliers, at each time point in the DTI series. This tool estimates mean 

voxel intensity and the median absolute deviation (MAD) for each volume (i.e. time point) 

after brain masking. An outlier is determined to be any time point exceeding a threshold, as 

defined in 3dToutcount program, in units of MAD from the voxel mean minus its trend 

(Cox, 1996). The threshold is defined within 3dToutcount by iteratively determining if a 

point is ‘far away’ from the trend. ‘Far’ is determined using the following formula:
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Thus, the output of this method is a single time series of outlier counts per volume. From 

these values the mean and maximum outlier count values are calculated. Only the 64 b=1000 

s/mm2 were utilized in this calculation. This approach not only provides valuable QA 

information but also specifies particular volumes that should be scrutinized.

2.2.5.2 Motion: The primary measurement of in-scanner head motion was mean relative 

volume-to-volume displacement as determined by rigid-body motion correction. This metric 

is commonly used in fMRI studies to measure head motion (Satterthwaite et al., 2012; Van 

Dijk et al., 2012). This standard measure summarizes total volume-to-volume translation 

and rotation across all three axes (Jenkinson et al., 2002). However, given the difficulty of 

estimating motion using low-intensity diffusion weighted images, motion was estimated 

from the high quality b=0 images (n=7) that were interspersed throughout DTI acquisition.

2.2.5.3 Average temporal signal-to-noise ratio: The temporal signal-to-noise ratio was 

estimated for each brain voxel using only the 64 b=1000 s/mm2 DTI volumes. The voxel-

wise SNR was calculated from the mean and standard deviation of each voxel’s intensity, 

after brain masking and motion correction, was measured. Subsequently, the average of all 

brain voxel temporal SNR was calculated to report a single metric of overall scan SNR.

2.3 General DTI image processing

2.3.1 Preprocessing—Image processing steps and the tools used for each step are 

displayed in Figure 3. Briefly, DTI data were merged into a single series and QA procedures 

were run. The skull was removed by generating a brain mask for each subject by registering 

a binary mask of a standard image (FMRIB58_FA) to each subject’s brain using FLIRT 

(Smith, 2002). When necessary, manual adjustments were made to this mask. Next, eddy 

currents and movement were estimated and corrected using FSL’s eddy tool (Woolrich et 

al., 2001). Eddy is an improvement upon the typical eddy/motion correction used as part of 

FSL’s Diffusion Tool Box (Behrens et al., 2003). This tool simultaneously models the 

effects of diffusion eddy current and head movement on DTI images in order to reduce the 

amount of resampling. The intended use for eddy is with high-direction, high b-value data 

that encompass the whole sphere, but it can be used for more common DTI data. Next, the 

diffusion gradient vectors were rotated to adjust for motion using the 6-parameter motion 

output generated from eddy (Smith, 2002). Then, the field map was estimated and distortion 

correction was applied to the DTI data using FSL’s FUGUE (Satterthwaite et al., 2014). 

Finally, the diffusion tensor was modeled and metrics (FA and MD) were estimated at each 

voxel using FSL’s DTIFIT.

2.3.2 Post-processing—Registration from native space to a template space was 

completed using DTI-TK (Zhang et al., 2014; Zhang et al., 2006). First, the FA and MD 

output of DTIFIT was converted to DTI-TK format. Next, a study specific template was 
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generated from the tensor volumes using 14 representative diffusion data sets that were 

considered “Excellent” after manual QA. One individual from each of the 14 ages (age 

range 8–21) was randomly selected. These 14 DTI volumes were averaged together to create 

an initial template. Next, data from the 14 subjects were registered to this template in an 

iterative manner. Unlike standard intensity-based registration algorithms, this process 

utilizes the full tensor information in an attempt to best align the underlying white matter 

tracts using iterations of rigid, affine and diffeomorphic registration leading to the 

generation of a successively refined template. Ultimately, one high-resolution refined 

template was created and used for registration of the remaining diffusion datasets. All FA 

and MD maps were then registered (rigid, affine, diffeomorphic) to the high-resolution 

study-specific template using DTI-TK. These maps were then used for group comparisons. 

Two subjects failed the registration process and were excluded from further analysis. 

Standard regions of interest (ROI; ICBM-JHU White Matter Tracts; Harvard-Oxford Atlas) 

were registered from MNI152 space to the study-specific template using ANTs registration 

(Avants et al., 2011). Mean FA and MD were extracted from these ROIs.

2.4 Demographically matched sub-sample

To evaluate the influence of the inclusion of suboptimal DTI data on FA and MD we created 

two age, sex and race matched samples (n=146, each) from the good and excellent data to 

match the individuals in the poor data group using an optimal matching algorithm written in 

SAS (SAS, Institute, Carey, NC, USA). The use of matched subsamples was necessary 

given that individuals with Poor data tended to be male and younger, while individuals with 

excellent data tended to be older and female. Race and psychopathology score were also 

included as an additional matching variable. The characteristics of the matched sample are 

presented in Table 5.

2.5 Comparison of QA methodology with DTIPrep

In order to further validate our QA methodology, we compared our QA approach to a newly 

available open-source program-- DTIPrep (Oguz et al., 2014). DTIPrep is a dedicated 

diffusion MRI (dMRI) quality control program designed to “identify and correct all 

common, known dMRI artifacts” (Oguz et al., 2014); pg 4). DTIPrep is a comprehensive 

tool that offers the following QA methodology: 1) dMRI protocol validation, 2) diffusion 

information validation, 3) interslice brightness artifact detection, 4) interlaced artifact 

detection (“venetian blind effect”) on a slice-wise basis, 5) iterative averaging of non-

weighted images, 6) motion and eddy current correction, including residual motion detection 

and 7) reconstruction of usable DTI data.

DTIPrep was performed on the matched sample (n=438) using the default parameters based 

upon our DTI acquisition. The tolerance threshold for ‘failed’ volumes/gradients was set at 

20% of the total number of volumes (14/71). This tolerance level was chosen in accordance 

with the definition of “Bad” data in our visual QA. Only the steps noted above were 

included in the automated DTIPrep QA analysis.

Roalf et al. Page 8

Neuroimage. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.6 Statistical Analysis

Demographic characteristics were compared across manual QA groups using Pearson χ2 or 

one-way ANOVAs with post-hoc t-tests (Bonferroni corrected). To determine the ability of 

automated QA measures to correctly classify problematic data identified in manual QA we 

performed a two-stage analysis. In Stage 1, we were concerned with identifying the 

diffusion data that should be excluded from further analysis (poor data), thus two groups 

were created from the initial sample: Group 1 was comprised of the “Poor” data (n=146)1 

and the remainder of individuals (“Good” + “Excellent”) comprised Group 2 (n=1,208). In 

Stage 2, we were concerned with identifying the diffusion data that was excellent from the 

data that might need some manual intervention to be usable. Here, Group 1 was comprised 

of “Good” data, while Group 2 was comprised of the data identified as “Excellent”. The 

accuracy for each automated measure (MAXVOX, MEANVOX, MOTION, TSNR) was 

calculated as the area under the receiver operating characteristic (ROC) curve (AUC). The 

logistic ROC analysis used a 10-fold cross-validation approach to estimate AUC and 

optimal cut-off score. Larger AUC values indicate more accurate classification of 

participants. A cut-off score for each measure that best differentiated manual QA group was 

determined using the Youden Index (Youden, 1950), which maximizes the tradeoffs 

between sensitivity and specificity. The classification accuracy (probability of correct 

classification of poor or excellent data at a given cut-off score) was calculated based upon 

these cut-off scores (Table 3). These thresholds were subsequently used in the validation 

sample to determine the generalizability of these values. Accuracy of the automated QA 

metrics was compared using Delong method of comparing two AUCs (DeLong et al., 1988) 

within the proc R package (Robin et al., 2014). Z-statistics and the corresponding p-value 

are provided for pairwise AUC comparisons. The above analyses were performed on the full 

initial sample and validation sample.

The following analyses were performed on the demographically matched subsamples. Mean 

whole brain TSNR, FA and MD maps by QA subgroup (matched for age, sex and race) were 

compared using FSL’s FLAME (Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 

2009). FA comparisons were restricted to major white matter tracts. In addition to whole 

brain analyses, mean ROI values extracted from ICBM/JHU White Matter Tract Atlas were 

compared across QA subgroup using MANCOVAs (Type III Sums of Squares) and follow-

up t-tests (Bonferroni corrected). All statistics were performed using R (3.1.2) statistical 

software (R-Core-Team, 2012).

3.0 Results

3.1 Initial Sample

3.1.1 Participant Characteristics—Detailed participant characteristics of the PNC have 

been previously reported (Satterthwaite et al., 2014). Participant characteristics with DTI 

data are displayed by manual QA status (Poor, Good, Excellent) in Table 1. Overall, groups 

differed by age [F(2,1352)=74.62, p<2.2×10−16]. The Poor group was younger than the 

Good (p=1.8×10−9) and Excellent (p<2.0×10−16) groups; the Good group was younger than 

1One individual did not complete the psychopathology assessment and was excluded from analysis.
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the Excellent group (p=1.3×10−12). Sex differed by QA group (χ2(2)=13.58, p=0.001). 

There were a larger proportion of females in the Excellent group (58%) than in either the 

Good (49%) or Poor (46%) groups. The groups did not differ in racial distribution 

(χ2(2)=0.75, p=0.95) or baseline psychopathology factor score [F(2,435)=0.86, p=0.43].

3.1.2 Quality Assurance Metrics—Overall, 10.75% of the sample was manually 

flagged as Poor, 34.50% of data was noted as being Good and 54.75% was Excellent (Table 

1). Quality assurance metrics are shown in Table 1. MEANVOX [F(2,1352)=631.77, 

p<2.2×10−16] and MAXVOX [F(2,1352)=426,75, p<2.2×10−16], MOTION 

[F(2,1352)=397.22, p<2.2×10−16] and TSNR [F(2,1352)=511.78, p<2.2×10−16] differed by 

QA group. Metrics were best in the Excellent group when compared to the Good group (all 

ps<2×10−16), who in turn had better metrics than the Poor group (all ps<2×10−16).

3.1.3 ROC analysis of automated QA measures—The ROC curve analysis was used 

to evaluate the diagnostic accuracy of each QA measure (MEANVOX, MAXVOX, 

MOTION and TSNR) to discriminate Poor and acceptable (Good + Excellent) data from 

each other. Graphic representations of the ROC curves are provided in Figure 4, and Table 3 

details relevant cut-offs and classification accuracies for each measure. The AUC for 

identifying Poor data was excellent for all metrics (greater than 0.89). Overall, TSNR had 

the highest AUC of 0.93 (95% CI: 0.91–0.95). TSNR outperformed MAXVOX (Z=3.65, p=.

0003) and MOTION (Z=2.92, p=.0036), but not MEANVOX (Z=1.11, p=0.27). The 

classification accuracy of TSNR was 87.03% at the optimal cut-off point of TSNR= 6.47, 

which was a value with 85% sensitivity, 84% specificity. Multifactor ROC analyses were 

explored using the R-package ‘multinom’. These analyses did not improve the AUC if 

additional predictors (MAXVOX, MEANVOX or MOTION) were included in the model.

The AUC and classification accuracy of these QA metrics was reasonable at identifying 

Good vs. Excellent data (Figure 4, Table 3). MAXVOX out-performed TSNR (Z=11.37, p<.

0001), MEANVOX (5.72, p<.0001) and MOTION (7.65, p<.0001) with an AUC of 0.88. 

The maximum classification accuracy was 80% at a cut-off value of 2282, with 78% 

sensitivity and 83% specificity. Again, exploratory multifactor ROC analyses did not 

improve upon the AUC of MAXVOX alone.

3.2 Validation Sample

3.2.1 Participant Characteristics—Participant characteristics with DTI data at follow-

up are displayed by manual QA status (Poor, Good, Excellent) in Table 2. Given the 

selection criteria for follow-up, there were few Poor data sets. Overall, groups differed by 

age [F(2,371)=7.03, p=0.001]. The Good group remained significantly younger than the 

Excellent group (p<.0001); post-hoc analyses indicated that Poor group was younger than 

the Excellent group (p<.05). The sex difference by QA group persisted in the validation 

sample (χ2(2)=6.41, p=0.04). There were a larger proportion of females in the Excellent 

group (54%) than in either the Good (38%) or Poor (50%) groups. The groups did not differ 

in racial distribution or baseline psychopathology score.
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3.2.2 Quality Assurance Metrics—Quality assurance metrics are shown in Table 2. 

MEANVOX [F(2,371)=80.77, p<2.2×10−16] and MAXVOX [F(2,371)=90.57, 

p<2.2×10−16], MOTION [F(2,371)=63.23, p<2.2×10−16] and TSNR [F(2,371)=93.73, 

p<2.2×10−16] differed by QA group. Metrics were best in the Excellent group when 

compared to the Good group (all ps<1.6×10−8), which had better metrics than the Poor 

group (all ps<.02).

3.2.3 Validation of automated QA measure ROCs—Eighty-three percent (83%; 

10/12) of Poor data and 96% (348/362) of acceptable (Good+Excellent) data was correctly 

identified in the validation sample using the TSNR cutoff generated in the initial sample 

(Table 3). Furthermore, 52% (31/60) of Good data sets and 96% (283/302) of Excellent 

datasets were identified using the MAXVOX intensity cut-off value (Table 3).

3.3 Data quality effects on fractional anisotropy and mean diffusivity

An age, gender, race and psychopathology matched subset (n=146, per group) was used to 

measure the influence of poor data quality. Characteristics of the matched sample are 

provided in Table 5. As in the initial sample, MEANVOX [F(2,435)=192.66, p<2.2×10−16] 

and MAXVOX [F(2,435)=148.90, p<2.2×10−16], MOTION [F(2,435)=112.16, 

p<2.2×10−16] and TSNR [F(2,435)=284.23, p<2.2×10−16] differed by QA group. In 

addition, the between QA group comparisons remained consistent with findings in the full 

sample: Excellent>Good>Poor (all ps<6.9×10−4).

As indicated in the ROC analyses, identification of Poor data using automated methods is 

reliable, especially for TSNR. TSNR maps were generated for each group in the matched 

sample (Figure 5). Excellent and Good data show noticeably higher TSNR throughout the 

cortex.

In order to determine the influence of including Poor data on group level analyses, FA and 

MD were compared between Poor (Fail QA) and Good+Excellent data (Pass QA). In 

general, data failing QA had lower FA and higher MD than data passing QA (see below); 

differences between the Good and Excellent data were minimal and as such no comparisons 

were generated.

3.3.1 TSNR—Temporal signal-to-noise ratio was significantly lower in the Poor group as 

compared to data passing QA (Good + Excellent) across the brain including much, but not 

all of white matter (Figure 6A). There were several areas within white matter where data in 

the Poor group showed higher TSNR (Figure 6B). Exploratory, quantitative measurement of 

TSNR indicated significant differences (ps<.001) in all GM ROIs, on average, and in most, 

but not all white matter ROIs (ps<.001). Those individuals that pass QA had higher TSNR 

values than those failing QA in all GM and WM regions except in the corticospinal tracts 

(Figure 6C&D).

3.3.2 Fractional Anisotropy—Fractional anisotropy was significantly lower throughout 

the major white matter tracts in the Poor group (Figure 7A). The Poor group had areas of 

higher FA, however these tended to be at the edges of white matter tracts or within the 

ventricles. This pattern suggests higher noise, possibly due to motion or scanner artifacts. 
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Regional, normalized FA for the Poor group is displayed in Figure 8A. FA ranged between 

0.38–0.82 units below the Pass QA group (Good + Excellent).

Exploratory MANOVA analysis of ROI level data within the matched group indicated that 

age [F(18, 416)=16.45, p<2.2×10−16], sex [F(18, 416)=2.88, p<8.03×10−5] and race [F(18, 

416)=3.63, p=1.01×10−6] each explained significant variance in FA across ROI. After 

accounting for these effects, FA differed between the two QA groups [F(18, 416)=5.71, 

p<3.34×10−12]. The Poor group consistently had lower FA (Supplemental Table 1) in all 

ROIs as compared to the Good + Excellent group (all ps<0.0008, Bonferonni corrected; See 

Supplemental Table 2). FA in the Good and Excellent group was equivalent across all ROIs. 

Regions of high anisotropy (e.g. corpus callosum) were negatively correlated with TSNR 

(Supplemental Figure 3).

3.3.3 Mean Diffusivity—Mean diffusivity was significantly higher in specific areas of the 

major white matter tracts in the Poor group (Figure 7B) as compared to the data passing QA. 

The Poor group did show areas of lower MD, however these tended to be at the edges of 

white matter tracts or within the ventricles. Regional, normalized MD for the Poor group is 

shown in Figure 8B. FA ranged between −0.13 below to 0.33 units above Pass QA group.

Since DTI data is often reported in specific white matter tracts, analyses of ROI data were 

also performed. ROI level data indicated that age [F(18, 416)=14.68, p<2.2×10−16] and sex 

[F(18, 416)=2.56, p<.0005], but not race [F(18, 416)=1.34, p=0.16] each explained 

significant variance in FA across ROI. After accounting for these effects, FA differed among 

the three QA groups [F(18, 416)=2.76, p<0.0002]. QA group differences in MD were 

limited to a few ROIs, including the left (p=0.03) and right (p=0.008) cingulate gyrus of the 

hippocampus and the right cingulum bundle (p=0.0003; Supplemental Table 2).

3.3.4 Age associations with FA and MD—White matter anisotropy rapidly increases 

with age during neonatal development and continues to increase until the middle of the third 

decade of life (Barnea-Goraly et al., 2005; Yoshida et al., 2013). Hence, the association 

between white matter FA and age was used to measure the effect of poor quality data on a 

known association. Across all individuals the correlation between age and average whole 

brain FA was 0.41 [t(436)=9.60, p<2.2×10−16]. However, the association between age and 

whole brain FA was lower in the Poor group (r=0.35), and was significantly higher in the 

data passing QA (r=0.51, z=1.93, p=.05; Figure 9A&G). A follow-up comparison across the 

three QA groups is shown in Supplemental Figure 4; the association between FA and age 

was highest in the Excellent group (r=0.55) and the Good group was intermediate (r=0.47).

Mean diffusivity typically shows the inverse pattern of anisotropy; a notable decrease until 

the middle of the third decade of life (Barnea-Goraly et al., 2005; Yoshida et al., 2013). This 

pattern is reflected in the current data in the strong negative association between FA and MD 

(r=−0.71, t(436)=21.62, p< p<2.2×10−16; Figure 9B&H). The association between age and 

average whole brain MD was −0.48 [t(436)=11.57, p<2.2×10−16]. Again, the association 

between age and whole brain FA was lowest in the Poor group (r=−0.38), and was more 

robust in the group that passed QA (r=−0.57; z= 2.42, p=.01; Figure 9B). In a follow-up 
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comparison across the three QA groups the association was similar in both Good (r=−0.59) 

and Excellent groups (r=−0.55).

In considering whole brain and ROI data together, it is evident that a failure to rigorously 

quality control DTI data will result in a reduction of known associations or cause false-

positive associations between typical DTI outcome measures and age.

3.4 Exploratory analysis of the role of sex on DTI artifact

An exploratory analysis of the role of sex and QA group on whole brain FA revealed a main 

effect of age F(1, 433)=10.25, p<2.0×10−16 (higher age with higher FA) and sex F(1, 

433)=2.92, p<.005 (males>females) and an interaction of QA group by sex F(4,433)=1.98, 

p<.05). Follow-up comparisons of this interaction indicate that the relationship between FA 

and age in females passing or failing QA was no different, However, males passing QA had 

a higher correlation between age and FA than those failing QA (p=.01; Figure 9C&E). 

Effects for MD (Figure 9D&F) complemented these FA findings.

3.5 Comparison of QA methodology with DTIPrep

There was significant overlap between the visual QA method and DTIPrep QA (Figure 

10A). Our visual QA assessment was significantly associated with DTIPrep QA outcome 

[F(2,435)=48.45, p<2.2×10−16]. Poor data was more likely to fail DTIPrep than Good 

(p=1.2×10−9) or Excellent (p<2.2×10−16) data; Good data was more likely to fail DTIPrep 

than Excellent (p<.0035) data. However, an overall comparison of binary inclusion/

exclusion by visual QA group indicated significant difference in classification (χ2(2) =79.80, 

p<2.2×10−16). Concordance between QA methods (Figure 10B) was highest in the Poor 

(86%) data, followed by Excellent (64%) and then Good (47%) data. Surprisingly, DTIPrep 

excluded 44% of data we considered Good or Excellent via visual QA. This pattern is 

logical given that by definition more ambiguity exists in the quality of the Good data than 

either of the other two groups. Most data failed due to interslice brightness artifact (Figure 

10C), but some data failed the interlace artifact detection (Figure 10D).

Since we earlier identified temporal SNR as a useful metric in separating high/low quality 

data in an automated manner, TSNR was compared across DTI passing and failing DTIPrep. 

As for visual QA (see Table 6), data passing DTIPrep had higher TSNR than data failing 

DTIPrep QA [F(1,436)=11.03, p<2.2×10−16]. Moreover, we found a significant positive 

correlation (r(181)=0.32, p<8.2×10−6) between TSNR and the number of volumes/gradients 

included in the final output from DTIPrep. In addition, MAXVOX, which was found to best 

differentiate Good and Excellent data, was higher in data that failed as compared to data 

passing DTIPrep QA, in both Good and Excellent groups (Table 6). Finally, the correlation 

between age and FA in data passing DTIPrep QA was lower than data passing our QA 

(Figure 11), but higher than data failing our QA. While this correlation was nominally lower 

than data passing our QA it was not significantly lower [Z(474)= −0.82, p=0.41], however, 

unlike our data, this correlation was not significantly different from data failing visual QA 

[Z=0.96, p=0.34].
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4.0 Discussion

Our results highlight the confounding effects of artifacts on DTI analysis and suggest that 

estimates of data quality should not only be reported, but also accounted for. This is 

particularly true in cases where data quality is heterogeneous or is likely to be related to an 

outcome of interest, such as in studies of brain development or clinical psychopathology. 

Using DTI data from the PNC we show that specific image metrics, such as temporal signal-

to-noise ratio (TSNR), can be used to reliably identify suboptimal data. Notably, automated 

detection not only corresponded well with manual assessment of data quality, but use of 

thresholds derived from the initial PNC sample were successful in identifying low-quality 

data in a validation sample.

4.1 The effect of including low quality data in DTI analysis

Not surprisingly, low-quality data had significantly lower fractional anisotropy throughout 

major white matter tracts and showed higher mean diffusivity in several brain regions as 

compared to data that passed quality assurance. Most importantly, the well-described 

positive correlation between age and FA in youth was significantly attenuated when 

suboptimal data was included in the overall analysis. Our findings suggest that the fidelity of 

DTI data can be improved by employing rigorous data quality assurance procedures, and 

that a failure to identify these problems may significantly impact results.

Overall, our findings in a large population-based sample indicate the importance of 

implementing quality control in diffusion tensor imaging analysis. Manual visualization 

indicated that over 10% of the data had significant artifact. While high, this is a smaller 

percentage than in some pediatric samples (Li et al., 2013), and is likely representative of 

what could be expected in adolescent samples. We show that the labor-intensive manual QA 

process can be automated using readily available metrics of image quality. For example, 

TSNR can be estimated from the data and used as a reliable measure for data exclusion. 

Discrimination of data considered to be of the highest quality and data with a few artifacts 

was more challenging, although some degree of separation was achievable. The use of 

TSNR can be considered a quick screen of the overall data quality, which previous studies 

also suggest (Chen et al., 2015; Farrell et al., 2007; Liu et al., 2015). Our results indicate that 

methods to evaluate TSNR are needed to consistently evaluate data fidelity within an 

individual protocol and, more importantly, across protocols and scanners. Our quality 

assurance is straightforward and uses standard tools to estimate TSNR, outliers and motion. 

This approach may be most useful in large samples and offers an initial approach to quickly 

assess the quality of a given DTI scan. Thus, quality assurance measures should be 

considered in DTI studies, both large and small.

In the current study, TSNR was the most discriminating QA metric, but relative motion and 

signal intensity outliers were nearly as effective. Yet, the lengthy acquisition time of DTI 

tends to reduce SNR and allow more time for motion artifact. Based on our results other 

measures (e.g. motion) could easily serve as substitutes with similar efficacy. In fact, the use 

of motion as a nuisance regressor is able to reduce the influence of spurious head motion on 

DTI metrics in adolescents with and without neurodevelopmental disorders (Yendiki et al., 

2014). However, motion may not be the best metric, in fact our ROC analysis show that 
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TSNR outperformed MOTION. Often non-weighted images are frontloaded during 

acquisition, only a few may be acquired, and registration of data with high b-values is 

unreliable. Here, we used only the non-weighted images to estimate motion. This approach 

was feasible and robust as our non-weighted images were high quality and systematically 

interspersed throughout our acquisition (approximately 1 every 10 volume acquisitions). 

Typically SNR is computed from the b=0 images only, which alleviates the complication of 

varying b-values and directions (Chen et al., 2015; Farrell et al., 2007; Liu et al., 2015). 

However, we chose to calculate TSNR from the weighted (b>0) images. While these images 

are of lower SNR overall, significantly more of these images are collected, which provides a 

more robust estimate of SNR. In fact, TSNR from the b>0 outperformed TSNR estimated 

from b=0 images when classifying data that failed or passed QA (Supplement Results), 

although the two approaches were quite similar. Finally, the use of accelerated acquisition 

sequences and prospective motion correction techniques (Aksoy et al., 2011; Alhamud et al., 

2012; Benner et al., 2011) will help reduce the time necessary to acquire DTI data and 

potentially improve motion artifact, however these sequences are also sensitive to motion 

and other common artifacts (Feinberg and Setsompop, 2013).

Expectedly, the inclusion of poor DTI data results in loss of data fidelity. Specifically, lower 

FA and higher MD were found in poor quality data compared to data passing quality 

assurance. Indeed, lower FA values were found throughout the large white matter tracts, 

whereas higher MD was more sporadic and tended to be located at tissue boundaries. These 

changes were robust at both the whole brain and ROI level. Most concerning was the 

reduction in the correlation between age and FA or MD when data that failed QA were 

included in the analysis. Our findings that QA may affect the relationship between age and 

FA, specifically in males, is also noteworthy. Young males typically show a larger 

association between FA and age (Wang et al., 2012), a finding we corroborate. This sex 

difference is thought to reflect earlier white matter maturation in females than in males. 

However, this relationship was smaller in males with poor quality data. Thus, our findings of 

an interaction with QA group and sex further underscore the importance of proper QA of 

DTI data. Given that the rates of white matter maturation may differ by gender, improper 

inclusion of data could skew the results of sex effects. Taken together, these age and sex 

effects provide evidence that the failure to properly QA data may contribute to erroneous 

associations.

This study raises an important question on implications for the experimental design of DTI 

studies and the power analysis of single center studies. Previous studies have addressed this 

issue with local rejection of data (Lauzon et al., 2013). We performed an exploratory power 

analysis (α =0.05; 1−β=0.80) based upon our reported relationships between age and FA in a 

quality-controlled sample and all data independent of quality control. Not surprisingly, 

significantly fewer samples are needed to estimate the age/FA correlation when using QAed 

(N=26) than when not (N=47; Supplemental Results & Supplemental Table 3). However, 

arguably the minimum sample size should also include a plan for data loss due to poor QA, 

particularly in samples including children and young adults.

At a minimum, one or all of these QA measures should be reported in DTI studies, 

especially when attempting to elucidate group difference in FA or MD. The more 
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appropriate approach may be to exclude data not meeting certain data quality thresholds, 

which is common in other neuroimaging modalities, and correcting for these factors in 

tensor estimations and analysis.

4.2 Comparison to DTIPrep

Other tools to investigate and correct for artifacts in DTI exist. DTIPrep and RESTORE (e.g. 

(Chang et al.; He et al., 2014; Li et al., 2014; Liu et al., 2015; Oguz et al., 2014) aim to 

investigate, eliminate and/or correct problematic slices or volumes in DTI data. Here, we 

directly compared our QA methods and output to that of DTIPrep. Overall, we show high 

concordance between our QA method and DTIPrep for Poor quality DTI scans, but we find 

DTIPrep to be limited by a substantial failure rate even for apparently high-quality images. 

While we agree that DTIPrep is a user-friendly tool that offers initial QA of DTI, several 

limitations of this software remain. We believe that our approach offers complementary 

information to DTIPrep that can be useful during quality assessment of DTI data. In the 

supplemental discussion we briefly discuss these points (See Supplementary Results)

Overall, our methods and those implemented in DTIPrep share the common goal of 

improving the quality of DTI data analyzed. DTIPrep aims to remove DTI artifact on a 

slicewise basis while we take a global approach to excluding potentially problematic DTI 

dataset in full. The latter approach is ideal for providing a quick quality assessment, 

particularly in large datasets and has relevant application to Big Data. We chose a global 

rejection threshold approach based on previous work indicating that uniform rejections 

resulted in fewer changes in DTI metrics (Chen et al., 2015). However, we note that it is 

illogical to expect one tool to robustly capture all artifact in DTI data and completely replace 

visual inspection, as recently indicated by Liu et al., (Liu et al., 2015). Moreover, we 

acknowledge the obvious limitation of globally excluding data, however, we are encouraged 

by the present results and believe that our method contributes significantly to the growing 

field of DTI QA.

4.3. Limitations

Several limitations of the current study should be noted. First, the data does not address the 

need for quality assurance metrics that are compatible across scanner type or diffusion 

protocol. While our sample is large and we include a validation, all of the current data was 

collected on the same scanner, using the same head coil and same DTI protocol. Thus, the 

generalizability of the specific cut-offs provided in the current study is limited, yet, our 

methodology is straightforward and easily implemented in small or large samples. While the 

validation sample was not selected for initial DTI quality, it was selected on the quality of 

each individual’s structural scan—which is likely correlated with the quality of their DTI 

scan. Thus, there were fewer instances of Poor data in the follow-up sample. Given the lack 

of DTI templates that are based on samples that include adolescents, we derived a template 

from the current sample and then normalized white matter ROIs from an adult template to 

this newly derived template. While the anatomical specificity appears high, slight deviations 

in alignment could occur. However, this would have no influence on the whole brain 

findings, and we believe the normalization process was robust. Notably, only one expert 

manually rated each DWI volume. This was a time consuming procedure that is difficult to 
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implement in large-scale imaging studies such as the PNC, and further it is potentially 

subject to operator bias. However, it is encouraging that automated measures, both our own 

and as implemented in DTIPrep, largely correspond with this operator’s recognition of ‘bad’ 

DWI data. The DTI protocol implemented was not specifically selected for quality 

assurance, as this was not the main outcome of interest in the PNC study. Recent work 

indicates little advantage to using a large number of encoding directions for estimating 

typical DTI metrics of FA and MD (Lebel et al., 2012). However, diffusion acquisitions 

with many gradient encoding directions have specific advantages for tract based diffusion 

metrics, ensuring data quality and permitting non-traditional analysis. Last, we do not 

address the specific contributors to increased artifact in the DTI data. As previously stated, 

this artifact likely has many sources including, but not limited to motion, eddy currents, 

thermal noise and susceptibility artifacts. As this sample contains adolescents, it is likely 

that head motion contributes significantly to these artifacts, especially since motion scales 

inversely with TSNR and individuals with poor data quality had significantly higher motion 

than individuals producing data that passed quality assurance. Proactive protocols that aim 

to reduce head-motion (e.g. incentives; (Theys et al., 2014) are likely to help improve DTI 

findings in samples that include adolescents.

4.4 Conclusions

Typically, DTI studies report that data with “obvious artifacts” are removed or excluded. 

However, a transparent, standardized estimate of quality assurance is rarely given. Few 

clinical or neurobiological studies report specific artifacts or quantify SNR or motion with 

DTI findings. This is despite prior methodological studies, which have outlined the 

influence of problematic DTI data on typical outcome metrics (Anderson, 2001; Armitage 

and Bastin, 2001; Bastin et al., 1998; Chen et al., 2015; Heim et al., 2004; Jones, 2004; 

Jones and Basser, 2004; Pierpaoli and Basser, 1996). These studies tend to be small and use 

simulated data, but confirm that artifacts in DTI data can be overcome if enough directions 

are collected, or if the loss of data during a given DTI acquisition is random, especially 

across subjects (Chen et al., 2015; Heim et al., 2004; Jones, 2004; Jones and Basser, 2004). 

Moreover, systematic data loss or the exclusion of data from too many diffusion directions 

can affect the estimates of FA, and to a lesser degree MD (Chen et al., 2015; Jones, 2004; 

Jones et al., 1999). Our findings of the benefits of rigorous quality assurance corroborate a 

recent study in a pediatric populations (Lauzon et al., 2013) and a adolescent sample 

including a subsample with autism (Yendiki et al., 2014). Importantly, the approach used in 

the current study can easily be implemented in any completed or on-going DTI study, it 

easily incorporated into NiFTI processing pipeline, and produce metrics that can easily be 

incorporated into analyses. However, most of the quality assurance strategies, including the 

approach reported here, rely upon post-processing correction; which comes with a loss of 

overall SNR, subsequently affecting measures of FA or MD (Li et al., 2013). Future 

approaches should consider use of DTI phantoms to identify uncertainties associated with 

acquisition procedures (Berberat et al., 2013) and proactive monitoring (Li et al., 2013) 

during DTI acquisition and informed post-processing quality assurance and analysis.

In conclusion, our results support recent findings that the use of quality assurance metrics is 

necessary in DTI analysis. Furthermore, we find that when quality assurance metrics are 
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used in the identification of suboptimal data and the data is removed, overall data fidelity 

increases, as does the association with age. We note the limitations in any retrospective 

correction of DTI artifact and do not believe that implementing our methods, or any other 

method, will entirely eliminate these confounds. Yet, we urge the reporting of these metrics 

in DTI studies and the use of improved quality assurance metrics in data analysis, especially 

in the face of recent Big Data initiatives.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Derives metrics of data quality assurance in a developmental sample of over 

1500 DTI scans

• Temporal signal to noise ratio reliably differentiated high quality and low 

quality data.

• Failure to remove low quality data impacts typical DTI measures (FA/MD).

• Developmental effects on FA/MD are reduced when impact of data quality is 

not considered.
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Figure 1. 
Initial enrollment in the Philadelphia Neurodevelopmental Cohort and a count and 

explanation of excluded DTI data.
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Figure 2. 
Two examples of Poor DTI data from the PNC. A. An example of image striping likely 

cause by sub-optimal gradient performance. B. An example of data with inter-slice and 

intra-slice signal drop-out likely caused by the interaction of subject motion and diffusion 

encoding.
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Figure 3. 
DTI Preprocessing Pipeline. 64 direction DTI data was collected in two consecutive series 

(A) and merged into a single time series (B). Automated quality assurance was performed 

(C). A field map (D) was acquired and used in distortion correction. DTI images were 

corrected for motion and eddy currents (E). Last, a tensor model was fit (F).
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Figure 4. 
Receiver operator characteristic curves of TSNR, MAXVOX, MEANVOX, and MOTION. 

(A) ROCs for differentiating Poor data from Acceptable data (Good+Excellent). TSNR best 

differentiated Poor data from Acceptable data. (B) ROCs for differentiating Excellent data 

from Good data. MAXVOX best differentiated Excellent data from Good Data.
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Figure 5. 
Temporal signal-to-noise ratio (TSNR) maps for each QA group (matched sub-sample: 

n=146 per group).
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Figure 6. 
Statistical differences (z-maps) in TSNR between data passing QA (Good+Excellent) in 

comparison to those failing QA (Poor data). A. Z-maps indicating higher TSNR across the 

brain in data passing QA as compared to data failing QA B. Data failing QA shows limited 

regions where TSNR is higher than data passing QA. This difference is limited to the corpus 

callosum, a highly anisotropic region, where TSNR tends to be low in all individuals. C. 

Quantified regional TSNR in gray matter ROIs (Harvard-Oxford atlas) in data passing and 

failing QA. Data passing QA had significantly higher TSNR in all ROIs. D. Quantified 

regional TSNR in white matter ROIs (JHU atlas) in data passing and failing QA. Data 

passing QA had significantly higher TSNR in all ROIs except the corticospinal tract.
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Figure 7. 
Statistical difference in FA and MD between data passing QA (Good+Excellent) in 

comparison to those failing QA (Poor data). (A) FA was significantly higher throughout 

white matter in higher quality data while (B) MD was higher in Poor data, particularly at the 

edge of white matter tracts.
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Figure 8. 
Normalized (z-transformed) regional (A) FA and (B) MD values in Poor data. ROI data 

from ICBM-JHU White Matter Atlas. Data are normalized data that passes QA.
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Figure 9. 
Pearson correlation coefficients between Age and FA in data failing QA (Poor) and data 

passing QA (Good+Excellent). A. Data that failed QA had a significantly lower correlation 

between age and FA as compared to data that passed QA. B. Data that failed QA had a 

significantly lower correlation between age and MD as compared to data that passed QA. C 

& D: Correlation between FA and age in males and females in data passing QA. E & F: 

Correlation between FA and age in males and females in data failing QA. G & H. Summary 

plot of the correlation between age and DTI metric in data failing QA, passing QA and all 

data combined. The striped bar shows Pearson correlation when all data is combined. 

Estimating this association is strongest when data of low quality is excluded from analysis. 

*p<.05 as compared to Failed QA or All.
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Figure 10. 
Comparison of DTIPrep QA with our Visual QA methods. The two methods were in the 

highest agreement for Poor data followed by Good then Excellent. However, DTIPrep at the 

default setting considered more data to fail.
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Figure 11. 
Pearson correlation coefficients between Age and FA in data failing visual QA (Poor), data 

passing visual QA (Good+Excellent) and data Passing DTIPrep QA. Data passing visual 

QA, but not DTIPrep QA, had a significantly higher correlation between Age and FA. 

*p<0.05 as compared to Failed Visual QA.
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Table 1

Initial Sample Characteristics

Poor Good Excellent

147 468 742

Sex, n

 Male 80 239 312

 Female 67* 229* 430

Race, n

 Caucasian 68 206 346

 African American 62 207 312

 Other 17 55 84

Age, mean (SD) in years 12.7 (3.50)*# 14.56 (3.52)* 16.07 (3.25)

Baseline Psychopathology Factor Score −0.05 (0.63) 0.01 (0.55) 0.13 (0.54)

TSNR, mean (SD) 5.52 (0.93)* 6.9 (0.68)* 7.37 (0.55)

MAXVOX, mean (SD) 14497 (8667)*# 7165 (7189)* 1684 (1741)

MEANVOX, mean (SD) 2001.50 (1080.20)*# 830.40 (597.10)* 378 (164.10)

MOTION, mean (SD) 1.89 (1.53)*# 0.68 (0.48)* 0.34 (0.28)

*
p<.05 as compared to the Excellent group;

#
p<.05 as compared to the Good group.
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Table 2

Follow-Up Sample Characteristics

Poor Good Excellent

12 60 302

Sex, n

 Male 8 37 139

 Female 4* 23* 163

Race, n

 Caucasian 6 23 134

 African American 4 30 133

 Other 2 7 35

Age, mean (SD) in years 15.77 (3.66)*# 15.48 (3.95)* 17.14 (3.12)

Baseline Psychopathology Factor Score 0.07 (0.47) −0.17 (0.64) 0.03 (0.57)

TSNR, mean (SD) 4.88 (1.09) *# 6.46 (0.79)* 7.12 (0.03)

MAXVOX, mean (SD) 13037 (11676) *# 9398 (6670)* 2632 (2949)

MEANVOX, mean (SD) 2048.40 (1559.50) *# 1084.80 (952.90)* 459.70 (279)

MOTION, mean (SD) 1.9 (1.42) *# 0.84 (0.61)* 0.41 (0.41)

*
p<.05 as compared to the Excellent group;

#
p<.05 as compared to the Good group.
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Table 3

A. ROC Measures (Initial Sample) Poor vs (Good + Excellent) Good vs Excellent

MAXVOX

AUC (+− 95% CI) 0.892 (0.866–0.919) 0.881 (0.862–0.901)##

Sensitivity/Specificity 0.848/0.830 0.782/0.827

Youden Index 0.678 0.609

Cutoff 7041 2282

Classification Accuracy 84.60% 79.92%

MEANVOX

AUC (+− 95% CI) 0.922 (0.899–0.944) 0.839 (0.816–0.862)

Sensitivity/Specificity 0.852/0.844 0.790/0.733

Youden Index 0.696 0.523

Cutoff 866.9 426.1

Classification Accuracy 85.11% 76.78%

MOTION

AUC (+− 95% CI) 0.899 (0.871–0.927) 0.787 (0.761–0.814)

Sensitivity/Specificity 0.881/0.769 0.720/0.748

Youden Index 0.65 0.468

Cutoff 0.824 0.411

Classification Accuracy 86.66% 73.22%

TSNR

AUC (+− 95% CI) 0.93 (0.908–0.952)** 0.711 (0.68–0.741)

Sensitivity/Specificity 0.873/0.857 0.706/0.611

Youden Index 0.73 0.317

Cutoff 6.47 7.16

Classification Accuracy 87.03% 66.86%

B. Classification Accuracy of QA Measures

Poor Good Excellent

Initial Sample
Stage 1 126 (86%) 1055 (87%)

Stage 2 - 385 (82%) 581 (78%)

Follow-up Sample
Stage 1 10 (83%) 348 (96%)

Stage 2 - 31 (52%) 283 (94%)

**
Significantly higher AUC than MAXVOX and MOTION

##
Significantly higher AUC than TSNR, MEANVOX, and MOTION
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Table 5

Matched Sample Characteristics

Poor Good Excellent

146 146 146

Sex, n

 Male 79 78 75

 Female 67 68 71

Race, n

 Caucasian 68 69 70

 African American 62 62 60

 Other 16 15 16

Age, mean (SD) in years 12.31 (3.26) 12.37 (3.24) 12.42 (3.21)

Psychopathology Factor Score, mean (SD) −0.05 (0.63) −0.10 (0.56) −0.01 (0.58)

TSNR, mean (SD) 5.52 (0.1693)*# 6.96 (0.71)* 7.56 (0.57)

MAXVOX, mean (SD) 14479.61 (8693.96) *# 7565.69 (6504.56)* 1687.30 (1647.01)

MEANVOX, mean (SD) 2000.34 (1083.82) *# 854.76 (617.47)* 379.91

MOTION, mean (SD) 1.89 (1.53) *# 0.72 (0.50)* 0.31 (0.19)
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Table 6

Visual QA status (n=438)
DTIPrep QA Status

Fail Pass

TSNR

Poor 5.38 (0.91) 6.40 (0.53)

Good 6.79 (0.73) 7.15 (0.63)

Excellent 7.46 (0.57) 7.62 (0.56)

MAXVOX

Poor 15681 (7725) 6909 (10688)

Good 9258 (7595) 5677 (4343)

Excellent 1751 (1522) 1651 (1719)

MEANVOX

Poor 2183 (1014) 848 (762)

Good 1039 (735) 648 (356)

Excellent 400 (180) 368 (124)

MOTION

Poor 2.08 (1.55) 0.70 (0.54)

Good 0.86 (0.59) 0.55 (0.32)

Excellent 0.36 (0.22) 0.28 (0.16)
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