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Abstract

Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-

healing critical-sized defects since the local endogenous progenitor cells are not often adequate to 

restore tissue continuity or function. However, currently available cell-based regenerative 

strategies are hindered by numerous obstacles including inadequate cell availability, painful and 

invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel 

platform technology for inducing a quiescent stem cell-like stage using only a single extracellular 
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proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further 

purified and significantly increased the reprogramming rate of the yield multipotent FMOD 

reprogrammed (FReP) cells. We also exposed the ‘molecular blueprint’ of FReP cell osteogenic 

differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells 

into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of 

FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, 

engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were 

confirmed by histological and immunohistochemical staining. Taken together, we have provided 

an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. 

Therefore, FReP cells present a high potential for cellular and gene therapy products for bone 

regeneration.
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1. Introduction

Although bone tissue has a comparatively high regenerative capacity, its self-repairing 

process fails in critical-sized defects due to a lack of sufficient local osteoprogenitors to 

restore tissue continuity or function [1, 2]. Unfortunately, isolation or generation of safer 

and readily available regenerative cell sources remains a major challenge to date. For 

instance, direct transplantation of committed osteoblasts is hindered by inadequate cell 

availability, limited cell spreading, and poor survivability of implanted cells [3]. Meanwhile, 

invasive harvesting procedures reduce the benefits of mesenchymal stem cell (MSC) usage 

[4–6], whereas the risk of tumorigenesis hinders the clinical application of embryonic stem 

cells (ESCs) and induced pluripotent stem cells (iPSCs) [7–12]. Therefore, an urgent need 

exists to establish an alternative regenerative cell source for bone regeneration without 

significant tumorigenic risk.

To conquer this obstacle, we previously reported a novel technology that directly 

reprogrammed human dermal fibroblasts into a multipotent stage by using a single 

extracellular matrix proteoglycan, fibromodulin (FMOD), which is broadly distributed in 

connective tissues and has been found to be a critical component for maintenance of 

endogenous stem cells niches by modulating the bioactivities of growth factors [13, 14]. 

FMOD ReProgrammed (FReP) cells, the outcome of the FMOD reprogramming, expressed 

pluripotency markers, established embryoid bodies, and presented the capability to 

differentiate into ectoderm, mesoderm, and endoderm derivatives in vitro [15]. Moreover, 

transplanting in vitro pre-osteogenic initiated FReP cells in the muscle pouch of severe 

combined immunodeficiency (SCID) mouse led to bone generation without tumor formation 

[15], which suggested that FReP cells could be used as a novel osteoprogenitor for bone 

regeneration.

In the current study, we further improved the FMOD reprogramming technology. In 

addition, to further assess the potential of FReP cells in bone regeneration, we profiled the 
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gene expression of FReP cells during osteogenesis in vitro and evaluated the in vivo 

osteogenic efficacy of FReP cells in a clinically relevant critical-sized calvarial defect 

model.

2. Materials and Methods

2.1. FMOD production

cDNA of human FMOD transcript (Genbank assessor number: NM_002023) was subcloned 

into a commercially available vector pSecTag2A (Life Technology, Grand Island, NY) with 

C-terminal His-tag and transfected into CHO-K1 cells (ATCC, Manassas, VA) [16]. After 

establishing a stable expression clone, the FMOD was produced and purified by a contract 

research organization GenScript (Piscataway, NJ). Briefly, stable human recombinant 

FMOD-expressing CHO-K1 cell line was cultured in 1L serum-free Freestyle CHO 

Expression Medium (Invitrogen) at 37°C, 5% CO2 in an Erlenmeryer flask. Cell culture 

supernatant was harvested on day 10 for purification with HiTrap™ IMAC HP, 1-mL 

column (GE Healthcare, Uppsala, Sweden). The fractions from a 100 mM imidazole elution 

were collected and dialyzed against 20 mM phosphate-buffered saline (PBS), pH 7.4. After 

that, the sample with low conductivity was loaded onto HiTrap™Q HP 1-mL column (GE 

Healthcare) for further purification. The purified protein was then evaluated by SDS-PAGE 

and Western blot (Supplementary Fig. 1). FMOD purified under non-reducing conditions 

was dialyzed again and sterilized for cell reprogramming.

2.2. Cell Culture

Human newborn foreskin BJ-fibroblasts (ATCC) were cultured in a 4:1 mixture of 

Dulbecco’s Modified Eagle’s Medium (containing 4 mM L-glutamine, 1.0 g/L glucose and 

1.5 g/L sodium bicarbonate; Life Technology) and Medium 199 (Life Technology), 

supplemented with 10% fetal bovine serum (FBS; Life Technology) and 1% penicillin/

streptomycin (P/S; Life Technology). BJ-fibroblast-derived iPSCs (BJ-iPSCs) obtained by 

conventional retrovirus-mediated method [17] were maintained on Matrigel™ hESC-

qualified Matrix (BD Biosciences, San Jose, CA) pre-coated plates with mTESR®1 medium 

(STEMCELL Technologies, Vancouver, Canada).

2.3. FMOD reprogramming

4 × 105 cells/well BJ-fibroblasts were seeded in 6-well culture plates overnight to 

confluence before exposure to 0.4 mg/ml recombinant human FMOD in DMEM medium 

supplemented with 1% PS for reprogramming under a serum-free condition. Fresh medium 

was changed daily [15]. After 21-day continual FMOD reprogramming, FReP cells were 

harvested with ReLeSR™ (an enzyme-free hESC and hiPSC selection and passaging 

reagent [18, 19]; STEMCELL Technologies), and cultured on Matrigel™ hESC-qualified 

Matrix coated-plates with mTESR®1 medium [20].

2.4. Embryoid body (EB) formation and characterization

FReP cells harvested by ReLeSR™ reagent were seeded on AggreWell™ 800 Plates with 

AggreWell™ medium (STEMCELL Technologies) for EB formation following the 

Li et al. Page 3

Biomaterials. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



manufacturer’s instruction. After 3 days, EBs were harvested and cryostat sectioned at 5 µm 

for immunological staining.

2.5. In vitro differentiation towards endoderm derivatives

FReP cells harvested by ReLeSR™ reagent were cultivated in RPMI 1640 medium (Life 

Technology) supplied with 2% FBS, 2 mM L-glutamine, 1% P/S, and 100 ng/ml 

recombinant activin A (R&D systems, Minneapolis, MN) for 4 days, and then cultured 

without activin A for an additional 8 days [15].

2.6. In vitro osteogenic differentiation

For in vitro osteogenesis, FReP cells and their parental BJ-fibroblasts were transferred to AF 

solution (Life Technology) pre-coated plates and cultured in osteogenic medium [α-

Modified Eagle’s Medium (Life Technology) supplied with 10% FBS, 50 µg/ml ascorbic 

acid (Sigma-Aldrich, St. Louis, MO), 10 mM β-glycerophosphate (Sigma-Aldrich), 10−8 M 

dexamethasone (Sigma-Aldrich)and 1% P/S] for 4 weeks[15].

2.7. Animal model

All animal surgeries were performed under institutional approved protocols provided by 

Chancellor’s Animal Research Committee at UCLA (protocol number: 2008–084). 3 days 

prior to implantation, 5 × 105 tested cells were seeded on poly(DL-lactic-co-glycolic acid)/

hydroxyapatite (PLGA/HA) scaffolds (diameter: 3-mm; height: 1-mm) and cultured in 

osteogenic medium for in vitro induction [15]. The detailed procedure of scaffold 

preparation was described in Supplemental Material and Methods [21]. Non-healing, 

critical-sized (diameter: 3-mm) calvarial defects were created in the right parietal bone of 8-

week old SCID mice under anaesthetization [22]. One defect per animal was created. Cell-

free scaffold, scaffold + undifferentiated BJ-fibroblasts, and scaffold + BJ-iPSCs were used 

as controls. Calvaria were harvested at 8 weeks post-transplantation, fixed in 4% 

paraformaldehyde (Sigma-Aldrich) for 48 h. High-resolution µCT images were documented 

(SkyScan1172, SkyScan N.V., Kontich, Belgium) and analyzed by CTAn/CTVol software 

package provided by the manufacturer [23, 24]. After decalcification with 19% EDTA 

solution for 21 days, samples were sectioned at 5 µm for histological and 

immunohistochemical (IHC) evaluation.

2.8. PCR Array

Total RNA from in vitro cultured FReP cells as well as their parental BJ-fibroblasts was 

extracted using RNeasy® Mini Kit with DNase treatment (Qiagen, Valencia, CA). 0.8 µg 

RNA was injected into a RT2 First Strand Kit followed by quantitative reverse transcriptase-

polymerase chain reaction (qRT-PCR) analysis in a qBiomaker™ Screening PCR Array or a 

RT2 Profiler™ PCR Array (Human Osteogenesis; SABiosciences Corp., Valencia, CA), 

respectively. Three different cDNA templates were tested. qRT-PCR was performed on a 

7300 Real-time PCR System (Applied Biosystems, Grand Island, NY). Relative gene 

expression was evaluated by the manufacturer’s online services (http://

pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php). Complete gene symbols are listed 

in Supplementary Table 1.
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2.9. Western blot

Cells were harvested with RIPA buffer (Pierce, Rockford, IL) supplemented with Halt™ 

Protease and Phosphatase Inhibitor Cocktail (Pierce). 15 µg of total protein was loaded onto 

SDS-PAGE and transferred to polyvinylidene fluoride membrane (Immobilon®-PSQ; 

Millipore, Billerica, MA). All antibodies used for Western blot are listed in Supplementary 

Table 2. ECL Western Blotting Substrate (Pierce) was used for development.

2.10. Histological and Immunological staining

Hematoxylin and eosin (H&E) and Masson’s trichrome staining was used to detect global 

morphology. Alizarin Red staining and Von Kossa staining [23, 24] as well as 

immunological staining with antibodies against osteogenic markers were used for osteogenic 

differentiation assessment in vitro. Detailed information about the antibodies used for 

immunological staining is also provided in Supplementary Table 2. For counter staining, 

phalloidin (Life Technology) was used for F-actin staining, while 4’,6-diamidino-2-

phenylindole (DAPI; Life Technology) was used for nuclear staining.

2.11. Statistical analysis

Statistical analysis was conducted as per consultation with the UCLA Statistical 

Biomathematical Consulting Clinic. Data were presented as mean ± SD. Data analysis was 

achieved by OriginPro 8 (Origin Lab Corp., Northampton, MA). P-values less than 0.05 

were considered statistically significant.

3. Results

3.1. Purify and increase the reprogramming rate of FReP cells

After treatment with FMOD under a serum-free condition for 21 days, a portion of the 

homogenous spindle-shaped fibroblasts (Fig. 1a) converted to dome-shaped cells and 

clustered to form multilayer retractile colonies, while the other cells surrounding the 

colonies maintained the spindle shape and remained in monolayer (Fig. 1b). Using a newly 

developed, animal component-free and enzyme-free reagent ReLeSR™, which was 

developed to passage human pluripotent stem cells without manual selection or scraping [18, 

19], these two subsets of cells were easily dissociated. Following the incubation with 

ReLeSR™, monolayer cells (namely FReP-basal cells) remained attached to the culture 

plate (Fig. 1c), while the reprogrammed FReP cell colonies were lifted off of the culture 

plate (Fig. 1d).

These FReP cells formed ESC-like colonies (Fig. 1e) in the highly specialized, feeder-free 

mTESR®1 medium, which is widely used for human ESC and human iPSC maintenance 

[20]. In comparison with the manual scraping method, the ratio of ESC-like clone generation 

was 0.21% (209 ± 5.1 colonies/100,000 fibroblasts), which was almost 7-fold higher than 

our previously reported FMOD reprogramming efficacy (0.03%; 32 ± 2.6 colonies/100,000 

fibroblasts [15]; Paired-sample t-test, N = 6, P < 1.19 × 10−9). Immunostaining 

demonstrated the expression of core pluripotent transcriptional regulators NANOG, 

POU5F1, and SOX2in the yielded FReP cell colonies growth on Matrigel™ (Supplementary 

Fig. 2). Additionally, podocalyxin (PODXL), the surface antigen of human pluripotent cells 
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[25, 26], was also identified on these FReP cell colonies by two different antibodies TRA-1–

60 and TRA-1–80, which recognize proteoglycan epitopes on variants of the same protein 

(Supplementary Fig. 2). In suspension culture, FReP cells harvested by ReLeSR™ reagent 

formed stable EBs (Fig. 1f) with the staining of NANOG, POU5F1, and SOX2 

(Supplementary Fig. 3a). These FReP cell-derived EBs (FReP-EBs) also spontaneously 

presented the staining of bone morphogenetic protein 4 (BMP4; Supplementary Fig. 3b), 

which is essential for mesoderm formation [27, 28], and flt-related receptor tyrosine kinase 1 

(FLK1, aka. vascular endothelial growth factor receptor 2; Supplementary Fig. 3b), which is 

a lateral plate mesoderm marker [29]. Interestingly, although the early ectodermal marker 

NESTIN [30] was found throughout the entire FReP-EBs, neuron specific βIII-tubulin was 

mainly observed at the surface of these FReP-EBs (Supplementary Fig. 3c). No significant 

expression of endoderm markers was observed in FReP-EBs (data not shown); however, 

FReP cells could differentiate into pancreatic lineage cells that were characterized with the 

expression of pancreatic and duodenal homeobox 1 (PDX1, aka. insulin promoter factor 1; 

Supplementary Fig. 4), the marker and essential transcription factor of pancreatic 

differentiation [31]. These phenomena confirmed that ReLeSR™ reagent-lifted FReP cells 

have the same multiple lineage differentiation potential as FReP cells harvested by the 

scratching method reported previously [15]. Additionally, FReP-basal cells expressed only 

moderate NANOG but none of the other tested pluripotent markers (Supplementary Fig. 2) 

and did not form stable EBs in suspension culture, which suggested that FReP-basal cells are 

likely a different type of cell to be further studied. Taken together, we successfully purified 

and significantly increased the reprogramming rate of the FReP cells by using ReLeSR™ 

reagent.

3.2. Osteogenic differentiation of FReP cells in vitro

After cultivation in osteogenic differentiation medium in vitro for 4 weeks, both Alizarin 

Red staining and von Kossa staining demonstrated the mineralization of FReP cells (Fig. 

2a–b), which agreed with immunostaining against the broadly accepted major osteogenic 

markers including alkaline phosphatase (ALP), osteocalcin (OCN), and bone sialoprotein II 

(BSPII), respectively (Fig. 2c–d). However, under the same situation, no evidence indicated 

the osteogenic differentiation of their parental BJ-fibroblasts (Fig. 2).

3.3. Expression of pluripotent genes in FReP cells during in vitro osteogenic 
differentiation

In agreement with the immunostaining results presented previously (Supplementary Fig. 2), 

qRT-PCR showed the elevated transcription levels of NANOG, POU5F1, SOX, and PODXL 

in FReP cells in comparison with those of their parental BJ-fibroblasts (Fig. 3a). During the 

in vitro osteogenic differentiation, these genes were significantly reduced (Fig. 3a). 

qBiomaker™ Screening PCR Array also revealed that the other subset of pluripotent 

markers, including left-right determination factor 1 (LEFT1), developmental pluripotency 

associated 4 (DPPA4), and zinc finger protein 42 (ZFP42) (Fig. 3b), which were 

significantly increased in undifferentiated FReP cells, had been rapidly downregulated to the 

same levels of their parental BJ-fibroblasts due to the osteogenic differentiation (Fig. 3a–b). 

Interestingly, another pluripotency marker growth differentiation factor 3 (GDF3), which 

was also dramatically induced in FMOD reprogramming, exhibited a specific, biphasic 
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expression profile characterized by a sharp decrease in the first week of osteogenic 

differentiation followed by a slower elevation stage from then on (Fig. 3c). However, the 

general GDF3 levels were significantly higher than BJ-fibroblasts during the entire 

reprogramming and osteogenic differentiation (Fig. 3c). Western blotting results confirmed 

the expression of these pluripotent markers (Supplementary Fig. 5), which demonstrated the 

loss of pluripotency of FReP cells during osteogenic differentiation.

Surprisingly, DNA (cytosine-5-)-methyltransferase 3β (DNMT3β), which was highly 

expressed in ESCs, exhibited consistently relatively low transcription levels in FReP cells 

regardless of reprogramming and osteogenic differentiation (Fig. 3d). This result supported 

the hypothesis that DNMT3β is dispensable for pluripotent/multipotent cell reprogramming 

and maintenance [32–34]. Moreover, since hypermethylation of genomic DNA by 

DNMT3α and DNMT3β is critical for ECSs to form teratomas in vivo [35], the consistently 

low level of DNMT3β during FMOD reprogramming may have contributed to the low 

tumorigenic potential of FReP cells in addition to low c-MYC and high p15 and p21 levels 

reported previously [15].

3.4. Osteogenic gene profile of FReP cells during in vitro osteogenic differentiation

PCR arrays are the most reliable tools for analyzing the expression of a focused panel of 

genes with reasonable costs. Using a commercially available Human Osteogenesis RT2 

Profiler PCR Array, we evaluated the expression of 84 genes related to osteogenic 

differentiation in FReP cells with their parental BJ-fibroblasts as control (Fig. 4 and 

Supplementary Table 3). Expression of certain specific sets of genes was described below:

Osteoblast commitment and differentiation are regulated by diverse growth factors [36]. 

Among them, transforming growth factor (TGF)βs and their family members, such as 

BMPs, have been implicated in both maintenance and differentiation of pluripotent cells 

[37]. Thus, we first assessed the expression of TGFβ family members during FReP cell 

osteogenic differentiation in vitro. In comparison with BJ-fibroblasts, undifferentiated FReP 

cells presented significantly higher levels of all three TGFβ isoforms (Supplementary Fig. 

6a–c). Expression of TGFβs sharply decreased in the FReP cells during the first week of 

osteogenic differentiation, and then maintained low levels throughout the entire in vitro 

osteogenic differentiation (Supplementary Fig. 6a–c). On the contrary, BJ-fibroblasts had 

consistent TGFβ1 levels during the entire four-week cultivation, while the expression levels 

of TGFβ2 and TGFβ3 continually increased throughout weeks 2–4 (Supplementary Fig. 6a–

c). Meanwhile, FReP cells had significantly higher BMP2 levels than their parental BJ-

fibroblasts during the entire four-week osteogenic differentiation (Supplementary Fig. 6d). 

Interestingly, BMP2 presented a specific, three-phasic expression pattern in FReP cells 

characterized by significantly reduced levels at week 1, followed by a moderate increase at 

week 2, and then maintained the same level during the last two weeks (Supplementary Fig. 

6d). Undifferentiated FReP cells have lower levels of BMP4 than fibroblasts, but BMP4 

expression was significantly upregulated in FReP cells in week 1 of osteogenic 

differentiation and kept at that level thereafter (Supplementary Fig. 6e). In addition to the 

TGFβ family, the insulin-like growth factor (IGF) family also stimulates osteoblast function 

and bone matrix deposition [38]. In this study, we found that expression of IGF1 was 
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reduced in BJ-fibroblasts during week 1 of cultivation and kept at an extremely low level 

afterwards (Supplementary Fig. 6f). In FReP cells, IGF1 maintained consistent levels 

throughout weeks 1–3 of osteogenic differentiation followed by a significant increase in the 

last week (Supplementary Fig. 6f). On the other hand, BJ-fibroblasts had a stable IGF2 

expression, while FReP cells had a continually elevated expression of IGF2 during the entire 

osteogenic differentiation (Supplementary Fig. 6g). Fibroblast growth factor (FGF)2 (aka. 

basic fibroblast growth factor) also plays an essential role in promoting the conversion of 

uncommitted pluripotent/multipotent cells to osteochondroprogenitors and the subsequent 

osteogenic differentiation via multiple pathways [28, 39–45]. Transcription of FGF2 was 

markedly reduced in week 2 when BJ-fibroblasts were cultured in the osteogenic medium 

(Supplementary Fig. 6h). On the contrary, the transcription of FGF2 significantly increased 

in FReP cells during weeks 1 and 2 of osteogenic differentiation followed by an obvious 

drop in weeks 3 and 4 (Supplementary Fig. 6h).

At the transcriptional factor level, FMOD reprogramming significantly downregulated the 

transcription of BMP-responsive transcriptional factor SMAD1 (Supplementary Fig. 7a). 

However, the expression of SMAD1 was recovered in FReP cells in week 1 of osteogenic 

differentiation and kept at higher levels than those of BJ-fibroblasts afterward 

(Supplementary Fig. 7a). Although expression of SMAD5, another essential BMP-

responsive transcriptional factor, was not influenced by the FMOD reprogramming, FReP 

cells exhibited higher SMAD5 levels than parental BJ-fibroblasts when cultured in 

osteogenic medium (Supplementary Fig. 7b). The transcription of TWIST1 and SOX9, which 

are required for osteochondroprogenitor lineage specification [46–48], was significantly 

induced in FReP cells in week 1 of osteogenic differentiation and dropped back to the basal 

levels in week 2, while expression of TWIST1 and SOX9 was kept at low levels in BJ-

fibroblasts during the entire four-week in vitro cultivation (Supplementary Fig. 7c,d). As a 

master transcriptional activator of osteoblast differentiation [46, 49], RUNX2 (originally 

called Cbfa1) was stimulated in FReP cells throughout the four-week osteogenic period, 

especially weeks 3–4 (Supplementary Fig. 7e). Interestingly, in FReP cells, the transcription 

factor osterix (OSX), which is regulated by RUNX2 and is required for mature bone 

formation [50], was down-regulated in week 1 of osteogenic differentiation, followed by an 

increase in weeks 2 and 3 before dropping back to the basal level in week 4 (Supplementary 

Fig. 7e). Meanwhile, the transcription of OSX decreased in BJ-fibroblasts during the entire 

four-week in vitro cultivation (Supplementary Fig. 7f). Vitamin D receptor (VDR), which is 

a member of the nuclear receptor superfamily of transcription factors that is highly 

expressed during stem cell osteogenic differentiation [51], was also significantly induced in 

FReP cells throughout the in vitro osteogenic differentiation period (Supplementary Fig. 7g). 

At the same time, the transcription of VDR was continually decreased in BJ-fibroblasts 

(Supplementary Fig. 7g).

With regard to the extracellular matrix (ECM), type I collagen comprises approximately 

80% of the total proteins present in bone [52], and its expression was constantly upregulated 

in FReP cells instead of BJ-fibroblasts during the in vitro osteogenic differentiation 

(Supplementary Fig. 8a,b). Interestingly, transcription of osteopontin (OPN; which is 

important for biomineralization [53] and anchoring osteoclasts to the mineral matrix of 
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bones [54]) and ALP, a tissue-nonspecific isozyme (which is presumed to be involved in the 

calcification of bone matrix [55]; encoded by gene ALPL), in FReP cells was similar to that 

of OSX: decreased in week 1, up-regulated in weeks 2 and 3, and down-regulated again in 

week 4; while, in BJ-fibroblasts, both OPN and ALPL maintained low expression levels 

(Supplementary Fig. 8c,d). On the other hand, transcription of OCN (aka. bone γ-

carboxyglutamic acid-containing protein; which is secreted solely by osteoblasts [56] and 

encoded by the gene BGLAP), was stimulated in FReP cells but not BJ-fibroblasts in weeks 

3 and 4 of in vitro osteogenic differentiation (Supplementary Fig. 8e). Taken together, the 

gene profiling data agreed with our immunological staining data presented above (Fig. 2) 

and confirmed the osteogenic differentiation of FReP cells in vitro.

3.4. Implantation of FReP cells in a critical-sized calvarial defect model

Our previous studies have shown that implantation of FReP cells into a pocket in the 

gluteofemoral muscle of SCID mice with osteoinductive demineralized bone matrix (DBM) 

resulted in osteogenic differentiation in vivo [15]. As we noticed that DBM is an 

osteoinductive scaffold, which contains osteogenic growth factors, such as BMP2, and 

multiple undefined growth factors that holding the potential to induce osteogenesis as well 

as undesired side toxic effects [57]. In order to test the feasibility of FReP cells as an 

alternative cell source for bone regeneration in a more challenging clinically relevant 

traumatic scenario, FReP cells were seeded on osteoconductive PLGA/HA scaffolds and 

implanted into a critical-sized SCID mouse calvarial defect. PLGA-HA scaffold was chosen 

in the current study instead of DBM scaffold to eliminate the osteoinductive stimulation of 

the growth factors on the DBM scaffold.

3.4.1. Radiography—As proof of concept in the critical-sized calvarial defect model, cell-

free scaffold alone did not induce obvious bone regeneration at 8 weeks post-implantation 

(Fig. 5a). As described above, all tested cell types (BJ-fibroblasts, BJ-iPSCs, and FReP 

cells) were seeded on the PLGA/HA scaffold and underwent a 3-day in vitro osteogenic 

initiation before implantation. By using MTT assay as previously described [58], we found 

no significant difference on adhesion cell numbers between the three groups prior to 

implantation (One-way ANOVA test, N = 6, P = 0.71).

Although complete defect healing was not observed in any of the tested groups at 8 weeks 

post-implantation, significantly more bone formation was observed in the group implanted 

with FReP cells than the groups implanted with BJ-fibroblasts or BJ-iPSCs (Fig. 5a), which 

was further confirmed by the quantification of bone volume density (bone volume/total 

volume, BV/TV; Fig. 5b) and bone mineral density (BMD; Fig. 5c). It is worth noting that, 

while newly formed bone tissue was detected throughout the entire defect in both the BJ-

fibroblast group and the FReP cell group, bone formation in the BJ-iPSC group was limited 

at the edge of the defects (Fig. 5a).

3.4.2 Histological and IHC analyses—Consistent with radiographic analysis, there was 

minimal bone regeneration in the group implanted with cell-free scaffold alone (Fig. 6a). In 

the BJ-fibroblast group, bone formation was not restricted in the defect area, but also 

escaped the defect and extended underneath with obvious ‘cyst-like bone voids’ in the newly 
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generated bone tissue and the defect (Fig. 6b), which contributed to the relative low BMD 

value (Fig. 5c). In agreement with the radiographic image, the new bone tissue was 

predominantly observed at the edge of the defects in the BJ-iPSC group (Fig. 6c). However, 

a mineralized bony bridge connecting the two defect ends without ectopic bone formation 

was clearly identified by H&E and Masson’s trichrome staining in the FReP cell group (Fig. 

6d).

Meanwhile, human cells (BJ-fibroblasts, BJ-iPSCs, and FReP cells) survived in newly 

generated bone tissue of SCID mouse calvarial defects at 8 weeks post-implantation and 

were identified by antibodies against human nuclei and human major histocompatibility 

complex (MHC) Class I (Fig. 6). However, immunohistochemical staining revealed that 

there is no significant overlap between the human cell marker staining and osteogenic 

differentiation marker (RUNX2 and OCN) staining in the BJ-fibroblast group (Fig. 6b), 

which indicated implanted fibroblasts may only function as a paracrine signal provider to 

support calvarial defect healing instead of engrafting into the newly formed bone tissue. On 

the contrary, the spatial co-localization of human cell markers with osteogenic markers was 

detected in the osteogenic regions of the defects in both BJ-iPSC group and FReP cell group 

(Fig. 6c,d), which confirmed the engraftment and differentiation of BJ-iPSCs and FReP cells 

in vivo. Considering the significantly more bone formation with higher density in the FReP 

cell group than that of the BJ-iPSC group, FReP cells presented a significant advantage in 

bone regeneration efficacy compared with parental BJ-fibroblasts and BJ-iPSCs.

4. Discussion

Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-

healing critical-sized defects [4–6, 59, 60]. A principle challenge is to produce enough 

regenerative cells through a simple, consistent approach that bypasses ethical concerns and 

allogeneic immune rejection and avoids genomic alteration for in vivo bone formation. In 

addition, from a FDA point of view, all cellular and gene therapy (CGT) products must 

fulfill the prescribed requirements of purity, potency, and safety. ESCs do not meet these 

requirements since ESCs have the potential risk of rejection owing to their allogeneic nature 

[61] and tumorigenesis [7]. Although MSCs have been proposed as potential cell sources for 

bone regeneration [59, 60], the low stem cell harvest rate and highly variable multipotency 

caused by donor variability (particularly in the aged or osteoporotic population, whose MSC 

number and differentiation capability are considerably reduced) significantly diminish the 

efficacy of MSC-based therapies [62–64]. In addition, the traditional avenues of MSC 

derivation, which include bone marrow aspiration, liposuction, and less commonly muscle 

biopsy, are all more invasive and entail potentially more pain and medical or surgical risks, 

such as bleeding and anesthesia, than a simple skin biopsy [4–6]. On the other hand, iPSCs 

can be derived directly from dermal fibroblasts, which are easily obtained and expanded 

from skin biopsies [17, 65]. Moreover, there is already a Food and Drug Administration 

(FDA) approved product for autologous dermal fibroblast expansion and injection 

(www.fibrocellscience.com), which confirmed the safety of autologous dermal fibroblast 

application [66]. However, because the introduction of transcriptional factors essential for 

embryonic development (such as Yamanaka factors or Thomson factors) into the genome of 

target somatic cells is essential for classic iPSC generation, and such a process may involve 
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unwanted gene activation and interruption from viral integration, iPSCs are likely to carry 

an even higher risk of tumorigenesis than ESCs [8–12]. The non-integrative iPSC generation 

techniques, such as those using adenoviruses, DNA, and oocytes or ESCs, are complicated 

by a plethora of disadvantages including cell penetration, cytosolic delivery, sensitivity to 

reagents, intensive labor, and contamination with non-human molecules, and do not 

eliminate the risk of tumorigenesis, which remains a significant barrier to safe clinical 

application of iPSCs [10–12, 67–71]. Thus, current cell-based strategies do not safely and 

adequately satisfy the requirements of human skeletal muscle and bone tissue engineering.

Previously, we have demonstrated that, under serum-free conditions, continuous treatment 

with FMOD is sufficient to reprogram human dermal fibroblasts into quiescent stem cell-

like FReP cells with the capacity to differentiate into multiple lineage derivatives [15]. More 

importantly, since FMOD reprogramming does not involve either genomic alteration or 

oncogene participation, the FReP cells do not form teratomas in vivo [15], which makes 

FReP cells a much safer cell source than iPSCs for tissue regeneration. In the current study, 

by using an enzyme-free hESC and hiPSC selection and passaging reagent, ReLeSR™, we 

further purified FReP cells by eliminating the non-fully reprogrammed FReP-basal cells and 

observed a significant 7-fold increasein FReP cell colony formation. Moreover, we also 

demonstrated that FReP cells could differentiate into osteoblasts in vitro and successfully 

formed bone tissue in vivo without the induction of tumorigenesis in both intramuscular 

(muscle pouch [15]) and bone (calvarial) defect SCID mouse models. It is worth noting that 

the FReP cell-based in vivo bone formation is not reliant on exogenous osteogenic growth 

factors, such as BMP2, which could be delivered directly or released from the 

osteoinductive DBM scaffold [72]. Moreover, an inadequate dose of BMP2 could induce 

adverse clinical effects such as life-threatening inflammation and ectopic bone formation 

with neurologic impairment [73, 74]. Additionally, osteoinductive scaffolds with undefined 

composition, such as DBM, could also increase the risk for undesired side-effects such as 

host immune response and disease transmission [57]. By avoiding the exogenous application 

of BMP2 and DBM, FReP cell-based therapies will provide a potentially safe alternative 

route to treat delicate bone defects, especially for treatment of calvarial defects in close 

proximity to the brain.

Moreover, in the current study, we revealed a rough three-stage ‘molecular blueprint’ of 

FReP cell osteogenic differentiation by gene profiling (Fig. 7):

Stage 1 (week 1): Due to the stimulation of osteogenic media, the pluripotent markers 

and TGFβs, which are important for pluripotency maintenance[37], were also 

significantly decreased in FReP cells (Figs. 3, and Supplementary Figs. 5, 6a–c). On the 

other hand, due to the elevation of autocrine BMP4 (Supplementary Fig. 6e), which can 

induce mesodermal differentiation [27, 75], FReP cells underwent mesodermal 

differentiation. Then, under the combo stimulation of BMP4, FGF2, and IGF2 

(Supplementary Figs. 6e–g), like MSCs [36, 41, 75–78], FReP cells further converted to 

osteochondroprogenitors with increased TWIST1, SOX9, and VDR levels 

(Supplementary Figs. 7c,d,g). Surprisingly, BMP2 was significantly down-regulated in 

FReP cells in week 1 of osteogenic differentiation (Supplementary Figs. 6d), 

accompanied by its functional competitor GDF3 (Fig. 3c and Supplementary Figs. 5c) 
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[79, 80]. Previous studies suggested that the balance between BMP2 and GDF3 

dominates the fate of pluripotent cells [81], thus the elevated BMP2/GDF3 ratio 

(Supplementary Fig. 9) may also contribute to the osteochondroprogenitor commitment 

of FReP cells. On the other hand, TWIST1 and SOX9 were down-regulated in BJ-

fibroblasts in the same situation (Supplementary Figs. 7c–d), indicating that BJ-

fibroblasts did not convert to osteochondroprogenic lineage cells.

Stage 2 (week 2): In this stage, under the influence of endogenous BMP2 and FGF2[45], 

FReP cells differentiated into pre-osteoblasts with increased osteogenic markers, such 

as RUNX2, OSX, OPN, ALPL, and type I collagen (Supplementary Figs. 7e–f and 

Supplementary Figs. 8a–d). However, down-regulation of SOX9 and TWIST1 in FReP 

cells was observed (Supplementary Figs. 7c–d) as the requirement for osteoblast 

differentiation and mineralization [47, 82].

Stage 3 (week 3–4): In this stage, IGF1 and IGF2 [36, 76] dominated the FReP cell-

derived osteoblast maturation in this stage (Supplementary Figs. 6f–g), and resulted in 

osteoblast maturation and later mineralization, which was characterized by further type 

I collagen accumulation (Supplementary Figs. 8a–b) and rapidly induced OCN 

expression (Supplementary Fig. 8e).

In summary, we have generated novel multipotent FReP cells by exposing human dermal 

fibroblasts to FMOD under serum-free scenarios without genomic alteration or oncogene 

participation. In this study, we further increased the purity and reprogramming rate of FReP 

cells by using an enzyme-free selection and passaging reagent. By profiling the gene 

expression during FReP cell osteogenesis, we uncovered the ‘molecular blueprint’ of FReP 

cell osteogenic differentiation. More importantly, we demonstrated the robust osteogenic 

capacity of FReP cells in a clinically relevant animal model making them a promising 

candidate for bone tissue regeneration. No doubt, considering the short history for FMOD 

reprogramming investigation, many more studies are warranted to enrich our knowledge 

about FReP cells to the levels that we understand currently available stem cells, including 

further clarifying the FMOD reprogramming mechanism, and revealing the potential 

immune-modulation and paracrine function of FReP cells. Additionally, more extensive 

investigation will be required to translate FReP cell investigation from bench 

characterization to clinical application, including, but not limited to, optimizing the cell 

seeding density and culture procedure [83–86], minimizing the xenogeneic exposure for in 

vitro osteogenic initiation, enhancing the properties of the supporting osteoconductive 

scaffold(s), improving the interaction between FReP cells and scaffolds [85, 86], and large 

animal efficacy and safety tests.

5. Conclusion

We have pioneered the induction of multipotency in somatic cells by using only a single 

proteoglycan, FMOD, without gene transduction. In the current study, we further purified 

and significantly increased the reprogramming rate of FReP cells by eliminating the non-

fully reprogrammed FReP-basal cells with a newly developed, animal component-free and 

enzyme-free hESC and hiPSC selection and passaging reagent ReLeSR™. Moreover, by 

demonstrating the potency, safety, and ‘molecular blueprint’ of FReP cell-based bone 
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regeneration, we are confident that FReP cells present a high potential for CGT products for 

bone regeneration, which supported the hypothesis that FMOD reprogramming has the 

potential to shift the paradigm of reprogramming autologous cells for tissue reconstruction 

into a much safer protein-based process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. FMOD reprogramming and FReP cell purification
(a) Confluent BJ-fibroblasts were treated with FMOD for 21 days under serum-free 

conditions. (b) The homogenous spindle-shaped fibroblasts divided into two subsets of cells: 

dome-shaped cells clustered to form multilayer retractile colonies, and spindle-shaped cells 

remained in monolayer around clustered colonies. After dissociation of ReLeSR™, (c) 

spindle-shaped cells remained on the culture plates while (d) the clustered dome-shaped 

cells were lifted off of the culture plate. The dome-shaped cells formed (e) ESC-like 

colonies in adherent culture or (f) embryoid body in suspension culture. Bar = 500 µm.
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Fig. 2. Osteogenic differentiation of FReP cells after a 4-week cultivation in osteogenic medium 
in vitro
(a) Alizarin Red staining, (b) von Kossa staining, (c) immunocytochemistry staining against 

ALP and OCN, and (d) immunofluorescent staining against OCN and BSPII, respectively. 

DAPI was used for nuclear staining. Bar = 400 µm (a–c), or 50 µm (d).
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Fig. 3. Expression of genes related to pluripotency in FReP cells during osteogenic differentiation 
in vitro
(a) NANOG, POU5F1, SOX2, and PODXL; (b) LEFTY1, DPPA4, and ZFP42; (c) GDF3; 

and (d) DNMT3β, SOX2 expression was analyzed with TaqMan® Gene Expression Assays 

(Life Technologies) and SsoFast™ Probes Supermix with ROX (Bio-Rad 

Laboratories)using three different cDNA templates obtained with iScript™ Reverse 

Transcription Supermix forqRT-PCR (Bio-Rad Laboratories). Expression of other genes 

was analyzed by qBiomaker™ Screening PCR Array (Qiagen) using three different cDNA 
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templates. Concomitant GAPDH was used as a housekeeping standard. Data were 

normalized to un-reprogrammed BJ-fibroblasts (black dotted line). One-way ANOVA and 

Two-sample t-test were used to compare the data statistically (N = 3).
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Fig. 4. Expression of genes related to the development of the skeletal system as well as bone 
mineral metabolism during osteogenic differentiation in vitro
Gene expression was analyzed by RT2 Profiler™ PCR Array (Human Osteogenesis, 

Qiagen). Concomitant GAPDH was used as a housekeeping standard. Genes with extremely 

low expression levels (average threshold cycle is either undetermined or greater than the cut-

off value of 35 cycles), including αHSG, BMP5, BMP7, CALCR, COL2α1, DLX5, IHH, 

ITGαM, MMP8, MMP9, and PHEX (Supplementary Table 3), were omitted from the heat 

map cluster. (N=3)
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Fig. 5. Radiographic analysis of bone regeneration in critical-sized SCID mouse calvarial defects 
at week 8 post-implantation
(a) µCT image of bone regeneration in critical-sized mouse calvarial defects implanted with 

cell-free scaffold (N = 5), scaffold + undifferentiated BJ-fibroblasts (N = 9), scaffold + BJ-

iPSCs (N = 5), and scaffold + FReP cells (N = 11). 5 × 105 cells were seeded on PLGA/HA 

scaffold and cultured in osteogenic medium 3 days prior to implantation. Images were 

documented at a resolution of 20.0 µm. (b) Bone volume density and (c) bone mineral 

density quantification revealed that implantation of FReP cells resulted in significantly more 
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bone formation than other groups in critical-sized SCID mouse calvarial defects at week 8 

post-transplantation. *, significant difference revealed by Mann-Whitney test; green stars 

indicate the significance from the cell-free scaffold; red stars indicate the significance in 

comparison to scaffold + FReP cells.
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Fig. 6. Engraftment, persistence, and osteogenesis of FReP cells in critical-sized SCID mouse 
calvarial defects at week 8 post-implantation
(a) H&E and Masson’s trichrome staining confirmed that only minimal bone regeneration 

occurred in the group implanted with cell-free scaffold alone, while (b) implantation of BJ-

fibroblasts resulted in bone formation underneath the calvarial defect with obvious ‘cyst-like 

bone voids’ in the newly generated bone tissue. (c) The newly formed bone tissue was 

predominantly observed at the edge of the defects in BJ-iPSC group. (d) On the contrary, 

implantation with FReP cells led to a mineralized bony bridge connecting the two defect 
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ends without ectopic bone formation. In Masson Trichrome staining, the matured bone is 

stained in red, and osteoid is stained in blue. Green dotted lines outlined the initial edges of 

the calvarial defect, while blue dotted lines outlined the implantation area, respectively. 

Furthermore, immunostaining of human nuclei and MHC Class I as well as osteogenic 

markers, RUNX2 and OCN, revealed BJ-iPSCs and FReP cells underwent osteogenic 

differentiation (solid green arrows) in active osteogenic regions of the defects, while BJ 

fibroblasts (open green arrows) were only detected in the fibrosis area instead of newly 

formed bone tissues. Bar = 500 µm (red) or 50 µm (black).
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Fig. 7. 
‘Molecular blueprint’ of FReP cell osteogenic differentiation.
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