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Background: Preterm (PT) children show early cognitive and language deficits and display altered cortical connec-
tivity for language compared to term (T) children. Developmentally, functional connectivity networks become more
segregated and integrated, through the weakening of short-range and strengthening of long-range connections.
Methods: Longitudinal intrinsic connectivity distribution (ICD) values were assessed in PT (n = 13) compared to T
children (n = 12) at ages 8 vs. 16 using a Linear Mixed Effects model. Connectivity values in regions generated by
the group x age interaction analysis were then correlated to scores on full IQ (FSIQ), verbal IQ (VIQ), verbal compre-
hension IQ (VCIQ), performance IQ (PIQ), Peabody picture vocabulary test—revised (PPVT-R), and Rapid Naming
Composite (RDRL_Cmp).
Results: Nine regions were generated by the group x age interaction analysis. PT connectivity significantly increased
over time in all but two regions, and they ultimately displayed greater relative connectivity at age 16 than Ts in all
areas except the left occipito-temporal cortex (OTC). PTs underwent significant connectivity reductions in the left
OTC, which corresponded with worse performance on FSIQ, VIQ, and PIQ. These findings differed from Ts, who
did not undergo any significant changes in connectivity over time.
Conclusions: These findings suggest that the developmental alterations in connectivity in PT children at adolescence
are both pervasive and widespread. The persistent and worsening cognitive and language deficits noted in the PT
subjects may be attributed to the loss of connections in the left OTC.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
1.1. Cognitive impairment in PTs

Preterm (PT) birth is a major global health burden, with up to 11% of
all live born infants worldwide being born at less than 37 weeks gestation
(Blencowe et al., 2012; Beck et al., 2010), and as many as one-third of pre-
maturely born infants suffering from significant cognitive impairments
during early childhood (Blencowe et al., 2013; Neubauer et al., 2013;
Robertson et al., 2009; Saigal and Doyle, 2008). While Saigal et al.
(2006) demonstrated that, by adulthood, PTs are comparable to their

Abbreviations: BA, Brodmann area; FSIQ, full scale IQ; OTC, occipito-temporal cortex;

PIQ, performance 1Q; PPVT, Peabody picture vocabulary test; PT, preterm; RDRL_Cmp,

Rapid Naming Composite; ROI, region of interest; RSC, resting state connectivity; RSN,

resting state network; T, term; VCIQ, verbal comprehension IQ; VIQ, verbal IQ; VWFA, vi-
sual word form area.
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term (T) peers in educational attainment and functional independence,
several studies have shown that PTs persistently display global impair-
ment in cognition, language, and motor function (Botting et al., 1998;
Bowen et al., 2002; Hack, 2009).

Even in early childhood, language deficits are evident. At age 2.5, PT
had lower scores on tasks of cognition, receptive and expressive com-
munication, with over 10% of PT children showing moderate-severe
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delay in these areas (Mansson and Stjernqvist, 2014). Similarly, at age 6,
PTs had significantly poorer reading, vocabulary and comprehension
than Ts (Pritchard et al., 2009).

Promisingly, there is some evidence to suggest that these early lan-
guage deficits in PTs may improve with age. Luu et al. (2009) found
that from ages 3 to 12, PTs had poorer receptive vocabulary compared
to controls, but they improved over time and nearly approached the
normative values by age 12. These “catch-up gains” in receptive vocab-
ulary were also seen at age 16, although they continued to show impair-
ment in phonology (Luu et al., 2011).

1.2. Altered neural structures in PTs

PT birth substantially alters neurodevelopment, with the brains of
PT, school-age children being 5-6% smaller than those of matched T
controls (Nosarti et al., 2002; Peterson et al., 2000). During childhood
and adolescence, PT brains fail to undergo similar white matter expan-
sion and gray matter pruning in temporal and frontal lobes (Ment
etal,, 2009), resulting in significant decreases in left frontal and bilateral
temporal white matter volumes (Schafer et al., 2009). At young
adulthood, PTs display alterations in both regional volume and micro-
structural connectivity in language areas, including the left frontal lan-
guage regions, temporal and parietal cortices, and both cerebellar
hemispheres (Boardman et al., 2010; Haldipur et al., 2011; Lind et al.,
2011; Nosarti et al.,, 2011; Tam et al., 2009).

Several studies have noted that these structural alterations mediate
cognitive deficits. Nosarti et al. (2008) observed that PTs had diffuse de-
creases in regional volumes compared to Ts, which correlated with
greater cognitive impairment. Parker et al. (2008) also showed that
PTs had reduced cerebellar volumes compared to Ts, and although ini-
tial cognitive measures showed a positive correlation with cerebellar
volume, this did not persist after controlling for white matter volume.

Notably, Schafer et al. (2009) found that, despite PTs having signifi-
cant differences in functional connectivity to language areas as well as a
reduction in left frontal and bilateral temporal white matter, PT subjects
performed comparably on semantic language tasks to normal term con-
trols. Lubsen et al. (2011) echoed these findings, demonstrating that de-
spite PTs having lower fractional anisotropy values, a marker of
microstructural connectivity, in several language regions, they per-
formed comparably to Ts.

1.3. Development of resting state functional connectivity networks

Recently, resting state functional connectivity MRI has come into
focus as a method for identifying functional neural networks. It is
based on the finding that distinct neural regions that display temporally
related spontaneous BOLD fluctuations at rest reflect a functionally con-
nected network (Cohen et al., 2008).

Few studies have investigated resting state connectivity (RSC) in
children or across development. Of these studies, it has been reported
that the functional organization of the brain in children is significantly
different than that of adults. Children display more local, short-range
connections between adjacent brain regions, which eventually shift to
more long-range, distributed connections in adults (Dosenbach et al.,
2010). This developmental trend encompasses “segregation” of neural
networks via the weakening of short-range connections and concurrent
“integration” of distant regions into functional networks via the
strengthening of long-range connections (Fair et al., 2009).

The evolving functional architecture over development appears to
correspond to maturing behavioral and cognitive abilities. Neural re-
gions that subserve higher level functioning exhibit stronger functional
activation or deactivation over time, enhancing cognitive maturity
(Rubia, 2013). A synchrony of stronger activation within networks
and enhanced deactivation of antagonistic networks has been shown
to correlate with more mature performance on tasks of higher order

executive function, such as attention, working memory, and regulatory
control (Barber et al., 2013; Marsh et al., 2006).

While this trend of “segregation and integration” seems to charac-
terize maturation in a number of neural networks, little is known
about the development and refinement of language network connectiv-
ity, or how this development is affected by PT birth. At adolescence, PTs
display globally stronger intra- and inter-hemispheric connectivity to
the superior temporal lobes than Ts, but functional connectivity be-
tween these language regions and overall network efficiency are re-
duced in PTs (Wilke et al., 2014). PTs continue to demonstrate greater
connectivity at age 20 in hypothesized language processing areas, in-
cluding left temporal-parietal areas, left and right inferior temporal
lobes, and the medial frontal lobes (Scheinost et al., 2012). Although
previous studies have demonstrated significant connectivity differences
between PTs and Ts (Wilke et al., 2014; Scheinost et al., 2012), it is un-
clear whether these connections are present at birth and are not pruned
through the course of development or if they develop over time.

Furthermore, the use of resting state functional MRI data has several
limitations. For one, it relies on pre-selected regions of interest (ROI) to
be investigated and thus may overlook non-selected areas that similarly
display differential connectivity. Also, it relies on arbitrarily defined cor-
relation thresholds to describe functional connectivity differences. To
overcome these limitations, Scheinost et al. (2012) utilized intrinsic
connectivity distribution (ICD). ICD allows for the characterization of
all connections via whole-brain survey, without requiring a priori de-
fined ROIs or connectivity thresholds. It measures the connectivity of
each voxel to all other neural voxels and allows for elaboration of a spe-
cific voxel's degree of connectivity throughout the brain without being
limited to connectivity within a pre-defined network (Scheinost et al.,
2015).

In this longitudinal study, we investigate how intrinsic functional
connectivity is altered from childhood through adolescence in PTs com-
pared to Ts, as well as how these changes in connectivity relate to cog-
nitive, semantic, and phonologic testing scores. We hypothesize that,
when compared to Ts, PTs will display altered connectivity trajectories
between childhood and adolescence. Functional connectivity will be
correlated with performance on language tasks.

2. Materials and methods

This study was performed at the Yale University School of Medicine,
New Haven, CT and Brown Medical School, Providence, RI. The protocols
were reviewed and approved by institutional review boards at each lo-
cation. Children provided written assent; parent(s) provided written
consent for the study. All scans were obtained at Yale University and
were analyzed at Yale University.

2.1. Subjects

The PT cohort consisted of children who were enrolled in the follow-
up MRI component of the Multicenter Randomized Indomethacin
Intraventricular Hemorrhage Prevention Trial (Ment et al., 1994). Only
those PT children without evidence of intraventricular hemorrhage,
periventricular leukomalacia and/or low-pressure ventriculomegaly
and who lived within 200 miles of the Yale study center were included.
T control children were recruited from the local communities of the
study children. They were group-matched to the PT children for age,
sex, and minority status. Minority status was defined as being of non-
Caucasian race and was reported by parents at the time of the assess-
ment. Only PTs and Ts with data collected at both 8 years and 16 years
of age were included.

2.2. Neurodevelopmental assessments

Serial standardized neuropsychological assessments were per-
formed by testers blinded to the randomization status of the subjects
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in the IVH prevention study. Intellectual ability was measured using the
Weschler Intelligence Scale for Children, Third Edition (WISC-III), from
which the verbal IQ (VIQ), performance IQ (PIQ), verbal comprehension
1Q (VCIQ) and full-scale 1Qs (FSIQ) were obtained. Specific language
skills were assessed with the Peabody picture vocabulary test—revised
(PPVT-R) and the Rapid Naming Composite (RDRL_Cmp). The PPVT
tests receptive vocabulary, while the RDRL_Cmp measures phonologic
awareness and memory, and rapid naming.

2.3. Residual data between task paradigms during fMRI scanning

For the 16-year-old subjects, each subject performed an event-
related cue-target identity task that required a match/mismatch judg-
ment between pictures and words that were presented acoustically
and/or in printed form on each trial. Responses were made via a button
press. Between 8 and 10 runs were completed per subject. This task is
described in detail in Frost et al. (2009). For the 8-year-old subjects,
each subject passively listened to the Ugly Duckling story presented ei-
ther normally, with words scrambled, or with a low pass filter applied.
This task is described in detail in Ment et al. (2006). For both tasks,
the task-based data were analyzed using a general linear model de-
scribed in each of the respective papers. Then the model fit was
subtracted from the raw data to create a residual data set, which was
used as the input to the connectivity analysis.

The use of residuals has been described previously by Finn et al.
(2014). The effect of task was regressed out to leave residual fluctua-
tions that we believe are more closely representative of intrinsic, spon-
taneous neural activity. By avoiding task-based data, we prevent our
results from being dominated by activation coupled to the onset and
processing of each stimulus and instead are able to examine spontane-
ous fluctuations. Furthermore, the use of purely continuous resting-
state scan data may introduce confounding “tasks”, such as mind-
wandering, which are likely inhibited in task-based studies. Thus, we
believe that the use of residual data during a task-based study may
more accurately reflect spontaneous neural changes and better enhance
underlying functional organization between the groups.

24. Preprocessing

All data were converted from Digital Imaging and Communication in
Medicine (DICOM) format to Analyze format using XMedCon (http://
xmedcon.sourcefroge.net/). During the conversion process, the first
four images at the beginning of each of the ten functional series were
discarded to enable the signal to achieve steady state, leaving 209 mea-
surements for analysis. Images were first slice time corrected using sinc
interpolation and then motion corrected using SPM5 (http://www.fil.
ion.ucl.ac.uk/spm/software/spmb5/). Runs with linear motion in excess
of 1.5 mm or rotation greater than 2° were discarded. All voxels with
signal less than 5% of the maximum were set to zero, and drift removal
(up to 3rd order) and temporal Gaussian smoothing (standard devia-
tion = 1) were then performed on the time-course of each voxel. Final-
ly, the global time-course was regressed out. As group differences in
motion have been shown to confound functional connectivity results
as seen in Van Dijk et al. (2012), average frame-to-frame displacement
was calculated for each run and compared between the four groups:
8 year PT, 8 year T, 16 year PT and 16 year T. To level the mean displace-
ment across groups to 0.054 mm, runs with displacement greater than
0.09 mm for the 8 year PT (58 of 150 runs), 0.08 mm for the 8 year T
(29 of 62 runs), and 0.12 mm for the 16 year PT (55 of 288 runs) were
additionally discarded. No runs were additionally discarded from the
16 year T subjects (349 runs).

2.5. Residual functional connectivity maps

All remaining residual data runs for each subject were concatenated,
and the functional connectivity of each voxel, as measured by the

intrinsic connectivity distribution (ICD), was calculated as described in
Scheinost et al. (2012). Similar to most voxel-based functional connec-
tivity measures, ICD involves correlating the time course for any given
gray-matter voxel with the time course of every other gray-matter
voxel in the brain, and then summarizing these correlations with a net-
work theory metric. Specifically, ICD models the entire distribution of
the network measure of degree, therefore eliminating the need to spec-
ify a connection threshold. A histogram of these positive correlations
was constructed to estimate the distribution of connections to the
voxel in question. This distribution of connections was converted to a
survival function and the survival function was fitted with a stretched
exponential with unknown variance, a. As alpha controls the spread
of the distribution of connections, a larger alpha indicates a greater
number of high correlation connections. Finally, this process is repeated
for all voxels in the gray matter resulting in a parametric image of the
alpha parameter for each subject, which was used in all between
group and correlational analyses. Each subject's ICD map was then nor-
malized by subtracting that subject's mean and dividing by the standard
deviation across all voxels. This normalization process removes the
large global connectivity differences to better investigate the more sub-
tle relative connectivity differences (Mitchell et al., 2013). Finally, a
6 mm Gaussian filter was applied to each normalized ICD map.

2.6. Registration to a common reference space

To take individual subject data into a common reference space, three
registrations were calculated within the Yale Biolmage Suite software
package (http://www.bioimagesuite.org) (Duncan et al., 2004) and
then concatenated and applied as one registration. The first was a linear
registration between the individual subject's raw functional data and
the subject's T1 anatomical image collected at the same slice locations.
The second linear registration was between the individual's T1 anatom-
ical image and the individual's 1 mm isotropic MP-Rage anatomical
image. Finally, a non-linear registration was computed between the in-
dividuals' MP-Rage anatomical image and the Colin27 Brain (Holmes
et al,, 1998) in order to transform data into the standardized space de-
fined by the Montreal Neurological Institute (MNI). The inverse trans-
formation from the MNI space to the individual functional space was
also computed.

2.7. Group comparison LME

To compare the longitudinal changes of intrinsic connectivity across
the groups, a Linear Mixed Effects model (LME) using age (8 years vs.
16 years) and group (PT vs. T) as factors was computed using AFNI.
The age by group interaction was investigated using a threshold signif-
icance of p < 0.05 with a conjoint cluster of 184 voxels corresponding to
a p < 0.05 family-wise error (FWE) correction as determined by AFNI's
AlphaSim program.

2.8. Other statistical analyses

Demographic data were analyzed using Fisher's exact test for
categorical variables and t test for continuous variables. Mixed model re-
peated measures analysis was performed to compare the longitudinal
changes in both resting state functional connectivity and neurocognitive
scores between PTs and Ts, with covariate adjustment for gender, race
and maternal education status and inclusion of time by group interac-
tion. Linear contrasts were performed to examine the changes in both
connectivity and cognitive scores from age 8 to 16 for each group, com-
pare groups at each age, and compare these connectivity and cognitive
score changes between groups. Pearson correlation analysis was per-
formed to examine the correlations between all regional connectivity
and cognitive scores at age 16. The correlation analysis was also stratified
by PTs and Ts. The significance level was p < 0.05, two-sided.
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3. Results
3.1. Subjects

Thirteen PT children and twelve T children were included. Demo-
graphic data for all subjects are reported in Table 1. Perinatal data for
the PT subjects are also shown in Table 1. There were no significant dif-
ferences between the two groups in the number of males, handedness,
race, or years of maternal education. Both groups were comparable at
age of scan, although PTs were slightly older than Ts at age 16, which
trended toward significance (16.31 vs. 16.12 years, p = 0.059).

As shown in Table 2, there were no significant differences between
PTs and Ts in cognitive scores at age 8, but PIQ and FSIQ trended toward
significance (p = 0.06 and p = 0.07), with PTs having poorer perfor-
mance. Similarly at age 16, PTs scored lower than Ts in VIQ, PIQ, FSIQ
(p = 0.04, p = 0.006, and p = 0.006, respectively).

Comparing changes in testing scores from age 8 to 16 by group, PT
scores worsened with increasing age, while T scores improved, with
PIQ and FSIQ reaching significance (p = 0.03 and p = 0.03). PTs also
performed significantly worse on FSIQ at age 16 than age 8 (p = 0.03).

3.2. Generated regions

The group x age interaction analysis revealed several regions with
significant differences in longitudinal changes in connectivity, including
left fusiform-BA18-BA19 (occipito-temporal cortex), bilateral BA47-
BA11-BA10-left BA45 (inferior frontal gyri, orbitofrontal and anterior
prefrontal cortices) for PT compared to T controls (Fig. 1). This included
some areas that had been both previously published in the literature
and identified in our previous studies (Gozzo et al., 2009; Myers et al.,
2010; Schafer et al., 2009).

Additional normalized ICD maps were generated comparing groups
at age 8 and at age 16 (Supplemental Figs. 1 & 2). Some connectivity dif-
ferences were observed between groups at age 8. However, these areas
did not undergo significant longitudinal changes in connectivity, and
thus did not persist in the group x age interaction map. The interaction
map at age 16 showed similar regions of connectivity differences as the
group x age interaction map.

The larger frontal region was separated into seven individual regions
based on Brodmann areas (BA) for further investigation (Fig. 2). All
regions were defined in reference space, with the center of mass MNI
coordinates listed in Table 3, as defined in the Yale Bioimagesuite Soft-
ware (Bioimagesuite.org). For all regions, the inverse transformation
from reference space was used to warp each region back to individual
functional space.

3.3. Intrinsic connectivity over time

Least squares means (LSM) for the resting state intrinsic connectiv-
ity data for each generated region are shown in Fig. 3 and supplemental
Table 1; these were adjusted for gender, race, and maternal education.

PTs demonstrated significant increases in connectivity from age 8 to
age 16 in bilateral BA47-BA11-BA10-Left BA45 (LSM 0.61, p < 0.0001),

Table 1
Demographic data for the study children (mean + SD).
Preterm Term p

Number 13 12 -
Males 9 (69%) 6 (50%) 0.428
Right-handed 13 (100%) 12 (100%) -
Minority status 5 (38%) 4 (33%) 1.000
Age at 8 year old scan 8.89 + 0.49 8.80 + 0.49 0.654
Age at 16 year old scan 16.31 + 0.29 16.12 + 0.18 0.059

Mat ed < HS 0 0 -
Birthweight (grams) 948.46 + 188.05 - -
Gestational age (weeks) 2731 £ 243 - -

left and right BA 47 (0.27, p = 0.02 and 0.89, p <.0001, respectively), bi-
lateral BA 11 (0.74, p<0.0001), left and right BA 10 (0.48, p <0.0001 and
0.74,p<0.0001), and left BA 46 (0.49, p = 0.002). PTs also displayed sig-
nificant decreases in connectivity in left fusiform-BA18-BA19 over time
(—0.20, p = 0.002). Terms did not undergo significant alterations in
connectivity over time in any regions, although the increase observed
in right BA 10 trended toward significance (0.23, p = 0.06).

At age 8, none of the regions showed different connectivity between
two groups. At age 16, the majority of the interrogated regions
displayed significantly different connectivity in PTs compared to Ts.
PTs had greater connectivity than Ts at age 16 in the following regions:
bilateral BA47-BA11-BA10-Left BA45 (0.53, p = 0.0002), left and right
BA 47 (0.37, p = 0.03 and 0.68, p = 0.0007), bilateral BA11 (0.60,
p = 0.0009), left and right BA 10 (0.46, p = 0.0006 and 0.51, p =
0.005), and left BA 46 (0.46, p = 0.03). Conversely, Ts had greater con-
nectivity than PTs in left fusiform-BA18-BA19 (—0.21, p = 0.04).

Finally, in comparing the changes in connectivity over time in PTs
versus Ts, significant differences were again seen in bilateral BA47-
BA11-BA10-Left BA45 (0.53, p = 0.0002), left fusiform-BA18-BA19
(—0.24, p = 0.008), left and right BA 47 (0.38, p = 0.03 and 0.68,
p = 0.0006), bilateral BA 11 (0.60, p = 0.0008), left and right BA 10
(0.46, p = 0.0005 and 0.51, p = 0.005), and left BA 46 (0.46, p = 0.03).

3.4. Intrinsic connectivity & language scores

Exploratory analysis using Pearson correlations were performed to
correlate connectivity in generated regions with cognitive measures of
all subjects at age 16; results are listed in Table 4. In analyses, significant
correlations were only seen between connectivity of the left fusiform-
BA18-BA19 and VIQ (r = 0.467, p = 0.021), PIQ (r = 0419, p =
0.041), and FSIQ (r = 0.491, p = 0.015). Scores on the other cognitive
tasks were not significantly associated with connectivity in the other re-
gions. Furthermore, in comparing PTs and Ts, there were no statistically
significant differences between these groups in the correlations of gen-
erated regions' connectivity to cognitive scores at age 16 (Supplemental
Table 2). In correlating changes in connectivity from ages 8 to 16 and
overall cognitive outcome measures (ages 8 and 16), again only the
left fusiform-BA18-BA19 was significantly associated with scores on
VIQ (r = 0.466, p = 0.022), PIQ (r = 0.431, p = 0.036), and FSIQ
(r =0.498, p = 0.013). Comparisons of the association of connectivity
changes from ages 8 to 16 and cognitive scores at age 16 revealed no sig-
nificant group differences between PTs and Ts. Furthermore, no signifi-
cant group differences between PTs and Ts were seen when comparing
connectivity at age 16 to changes in cognitive scores from ages 8 to 16.

4. Discussion

Developmental changes in connectivity differ in prematurely-born
subjects compared to healthy term controls during that critical period
of late childhood through adolescence. To the best of our knowledge,
this is the first report of longitudinal changes in intrinsic connectivity
in PTs and Ts from 8 to 16 years. At age 8, PTs and Ts displayed grossly
equivalent connectivity in the interrogated regions but then underwent
dramatic alterations through age 16. PT but not T children demonstrat-
ed significant increases in connectivity in the generated regions over
time, especially in left and right BA47, bilateral BA11, left and right
BA10, and left BA46. Ultimately, PTs showed greater connectivity than
Ts at age 16 in all areas of interest except the left fusiform-BA18-BA19,
in which PT connectivity had significantly decreased over time. Finally,
in both PTs and Ts, left fusiform-BA18-BA19 connectivity was signifi-
cantly and positively associated with scores on the FSIQ, PIQ, and VIQ.

4.1. Altered development of resting state connectivity

Several studies have investigated the development of PT RSC in in-
fancy and early childhood. Seed-based correlation analysis has shown
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Cognitive data adjusted for gender, race, and maternal education. Presented as least squares means (95% confidence interval) and p values.

Outcomes Pre-term Term Group difference Interaction (slope difference)
VIQ 8 years 104.1 (96.7,111.5) 109.8 (102.3,117.4) —5.7(—16.3,49)p =0.27

16 years 98.3 (90.8, 105.8) 109.6 (101.6, 117.6) —11.4(—224,—-03)p = 0.04

Changes from 8 to 16 years —5.9 (—12.6,0.9) p = 0.09 —02(—7.6,72)p=1095 —5.6(—15.8,4.5)p =0.26
PIQ 8 years 97.2 (87.8,106.7) 110.0 (100.5, 119.5) —12.8(—26.2,0.7) p = 0.06

16 years 94.0 (84.1,103.9) 114.9 (104.7,125.1) —20.9 (—35.1, —6.6) p = 0.006

Changes from 8 to 16 years —3.2 (—8.0,1.6) p=10.18 49 (—0.3,10.1) p = 0.06 —8.1(—15.2,—1.0) p=0.03
FSIQ 8 years 100.6 (92.2, 108.9) 111.3 (102.9, 119.7) —10.7 (—22.6,1.2) p = 0.07

16 years 95.8 (87.5,104.1) 113.5(104.9, 122.0) —17.7 (—29.6, —5.7) p = 0.006

Changes from 8 to 16 years —4.8 (—9.0, —05)p=0.03 2.2 (—25,6.8)p=0.34 —6.9(—13.2,—0.7) p=0.03
VCOMPIQ 8 years 106.5 (98.7, 114.2) 109.2 (101.3,117.1) —2.8(—13.9,84)p =0.61

16 years 100.5 (93.1, 108.0) 108.2 (100.2, 116.1) —7.6(—186,3.3)p=0.16

Changes from 8 to 16 years —5.9 (—13.6,1.7) p = 0.12 —1.0(—93,72) p=10.79 —49(—16.1,6.3)p =0.38
PPVT 8 years 101.0 (90.3,111.6) 113.6 (102.8, 124.4) —12.7 (—27.9,2.6) p =0.10

16 years 104.0 (93.5,114.5) 117.5(106.8, 128.1) —13.5(—28.5,1.6) p = 0.08

Changes from 8 to 16 years 3.0(—4.1,101)p =0.39 3.8(—3.6,11.3)p =0.30 —0.8(—11.1,9.5)p = 0.87
RDRL_Cmp 8 years - -

16 years
Changes from 8 to 16 years

98.8 (82.1,115.5)

100 (88.3,111.7)

—12(—132,109)p = 0.84

The bolded values are the p-values that are significant (< 0.05).

that PTs, when studied at term in the neonatal period, demonstrate RSC
networks that closely, topographically resemble those of T controls
(Doria et al., 2010). However, ROI studies show that PT RSNs have weak-
er connectivity and complexity, especially in those networks subserving
higher-order functions, e.g. language, frontoparietal control, and default
mode networks (Smyser et al., 2014). By age 4, ROI studies demonstrate
that the strong, predominantly local RSN connections at birth eventually
shift to increased inter-hemispheric connectivity (Lee et al., 2013).
Although our study did not attempt to map out the geography of
these connections, we found that at age 8, both PTs and Ts displayed
largely, quantitatively similar connectivity in the interrogated regions.

When solely comparing relative connectivity between PTs and Ts at
age 8, we did observe significant group differences. This is in keeping
with previous findings of connectivity and volumetric differences at
age 8 (Gozzo et al., 2009; Ment et al., 2009). However, these areas of
contrast in our 8 year old interaction map did not undergo significant
longitudinal changes, and thus were not generated by our group x age
interaction map, which was the variable of interest in this study.

ROI studies show that at several time points in childhood and ado-
lescence, functional connectivity to various language regions differs sig-
nificantly between PTs and Ts (Gozzo et al., 2009; Myers et al., 2010;
Schafer et al., 2009). Furthermore, these structural alterations confer

Fig. 1. Interaction result from Linear Mixed Effects model using age (8 years vs. 16 years) and group (preterm vs. term), with p < 0.05 threshold significance. Regions were selected from this

analysis.



154 M.A. Rowlands et al. / Neurolmage: Clinical 11 (2016) 149-157

Left BA45
Left BA47

Right BA47

Bilateral BA11

Left BA1O

Right BA10

Left BA46

Left Fusiform-BA18-BA19

Fig. 2. Regions generated from group by age interaction analysis.

cognitive, functional implications. These findings are similarly con-
firmed by microstructural analyses. In PT adolescents, for example, the
microstructural integrity of white matter tracts within ventral and dor-
sal language pathways, which were significantly altered compared to Ts,
positively correlated with performance on semantic and phonological
tasks, respectively (Mullen et al., 2011).

Our present findings are of particular importance because they sug-
gest that differences in PT and T neural connectivity are not simply re-
flections of early and preserved perturbations, but rather are the result
of PTs more rapidly altering the number of connections to these areas
over the course of adolescence.

4.2. Maturation of the visual word form area

Interestingly, we found only a few regions that underwent reduc-
tions in RSC from childhood through adolescence, with only left
fusiform-BA18-BA19 reaching significance in PTs. This area of left
occipito-temporal cortex encompasses the visual word form area
(VWFA) (Yeatman et al., 2013). RSC studies have shown that the in-
volvement of VWFA in different RSNs changes across development. In
children, for example, VWFA participates in the visual RSN and then
transitions to the fronto-parietal network at adolescence (Vogel et al.,
2013). A longitudinal fMRI study of left occipital-temporal sulcus
found that the size of the VWFA region activated to visual word stimuli
increased from ages 8 to 12, then decreased from ages 13 to 15, and
remained largely stable into adulthood (Ben-Shachar et al., 2011).

Studies of anatomic connections from the VWFA show predominate
extension to hypothesized language areas, including left superior tempo-
ral gyrus, posterior medial temporal gyrus, Broca's area, and within the
left occipito-temporal sulcus (Bouhali et al., 2014; Yeatman et al.,
2013). The reduction in VWFA functional connectivity observed in our
PTs may represent either a global decrease in these connections to
VWEFA or a loss of connections from specific neural regions. Furthermore,

Table 3
Montreal Neurological Institute (MNI) coordinates of generated regions.

Brodmann's areas (BA) Center of Mass MNI (X, y, z)

Bilateral BA47-BA11-BA10-Left BA45 —6,43, -9

Left BA 45 —43,28,2

Left BA 47 —43,31, -4
Right BA 47 36,41, —15
Bilateral BA 11 8,43, — 16

Left BA 10 —30,48, —3
Right BA 10 33,52, —4

Left BA 46 —44, 40,1

Left fusiform-BA18-BA19 —33,—-71,—13

connectivity loss may be the result of a steady decrease in RSC or an ini-
tial expansion and later pruning, as observed in Ben-Shachar et al.
(2011).

4.3. Association between VWEFA connectivity and cognition

Notably, despite such remarkable and widespread connectivity
changes over time, only left VWFA connectivity correlated to scores on
VIQ, PIQ, and FSIQ before correction for multiple comparisons. The in-
volvement of the VWFA in reading has long been established. Early le-
sion studies demonstrating pure alexia (Greenblatt, 1973) have since
been corroborated by task-based fMRI studies showing VWFA activa-
tion during reading tasks (Ben-Shachar et al., 2011; Wandell, 2011;
Wandell et al., 2012). Additionally, DTI studies have shown that VWFA
receives white matter input from visual cortex and projects fiber tracts
to cortical language areas, further speaking to its role in visual language
processing (Bouhali et al., 2014; Yeatman et al., 2013).

Although its name implies specific involvement in visual word pro-
cessing, recent studies have argued against this specificity. For one, al-
though RSC correlations have been shown between purported
“reading regions” (Koyama et al., 2010), RSC whole brain analyses
have not demonstrated a designated “reading network” (Power et al.,
2011; Vogel et al., 2013; Yeo et al., 2011). Furthermore, RSC studies
demonstrate that VWFA is only weakly correlated with hypothesized
reading regions and is most strongly correlated with the dorsal atten-
tion network (Vogel et al., 2012a). This suggests that, while the VWFA
plays a pivotal role in visual word processing, it is not exclusively dedi-
cated to this function. Rather, it is likely more generally involved in the
processing of complex visual stimuli (Vogel et al., 2012b; Vogel et al.,
2014).

In light of the positive correlation we found between left VWFA con-
nectivity and cognitive and verbal performance, the decrease in connec-
tivity for PTs is paradoxical. It indicates that they are not effectively or
adaptively recruiting connections in these regions. Furthermore, this ac-
tive loss of connections does not reflect an enhanced, “mature” brain
(Fair et al., 2009; Stevens et al., 2009), but rather is associated with infe-
rior cognitive performance. PTs' worsening scores on VIQ, PIQ, and FSIQ
from ages 8 to 16 can be attributed in part to this decrease in connectiv-
ity. Interestingly, we did not observe a correlation between VWFA con-
nectivity and rapid naming scores (RDRL_Cmp). This differs from
expected given that several studies have found the VWFA to be involved
in visual letter and word recognition (Price et al., 1996; Cohen et al.,
2002; Ben-Shachar et al., 2011; Wandell, 2011; Wandell et al., 2012).
As we did not adjust for multiple comparisons, the significance of
these correlations in this exploratory analysis should be interpreted
with caution (Bender and Lange, 2001).
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Fig. 3.1CD plots and p values for group by age interaction. At age 8, PTs and Ts displayed similar connectivity in regions. PT but not T underwent significant increases in connectivity by age

16 in all areas except left fusiform-BA18-BA19 & left BA45.
4.4. Limitations

One limitation of this study is the use of interleaved residual fMRI data
to approximate resting state connectivity. Although Fair et al. (2007) have
described that interleaved residual data are both quantitatively and qual-
itatively similar to continuous resting data and may be an adequate alter-
native for RSC analyses, it is possible that these approximations are not an
accurate measure of true RSC. Other limitations include the relatively
small sample size, unadjusted Pearson correlations, and analyzing longi-
tudinal data from only two time points. Additionally, we cannot interpret
the changes in connectivity as being attributed solely to time or age differ-
ences due to the possibility of confounding from magnet effects.

Regardless, this does not minimize the observation that PT connectivity
changes are significantly different than T connectivity changes.

To the best of our knowledge, this is the first longitudinal study eval-
uating the development of intrinsic functional connectivity and lan-
guage in PT children through adolescence. The children who
participated in this study are part of a well-studied cohort with neuro-
imaging available from early in the neonatal period and extending
through young adulthood.

Future longitudinal studies should assess connectivity at several
time points over the course of childhood through adolescence, ideally
with larger numbers of PT and T children. It may be pertinent to corre-
late changes in cortical thickness to RSC as a metric for brain maturation.

Table 4
Unadjusted Pearson correlations between generated regions' connectivity and score at age 16.
VERBIQ VCIQ PERFIQ FULLIQ PPVT RDRL_Cmp
Bilateral BA47_BA11_BA10_LeftBA45 Pearson correlation coefficients —0.0750 —0.05056 —0.27232 —0.20537 0.15723 0.23503
p 0.7266 0.8145 0.1980 0.3357 0.4529 0.2581
Left Fusiform_BA18_BA19 Pearson correlation coefficients 0.46707 0.36750 0.41928 0.49088 0.24065 0.10950
p 0.0214 0.0773 0.0414 0.0149 0.2466 0.6023
Left BA45 Pearson correlation coefficients —0.07473 —0.05031 —0.10132 —0.09214 0.04644 0.17545
p 0.7286 0.8154 0.6376 0.6685 0.8255 0.4015
Left BA47 Pearson correlation coefficients —0.17325 —0.14823 —0.18649 —0.19468 —0.00563 0.11965
p 0.4182 0.4894 0.3829 0.3620 0.9787 0.5689
Right BA47 Pearson correlation coefficients —0.03099 —0.06313 —0.26783 —0.18179 —0.15021 031215
p 0.8857 0.7695 0.2058 0.3952 0.4736 0.1287
Bilateral BA11 Pearson correlation coefficients —0.01667 0.02428 —0.23584 —0.15659 —0.16158 0.18251
p 0.9384 0.9103 0.2672 0.4649 0.4403 0.3826
Left BA10 Pearson correlation coefficients —0.10211 —0.12229 —0.30733 —0.23721 —0.12313 031724
p 0.6350 0.5692 0.1441 0.2644 0.5576 0.1223
Right BA10 Pearson correlation coefficients —0.30007 —0.18210 —0.13887 —0.23281 —0.28134 —0.01274
p 0.1543 0.3944 0.5175 0.2736 0.1731 0.9518
Left BA46 Pearson correlation coefficients —0.24017 —0.24532 —0.26274 —0.27499 —0.06541 —0.07850
p 0.2583 0.2479 0.2148 0.1934 0.7561 0.7092

The bolded values are the p-values that are significant (< 0.05).
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5. Conclusions

PTs undergo significant expansion of RSC over time, which differs
markedly from Ts. Most notably, PTs showed paradoxical decreases in
RSC in the left occipito-temporal cortex, which was significantly corre-
lated with verbal and IQ measures. These data suggest that the develop-
ment of RSC in PTs does not reflect compensatory alterations in
connectivity, but rather may underscore and perpetuate impairment
in language and cognitive processing.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.01.016.
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