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Abstract

Human herpesviruses 6A, −6B, and −7 (HHV-6A, −6B, and −7) are classified within the 

roseolovirus genus of the betaherpesvrus subfamily. Most humans likely harbor at least two of 

these large DNA viruses, and 1% of humans harbor germline chromosomally integrated HHV-6A 

or HHV-6B genomes. Differences at the genetic level manifest as distinct biologic properties 

during infection and disease. We provide a brief synopsis of roseolovirus replication and highlight 

the unique properties of their lifecycle and what is known about the viral gene products that 

mediate these functions. In the nearly 30 years since their discovery, we have only begun to 

unlock the molecular strategies these highly evolved pathogens employ to establish and maintain 

chronic infections in humans.

Graphical Abstract

The aims of this review are to provide an overview of roseolovirus molecular biology and 

highlight recent advances in our understanding of the molecular basis of the virus lifecycle, 

which in turn inform our understanding of pathogenesis, and illuminate paths to diagnosis, 

treatment, and prevention.
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ROSEOLOVIRUSES: WHAT ARE THEY?

Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, and HHV-7) are the only formally 

recognized members of genus Roseolovirinae within order Herpesvirales, family 

Herpesviridae, and subfamily Betaherpesvirales (Fig. 1) (historical references are available 

in [1,2]). HHV-6A and HHV-6B were formerly described as variants, but are now formally 

classified as distinct virus species by the International Committee on Virus Taxonomy [3]. 

Roseoloviruses share numerous genetic and biologic properties with human cytomegalovirus 

(also a betaherpesvirus), yet have distinct genes and disease associations (Tables 1 and 2). 

The human roseoloviruses are contemporary representatives of an ancient lineage of 

herpesviruses that co-speciated with their hosts. Antibodies against HHV-6 have been 

detected in several species of Old and New World monkeys, suggesting the presence of 

viruses related to HHV-6 in these animals [4]. Consistent with this, relatives of HHV-6 and 

HHV-7 have been detected by PCR in chimpanzees, other great apes, and pig-tailed 

macaques [5-7]

ROSEOLOVIRUSES AND HUMAN HEALTH

HHV-6B is the most common cause of roseola infantum (exanthem subitum) and related 

febrile rash illnesses that often accompany primary infection in early childhood [8]; this can 

also be caused by HHV-7. HHV-6B and HHV-7 have also been associated with febrile 

seizures in young children. Immune suppressed hemopoietic stem cell transplant recipients 

can experience limbic encephalitis and other mental disorders during HHV-6B reactivations 

[9]. HHV-6A has been associated with Hashimoto's thyroiditis [10] and neurological 

disorders, including multiple sclerosis, but proof of causality is incomplete [11].

A striking feature of roseoloviruses is the presence of mammalian telomeric sequences at the 

ends of the virus genome [12-14]. Approximately 1% of the human population world-wide 

harbors inherited chromosomally integrated (ci) HHV-6A and HHV-6B. Germline 

integration may be a byproduct of the use of integration as a hypothesized mechanism for 

establishing latency in somatic cells, with virus infection of spermatocytes leading to 

occasional germline transmission. The health effects of ciHHV-6 have not been elucidated.

ROSEOLOVIRUS GENOMES AND GENES

Roseoloviruses genomes consist of a long unique region (U) bracketed by a pair of direct 

repeats (DR) (Fig. 2). Roseolovirus genomes have heterogeneous and perfect arrays of 

mammalian telomeric repeats at the left and right ends of the DR elements, respectively, and 

consequently at the left and right genomic termini. At least for HHV-6B, genomes of wild 

viruses can be several kb longer than those of laboratory-adapted strains, due to repetitive 

sequences in the DR that are lost upon passage in cultured cells. Roseolovirus genomes are 

approximately 65 to 90 kb shorter than the 235 kb HCMV genome. The origins of lytic 

genome replication (oriLyt) are located between U41 and U42, and are structurally similar 

to oriLyts of alphaherpesviruses.

HHV-6A and HHV-6B are ~90% identical across their genomes, with ~95% identity across 

the herpesvirus core genes. Regions in the vicinity of the genomic termini are less 
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conserved, with as little as 50% identity in the region that encodes the major immediate 

early transactivators [15]. While its overall organization and gene content are similar to 

those of HHV-6A and HHV-6B, the HHV-7 genome is shorter and more compactly 

arranged across its length, with many genes being 5 to 10% shorter than their HHV-6 

counterparts. In intrastrain comparisons, roseolovirus genomes are typically ~99.9% 

identical, except for pockets of elevated heterogeneity.

The core herpesvirus genes (43 genes conserved among members of the Herpesviridae) are 

clustered across the central portion of the genomes in an arrangement colinear with the core 

genes in HCMV and other betaherpesviruses. In contrast to HCMV and most other 

betaherpesviruses, the roseoloviruses, along with elephant endotheliotropic herpesviruses, 

encode homologs (roseolovirus gene U73) of the origin of DNA replication binding protein 

(OBP) encoded by all alphaherpesviruses. Most of the genes shared only among 

betaherpesviruses or unique to one or more roseoloviruses lie in or near the DR, or between 

conserved gene blocks (Table 2 and Fig. 2).

HHV-6B expresses several small RNAs of unknown function, including some that map to 

oriLyt and microRNAs that map to the DR3/B1 and B2 immediate early gene locus in DR. 

These miRNAs are conserved in HHV-6A, and one is an ortholog of human miRNA 

miR-582-5p [16].

Major functions of many roseolovirus genes are known only by inference from known 

functions of their homologs in HCMV or other herpesviruses. Most virion proteins are likely 

to have significant biological roles that go beyond structural, such as tegument proteins that 

modify host cell activities before de novo viral gene expression begins. Only a handful of 

genes unique to roseoloviruses have been studied functionally. These include transactivators 

encoded by DR6 and U3, the U94 parvovirus rep gene homolog, immunoevasins encoded by 

U21, a non-essential Golgi-localizing non-structural glycoprotein encoded by U23 [17], and 

the gQ1 and gQ2 glycoproteins.

Major research priorities include assessment of genome sequences and genetic variation of 

wild viruses, and identification of the functions of genes unique to roseoloviruses. A 

bacterial artificial chromosome (BAC) system has enabled targeted genetic analysis for 

HHV-6A [18]; analogous systems are needed for HHV-6B and HHV-7.

PRODUCTIVE REPLICATION

Roseolovirus tropism: beyond T cells

The human roseoloviruses were discovered on the basis of their lytic replication activity in 

cultured PBMCs. Some strains have adapted to growth in specific T cell lines and are 

commonly used for laboratory studies. Other cell types such as monocytes, dendritic cells, 

astrocytes, and glial cells are permissive for infection. HHV6A and HHV-6B can bind to the 

sperm acrosome, providing a possible route to germline integration [19]. The ability of 

HHV-6A and HHV-6B to infect olfactory-ensheathing glial cells that are present in the nasal 

cavity may provide a route to the central nervous system [20].
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Mechanisms of attachment and entry are important determinants of cell tropism and latency 

reservoirs in the host. Each roseolovirus has a distinct entry receptor: CD46 for HHV-6A 

[21], CD134 for HHV-6B [22], and CD4 for HHV-7 [23]. Receptors are targets for 

neutralization [24] and can be used to create receptor-transgenic animal models that support 

infection [25]. The essential components for membrane fusion by HHV-6A and HHV-6B 

are gB and the gH/gL/gQ1/gQ2 complex [26-28]. gQ2 and gM are essential for virus 

production of HHV-6A since virus stocks could not be generated from BACs with 

disruptions in these ORFs [28,29]. The degree of functional homology between roseolovirus 

genes can be examined in transcomplementation assays and by gene substitutions in the 

HHV-6A BAC. For instance, the HHV-6B gH gene can functionally replace HHV-6A gH 

for replication [30].

De novo gene expression and productive replication

Roseolovirus lytic gene expression follows the general herpesvirus paradigm: immediate 

early genes are transcribed in the absence of new protein synthesis, expression of early 

genes is dependent on prior synthesis or immediate early proteins, and late genes are 

expressed at high levels upon viral DNA replication. Approximately 10 genes have spliced 

transcripts (some have multiple spliced isoforms), and some transcripts are kinetically 

regulated. Roseolovirus major IE genes are spliced and have promoters that can be highly 

active in T cells.

Roseoloviruses diverge from most betaherpesviruses in their mechanism of initiating viral 

DNA replication. Their homologs of the alphaherpesvirus origin binding protein bind to, and 

presumably facilitate unwinding of the origin of lytic replication to initiate viral DNA 

synthesis [31]. The OBPs of HHV-6B and HHV-7 have slight differences in preferential 

binding sites that may explain a lack of complete reciprocity between HHV-6B and HHV-7 

in transient oriLyt replication assays.

Information about HHV-6 virion assembly and egress is sparse. An interesting feature of 

HHV-6A virion envelopes is the presence of ganglioside GM1, a component of lipid rafts 

[32]. Along with other evidence, this suggests that virions may assemble via lipid rafts. 

Envelopment and egress are via a cellular CD63-associated exosomal pathway [33].

LATENCY and REACTIVATION

Gene expression during latency

Roseolovirus latency is poorly defined in molecular terms. CD34-positive hematopoietic 

cells are a site of HHV-6 latency, and circulating lymphocytes positive for HHV-7 DNA but 

not for lytic gene transcripts have been detected. Latency associated transcripts have been 

identified in two loci: antisense to the major IE locus, with splicing patterns reminiscent of 

an HCMV latency transcript [34], and from the U94 gene [35]. No laboratory has reported 

detection of both of these transcripts.
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Integration

One of the most unique and biologically intriguing aspects of HHV-6A and HHV-6B is their 

integration into the germline of some humans (~1%), which can result in inherited 

transmission among families [14]. All three human roseoloviruses contain mammalian 

telomeric sequences at their genomic termini, and telomeres are the site of integration of 

HHV-6A and HHV-6B in patients with chromosomally integrated HHV-6 [36,37]. 

Telomeric integration occurs in infected cultured Jjhan and HEK-293 cells, establishing a 

system for mapping and characterizing the mechanistic processes of integration. The 

efficiency of integration in cultured cells has led to the hypothesis that chromosomal 

integration is a normal part of HHV-6 latency.

The U94 gene of HHV-6A and HHV-6B is a homolog of the parvovirus Rep gene, an 

integrase with single-stranded and double-stranded DNA binding properties. 

Cytomegaloviruses of rats [38] and bats [39] encode U94 homologs, indicating that the gene 

may have been acquired prior to the divergence of roseoloviruses and cytomegaloviruses. 

HHV-6 U94 binds ssDNA [40] and its ectopic expression inhibits betaherpesvirus 

replication [41] and impairs lymphatic endothelial cell angiogenesis [42]. Given its 

homology with the parvovirus integrase, U94 is hypothesized to promote integration and 

excision of HHV-6A and HHV-6B, either by host-mediated base excision repair or by 

exonuclease strand invasion [14]. The transcriptome of ciHHV-6 cells has not been reported, 

but spliced U90 transcripts have been detected in B cells harboring integrated HHV-6 [43]. 

Genome-wide analyses of viral and cellular gene expression are needed in individuals with 

ciHHV-6 and in ciHHV-6 cell culture systems.

Reactivation

Uncontrolled or aberrant primary infection and HHV-6 reactivation are associated with 

neurological syndromes and transplant failure. Very little is known about the molecular 

basis of reactivation. Mitogen stimulation of PBMCs leads to reactivation and enables 

infection of T cell lines. Lytic replication can also be stimulated by apoptosis [44]. If 

integration is a mechanism of latency, a functional virus genome must be excised from 

telomeres in order to reactivate full lytic infection. HEK293 cells with integrated HHV-6A 

can produce viral genome concatamers upon treatment with the histone deacetylase inhibitor 

trichostatin A [36]. Huang et al. [43] noted that the telomeres attached to integrated HHV-6 

genomes are frequently shortened and associated with detection of circular viral genomes. 

Such short, unstable telomeres are thought to facilitate excision of viral genomes via 

telomere-loops within the viral genome [43]. Interestingly, Chlamydia trachomatis drives 

reactivation of ciHHV-6 and transient shortening of telomere ends [45]; the signaling 

pathways and mechanism of excision remain to be defined.

VIRUS-HOST INTERACTIONS

All herpesviruses manipulate host cell processes to promote replication. Roseoloviruses 

push the cell cycle into G2/M, presumably to ramp up cellular processes that promote DNA 

replication [46]. Virally-induced degradation of Rb and activation of E2F1 further benefits 

HHV-6A and HHV-6B by enhancing the expression of some lytic genes [47]. Many 
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roseolovirus gene products inhibit both innate immune responses (U20, IE1) and adaptive 

immune responses (U21), and interfere with cell death (U19, U20, DR6) and T cell signaling 

(U21, U54) [48]. Functions should not be assumed to be conserved among all roseolovirus 

homologs. Virus-specific differences in gene function such as U54 modulation of IL-2 

signaling, the chemotactic properties of the roseolovirus U83 chemokines, and IE1 

inhibition of interferon stimulated genes have been noted [49-51]. BAC-based recombinant 

viruses will facilitate examination of gene function in the context of infection.

Roseoloviruses impact cytokine profiles of cultured cells [52,53]. Cytokine dysregulation 

also occurs in patients undergoing acute illness associated with primary infection [54-56] 

and reactivation [57], and in animal models of HHV-6 infection [25,58]. The viral gene 

products that induce these changes in host signaling are not known. Inactivated virions 

induce an interferon-lambda 1 (IL-29) response in dendritic cells that might skew T cell 

responses to infection [59]. The host immune response may play a large role in the immune 

pathology of reactivation-associated diseases and facilitate roseolovirus transit across the 

blood brain barrier [60]. In addition, HHV-6B reactivation might be triggered in response to 

pro-inflammatory cytokines such as TNF-alpha and immunosuppression with 

corticosteroids. Such a mechanism might contribute to the frequent detection of HHV-6B 

reactivation in patients diagnosed with Drug Reaction with Eosinophilia and Systemic 

Symptom (DRESS), a potential fatal syndrome initiated by adverse drug reactions [61,62].

Understanding the functional changes described above will be enhanced by deep analysis of 

the effects of roseolovirus infection on host cell transcription, translation, and export of gene 

products.

RESEARCH PRIORITIES

Understanding of the molecular virology of roseoloviruses lags behind that for all other 

human herpesviruses. Understanding the genetic content of roseoloviruses has not been 

extended far beyond basic sequence analysis of laboratory-adapted strains. Modern methods 

of DNA sequencing need to be applied to understanding the sequence composition of wild, 

uncultured roseolovirus genomes, as well as inter- and intrahost sequence variation at the 

genome level in immune competent and immune compromised individuals. Among other 

things, such genetic analyses are necessary to ensure that animal studies and other 

experiments are done with viruses that appropriately represent wild viruses. Functional 

analysis of the the genes unique to roseoloviruses and betaherpesviruses will provide 

information as to how these viruses have adapted to their specific and specialized niches. 

Genetic approaches using BAC-based recombination strategies are critical to identify the 

viral factors and cis-determinants of replication, integration, and reactivation. Even in the 

absence of well-established genetically tractable systems for HHV-6B and HHV-7, 

transcript and proteomic profiles can rapidly confirm putative genes and identify novel 

ORFs, novel transcript forms, and non-coding RNAs. Vaccine development typically 

involves attenuation, but intelligently designed attenuation will not be possible for the 

roseoloviruses without fundamental knowledge of replication and host interaction 

determinants.
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SUMMARY

Roseolovirues have unique cellular tropisms and biological properties, and encode ORFs 

distinct from the other human betaherpesvirus, HCMV. Each HHV-7 gene has a homolog in 

HHV-6A and HHV-6B. However, HHV-6A and HHV-6B have several genes not found in 

HHV-7, including a homolog of the parvovirus rep protein, U94. Roseolovirus gene 

products mediate cell entry and viral replication, modulate the host cell's growth, survival, 

signaling, and immune responses, and regulate latency. RNA analyses and proteomics 

coupled with new genetic tools and advances in systems biology are needed to advance the 

identification and function of known, as well as uncharacterized and novel ORFs, and 

transcripts such as miRNAs. Advancements in understanding roseolovirus gene function 

will reveal novel virus-host interactions and better define the mechanism of integration and 

excision of the virus genome into and from host chromosomes, a potential form of latency 

that would be unique among the human herpesviruses. Investments in understanding the 

fundamental molecular processes of roseolovirus infections will inform our understanding of 

the dynamic process of persistence and disease in humans and identify targets for 

therapeutic intervention.
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Highlights

• HHV-6A, HHV-6B, and HHV-7 are distinct members of the Roseolovirus 

genus.

• HHV-6A and HHV-6B can integrate into the telomeres of the host chromosome.

• Lytic infection involves regulated expression of viral proteins and non-coding 

RNAs.

• Infection alters cellular processes, and innate and adaptive immune responses.

• Many aspects of their molecular biology remain to be defined.
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Figure 1. 
Dendrogram showing relationships among the human herpesviruses, based on sequences of 

the conserved protein, gB.
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Figure 2. 
Genomic and genetic architectures of the human roseoloviruses. Based on information from 

[15,63-67].
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Table 1

Genetic and biological properties of human roseoloviruses and HCMV.

HHV-6A HHV-6B HHV-7 HCMV

Commonly used strains U1102, GS Z29, HST JI, RK, 
SB, 

UCL-1

AD169, Towne, Merlin, 
TB40E

Length of wild genomes ? ~170 kb ? 236 kb

Length of passaged 
genomes

159 kb 159-162 kb 145 kb ~230 kb

genes encoding unique 
proteins

~102 ~97 ~86 ~165

miRNAs 4 predicted 4 unknown 16

Replication slow, extended

ballooning, refractile cytopathic effect cytomegaly, nuclear and 
cytoplasmic inclusions

origin-binding protein for initiation of DNA replication

Cell surface receptor CD46 CD134 CD4 EGFR, Integrins

Cell culture tropism umbilical cord blood lymphocytes peripheral blood mononuclear cells monocyte-macrophages

T cell lines: SupT-1, 
HSB2, J JAHN

T cell lines: Molt-3, Mt-4, SupT-1 T cell 
lines: 

SupT-1

CD34+ hematopoietic cells

productive replication 
in astrocytes

low-level persistence in astrocytes endothelial and epithelial 
cells, fibroblasts

Unique features integration into host telomeres

Major disease associations Hashimoto's thyroiditis exanthem subitum congenital birth defects

febrile seizures/ status epilepticus transplant complications

transplant complications retinitis

post-transplant reactivation-associated encephalitis hepatitis
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Table 2

Genes unique to roseoloviruses.

Function
a Roseolovirus ORF %S with HHV-6A

b % I with 

HHV-6A
c

%S with HHV-7 %I with HHV-7

Roseolovirus specific genes

U13 93.4 92.5 44.9 35.7

U15EX1 91.4 86.7 76.4 67.9

U15EX2 100 95.8 83.3 75

U15EX3 96.7 91.7 82 75.4

Glycoprotein U20 95.6 95.6 31.8 22.2

Down-regulation of MHC class I U21 91 89.8 42.8 31.6

Glycoprotein U23 94.6 94.1 26.9 20.9

U24 88.3 82.7 46.2 31.2

U24A 94.7 91.2 40.3 28.1

U26 93.8 92.9 60.5 47.4

OX-2 homology, glycoprotein U85 93.1 91.7 46.9 36.8

IE-A (IE1), transactivator U90EX1 73.7 68.4 42.8 35.7

U90EX2 70.3 67.2 67.1 57.1

U90EX3 76.7 71.5 32.9 25.2

IE-A U91EX1 67.8 57.1 33.3 25

U91EX2 69.2 67.9 45.6 40

Spliced envelope glycoprotein; 
HHV-6 pg82-gp105, 
HHV-7gp65

U100EX1 78.1 73.4 27.2 19.7

U100EX2 84.9 81.7 53.8 38.7

U100EX3 82.9 79.3 40.9 32.7

U100EX4 96 88 44 40

U100EX5 88.6 80 34.3 28.6

U100EX6 91.9 91.9 48.6 37.8

U100EX7 88.7 83 35.3 27.4

U100EX8 100 100

U100EX9 92.8 90.5 35.7 23.8

U100EX10 83.9 76.5 24 13.3

HHV-6 specific genes

DR3 87 86.4

U6 97.1 97.1

U9 94.2 94.2

Glycoprotein U22 91.2 89.6

Intercrine cytokine U83 87.6 85.6

Parvovirus rep homolog U94 98.4 97.6

HHV-6A gene

Curr Opin Virol. Author manuscript; available in PMC 2016 February 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Krug and Pellett Page 17

Function
a Roseolovirus ORF %S with HHV-6A

b % I with 

HHV-6A
c

%S with HHV-7 %I with HHV-7

U78

HHV-6B genes

B3,B4,B5,B6,B7,B8

a
Implied functions of homologous genes or experimental validation.

b
Percentage of amino acid similarity between homologs.

c
Percentage of amino acid identity between homologs.
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