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Abstract

Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) 

are crucial for cell life. These two organelles are intimately connected and collaborate to essential 

processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between 

mitochondria and endoplasmic reticulum occur through structures named mitochondria associated 

membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which 

serve multiple functions at different cellular sites. Growing evidence strongly suggest that 

alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including 

amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. 

Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are 

increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. 

This evidence strongly suggests that, rather than considering the two organelles separately, a better 

understanding of the disease process can derive from studying the alterations in the their crosstalk. 

In this review we discuss normal and pathological ER-mitochondria interactions and the evidence 

that link them to ALS.
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Introduction

Cells depend on a compartmentalized system for biochemical processes and signaling 

responses to live and thrive. Mitochondria are double membrane organelles enclosing their 

own DNA (mitochondrial DNA) in the matrix. They are the main cellular energy producers 

through oxidative phosphorylation and the physical hubs for the majority of the enzymatic 
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pathways of intermediate metabolism. The endoplasmic reticulum (ER) is a large 

membrane-bound network surrounding a single lumen that spreads throughout the 

cytoplasm. The ER is localized within reach of contact with all other membrane structures 

and organelles, including the nuclear envelope, plasma membrane, and mitochondria. The 

ER is particularly important for protein folding and intracellular calcium storage. Through 

physical and functional interactions, ER and mitochondria contribute to common crucial 

cellular processes, such as calcium homeostasis and lipid biosynthesis. Numerous lines of 

evidence suggest that dysfunction of these organelles participates in the pathogenesis of 

various neurodegenerative conditions, including amyotrophic lateral sclerosis (ALS). A 

large body of literature has addressed the involvement of ER and mitochondria individually. 

However, due to the emerging concept that these organelles are physically and functionally 

intertwined, it is logical to address ER-mitochondria interactions in discussing their roles in 

disease pathogenesis. This review article briefly describes established concepts supporting 

the involvement of mitochondria and ER in ALS, while delving deeper into emerging 

evidence for abnormal ER-mitochondria crosstalk in the context of ALS and discussing new 

perspectives in ER-mitochondria involvement in the pathogenesis of this disease.

Physiological mitochondria-ER interactions

Physical contacts between ER and mitochondria occur at specific sites called mitochondria 

associated membranes (MAMs). MAMs are specialized ER membranes tethered to 

mitochondria through a host of protein interactions. Many proteins have been identified in 

the MAMs (van Vliet et al., 2014). They can be broadly categorized into calcium signaling 

proteins, such as inositol 1,4,5-triphosphate (IP3) receptor (IP3R) and voltage dependent 

anion channel (VDAC), lipid metabolism, such as phosphatidylethanolamine N-

methyltransferase 2 (PEMT2) and fatty acid-CoA ligase 4 (FACL4), autophagy related 

proteins, such as ATG15 and ATG4, and tethering proteins, such as mitofusin 2 (Mfn2).

Two fundamental mitochondria-ER functional interactions occurring at the MAMs are 

phospholipid biosynthesis and intracellular calcium handling. Enzymes involved in 

phospholipid biosynthesis are concentrated in MAMs, where they metabolize phospholipid 

intermediates both on the mitochondrial and the ER membranes (Vance, 2014). Phospholipid 

intermediates are shuttled back and forth between the two organelles during the biosynthetic 

process. For example, phosphatidylserine (PS) made in the ER is transferred to mitochondria 

to be converted to phospatidyletanolamine (PE), and PE goes back to the ER to be 

incorporated into biological membranes.

MAMs are also involved in ER-mitochondria interactions through calcium transfer. The ER 

is a reservoir for intracellular calcium, able to store up to hundreds of micromolar calcium. 

Particularly in non-excitable cells, calcium signaling pathways are activated by hormones 

that act through G protein-coupled receptors and production of inositol 3-phosphate (IP3), A 

puff of ER calcium released through IP3R activates calcium-induced calcium release 

(ICICR) by ryanodine receptors (RyRs) to increase cytosolic calcium and trigger signals 

regulating a multiplicity of calcium-dependent systems. ICICR through RyRs is particularly 

important in muscle cells, where it activates myofibers contraction, but it has been proposed 

that it is also involved in neuronal plasticity (Barbara, 2002), suggesting a role for this 
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receptor in intracellular signaling in neurons. Mitochondria actively take up calcium through 

the mitochondrial calcium uniporter (MCU). MCU activity is membrane potential 

dependent, and requires low micromolar calcium to initiate uptake (Baughman et al., 2011; 

De Stefani et al., 2011). Close apposition of ER and mitochondrial membranes at MAMs, 

where ER calcium is released through IP3Rs and RyRs, allows for “hot spots” of calcium 

transfer from ER to mitochondria, because local calcium concentration is sufficient to trigger 

full MCU activity (Rizzuto et al., 1993; Rizzuto et al., 2004). Calcium entry into 

mitochondria boosts oxidative phosphorylation, as the dehydrogenases of the Krebs cycle 

are stimulated by calcium (Cardenas et al., 2010; McCormack and Denton, 1980). On the 

other hand, excessive mitochondrial calcium accumulation can cause the opening of the 

mitochondrial permeability transition pore (MPTP), which has been associated with 

activation of cell death pathways (Rasola and Bernardi, 2011). It was demonstrated 

experimentally that altering the physical distance between the opposing membranes affect 

calcium flow from ER to mitochondria and cell viability (Csordas et al., 2006).

In addition to the interactions mentioned above, it was recently proposed that ER plays a 

critical role in the regulation of mitochondrial dynamics, especially organellar fission. ER-

associated mitochondrial division (ERMD), is a process whereby the ER tubules wrap 

around mitochondria at the sites where division occurs (Friedman and Nunnari, 2014). This 

process is highly conserved throughout evolution and in yeast it depends on proteins of the 

ER (ER)-mitochondria encounter structure (ERMES) complex (Kornmann and Walter, 

2010). This complex also regulates mtDNA nucleoids maintenance. Orthologs of ERMES 

components have not yet been identified in mammalian cells, but it is likely that MAM 

proteins serve analogous purposes. Furthermore, MAMs are involved in the process of 

mitophagy, as ER-mitochondrial contacts are sites of phagophore membrane formation 

(Bockler and Westermann, 2014a; Bockler and Westermann, 2014b).

Mitochondria-ER interactions in ALS

ALS is a debilitating disease with aggressively progressive muscle paralysis leading to death 

within few years of diagnosis. Paralysis is caused by a prominent degeneration of upper and 

lower motor neurons that communicate with muscle cells. There is an urgent need for 

effective therapies, because currently there are essentially no treatments available for ALS 

patients besides Riluzole, which prolongs life for a few months, at best. Familial ALS 

(fALS) patients with known genetic mutations are relatively rare, and over 90 percent of 

cases occur sporadically. Mutations in the gene encoding for the antioxidant superoxide 

dismutase 1 (SOD1) were discovered over 20 years ago in fALS patients (Rosen et al., 

1993). Studies of SOD1 mutants have provided insight into the pathogenic mechanisms of 

ALS, but limited to a subset of approximately 10% of the familial cases. However, in the 

past 5 years, with the advancement of powerful sequencing tools, there has been a 

tremendous increase in the identification of genetic mutations responsible for fALS. Many 

mutations across more than 20 genes have been conclusively or putatively associated with 

ALS (Marangi and Traynor, 2015). Abnormalities found in genes such as TAR-DNA 

binding protein 43 (TDP43), fused in sarcoma (FUS), ubiquilin 2 (Ubqln2), vesicle 

associated membrane protein associated protein B (VAPB), and valosin containing protein 

(VCP), point to RNA metabolism and protein degradation as potential pathogenic pathways 
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in ALS. However, several other genes, involved in completely different cellular pathways, 

point to a complex heterogeneity of fALS genetics. Furthermore, the same mutations can 

often cause different clinical phenotypes, even within the same family. Such clinical 

phenotypes can range from frontotemporal dementia to ALS or a combination of both, as in 

the case of the hexanucleotide expansion in the first intron of C9Orf72, a gene with still 

unknown function, which causes the most common form of fALS (DeJesus-Hernandez et 

al., 2011; Renton et al., 2011). Symptoms in these syndromic forms of fALS can also 

include myopathy, such as in the case of mutations in VAPB (Nishimura et al., 2004), VCP 

(Johnson et al., 2010), and the recently identified mitochondrial protein CHCHD10 (Ajroud-

Driss et al., 2015; Bannwarth et al., 2014; Johnson et al., 2014a). Nevertheless, despite the 

apparent clinical variability in terms of associations of symptoms, widely different genetic 

causes of fALS appear to ultimately converge into common pathogenic pathways that result 

in motor neuron degeneration.

Mitochondrial defects in ALS

Interestingly, there seem to be converging pathogenic pathways in ALS that involve 

mitochondria, as mitochondrial abnormalities are common to many forms of fALS and 

sALS. Mitochondrial involvement in ALS pathogenesis has been documented extensively 

(Cozzolino and Carri, 2012). Mitochondrial morphological abnormalities, reduced calcium 

uptake capacity, transport impairment, bioenergetic dysfunction, and aberrant reactive 

oxygen species (ROS) production, all appear to contribute to motor neuron demise. In 

mutant SOD1-fALS, the accumulation and aggregation of the mutant protein in 

mitochondria poses a detrimental effect on mitochondrial integrity and function (Tan et al., 

2014). Mitochondrial abnormalities are also common in non-SOD1 familial cases as well as 

in sporadic ALS (Carri et al., 2015; Palomo and Manfredi, 2015). Mitochondrial dysfunction 

in mouse models of ALS appears prior to symptom onset, but it is not clear whether 

mitochondria are primary or secondary targets of toxicity. The recent discovery of fALS 

mutations in a gene encoding for a mitochondrial protein, CHCHD10 (Bannwarth et al., 

2014; Johnson et al., 2014a), suggests that motor neuron toxicity can arise from 

mitochondria themselves. More work on decoding the function of CHCHD10, which is so 

far unknown, will likely reveal important clues on this issue.

ER stress in ALS

The most evident ER abnormality described in ALS is ER stress accompanied by 

upregulation of the unfolded protein response (UPR). This phenomenon has been amply 

described in ALS patients (Atkin et al., 2008; Kiskinis et al., 2014; Sasaki, 2010), as well as 

in cellular and animal models of ALS (C9Orf72 (Zhang et al., 2014), TDP43 (Walker et al., 

2013), FUS (Farg et al., 2012), SOD1 (Prell et al., 2012), (Kanekura et al., 2009)). 

Furthermore, in mutant SOD1 transgenic mouse spinal cord, it was shown that ER stress is 

detected as one of the earliest pathological events, specifically in the most vulnerable fast 

fatigable motor neurons (Saxena et al., 2009). While UPR upregulation is undoubtedly a 

common response in many forms of ALS, it is unclear what exactly triggers its activation. It 

is likely that proteostasis dysregulation is involved. For example, it was suggested that 

SOD1 interferes with the ER associated degradation (ERAD) pathway (Nishitoh et al., 

2008). Mutant proteins associated with ALS can cause UPR from within the ER lumen, 
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since some of these proteins are found inside the ER or traffic through it. For example, 

SOD1 can be secreted through the ER-Golgi pathway to the extracellular milieu (Urushitani 

et al., 2006) and cause toxicity to neurons from the extracellular space (Sundaramoorthy et 

al., 2013; Walker and Atkin, 2011). Furthermore, mutant SOD1 can misfold in the ER, as 

demonstrated by the finding of high molecular weight aggregates of mutant SOD1 in ER 

fractions isolated from the spinal cord of transgenic mice (Urushitani et al., 2008). Recent 

work also suggested that BIP and its co-factor Sil1 may progressively decline in mutant 

SOD1 cells (Filezac de L’Etang et al., 2015). In addition to activating ER stress response 

directly, mutant SOD1 also induces alterations in the protein folding apparatus. Protein 

disulfide isomerase (PDI), a key oxidoreductase in the ER oxidative protein folding 

machinery, is S-nitrosylated in ALS, causing defective protein folding and presumably 

accumulation misfolded proteins (Jeon et al., 2014; Walker and Atkin, 2011). This 

phenomenon can further exacerbate ER stress in ALS. Mislocalization and aggregation in 

the cytosol of proteins normally localized in the nucleus, such as TDP43, may cause ER 

dysfunction or disruption of the ER-mitochondrial contacts (Stoica et al., 2014). Moreover, 

C9Orf72 mutant motor neurons derived from human induced pluripotent stem cells (iPSC) 

revealed markers of ER stress (Kiskinis et al., 2014). In iPSC-derived motor neurons, 

aberrant peptides generated through repeat-associated non-ATG (RAN) translation from the 

expanded hexanucleotide repeat of C9Orf72 could be responsible for cell toxicity through 

ER stress (Zhang et al., 2014).

MAM proteins in ALS

Here we explored the evidence for mitochondrial-ER connections in relationship to proteins 

that physically or functionally relate to ER and MAMs, and are genetically associated with 

ALS or other neurodegenerative diseases (table 1).

Sigma 1R

Sigma1R is a chaperone protein localized in MAMs that involved in lipid export and 

calcium signaling through IP3R regulation (Hayashi and Su, 2007). A homozygous E102Q 

mutation in a conserved transmembrane region of Sigma1R was found to be responsible for 

a juvenile autosomal recessive form of ALS (ALS16 (Al-Saif et al., 2011)). Furthermore, in 

various forms of fALS, Sigma1R was found to accumulate in large structures on the plasma 

membrane of spinal cord motor neurons and to co-localize with ubiquitin inclusions (Prause 

et al., 2013). In sALS spinal cords, Sigma1R levels were lower than in the healthy 

population (Prause et al., 2013). Experimentally, downregulation of Sigma1R was shown to 

alter intracellular calcium handling (Hayashi and Su, 2007). Moreover, in primary neurons 

from Sigma1R knockout mice, the ER ultrastructure was altered and loss of ER-

mitochondrial contact sites was observed (Bernard-Marissal et al., 2015). As a consequence 

of decreased ER-mitochondrial contact and lipid rafts modifications, ER calcium efflux was 

increased in Sigma1R deficient cells, together with an increase in autophagic lysosome 

accumulation (Vollrath et al., 2014). Sigma1R deficiency affects mitochondrial transport and 

dynamics (Bernard-Marissal et al., 2015). Furthermore, E102Q mutant Sigma1R expression 

causes mitochondrial dysfunction with a decline of ATP production, which results in 

decreased proteasome activity and ER stress-induced neuronal death in cultured neuronal 

cells (Fukunaga et al., 2015). Therefore, it is plausible that a loss of function of Sigma1R, 
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either by mutation or by mislocalization, plays a role in ALS pathogenesis. A decline in 

Sigma1R function could contribute to ALS pathology by causing abnormal ER morphology, 

lipid raft destabilization, calcium signaling dysregulation, and impaired ER-Golgi 

trafficking.

VAPB

VAPB is an integral ER protein, whose mutation at a conserved proline residue to serine is 

causative of ALS8 (Nishimura et al., 2004). VAPB localizes to MAMs and interacts with a 

mitochondrial protein localized to the outer membrane, protein tyrosine phosphatase-

interacting protein-51 (PTPIP51). VAPB-PTPIP51 interaction is important for the 

maintenance of mitochondrial-ER contacts (Stoica et al., 2014), as deletion of either of the 

two proteins results in loss of contacts. The Pro56Ser mutation in VAPB associated with 

ALS increases its affinity for PTPIP51, thereby enhancing calcium transfer into 

mitochondria (De Vos et al., 2012). Furthermore, ER calcium dysregulation in VAPB mutant 

neurons results in decreased mitochondrial transport, possibly because of the effects of 

calcium on Miro1, the cargo adaptor that connects mitochondria to kinesins and 

microtubules (Morotz et al., 2012). Interestingly, overexpression of wild type or ALS-linked 

mutants of TDP43 result in mislocalization of the protein in the cytosol and interferes with 

VAPB-PIPT51 interactions, thereby disrupting ER-mitochondrial contacts (Stoica et al., 

2014).

While protein tethers are important for physical contacts between ER and mitochondria, 

lipids are also critical for the regulation of MAMs and their functions. For example, 

pharmacological depletion of cholesterol results in increased ER-mitochondria contacts 

(Fujimoto et al., 2012). It was shown that in ALS spinal cord levels of sphingomyelin, 

ceramides, and cholesterol esters are increased, presumably due to oxidative stress (Cutler et 

al., 2002). Therefore, it could be hypothesized that in ALS spinal cord, increased production 

of cholesteryl ester from cholesterol by lecithin cholesterol esterase results in lower levels of 

cholesterol at MAMs and increased ER-mitochondrial contacts. Moreover, VAPB has been 

associated with phosphoinositide alterations. In drosophila, the VAPB ortholog VAP33 was 

shown to interact with oxysterol binding protein (OSBP), and proper localization of OSBP 

in the ER depends on VAPB. It was shown that ALS mutants of VAPB do not interact with 

OSBP and prevent its ER localization (Moustaqim-Barrette et al., 2014). Interaction of 

OSBP and VAP proteins through the FFAT binding domain is important for ceramide 

transport into the Golgi, and a depletion of VAP proteins can affect various lipids including 

phosphatidylinositol 4-phosphate, sphingomyelin, and diacylglycerol (Peretti et al., 2008). 

Since mutant VAPB can sequester wild type VAPB protein (Teuling et al., 2007), it is 

possible that this interaction can depletion of VAPB can lead to alteration of lipid 

composition in various membranes and vesicle formation in ALS. Phosphoinositide 

phosphatase Sac1 is another fly VAP binding partner. In a fly model of ALS8, mutant VAP 

caused neurodegeneration associated with increased phosphoinositide levels, which could be 

prevented by reducing phosphoinositide levels (Forrest et al., 2013).
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SOD1

Although not a bona fide MAM protein, mutant SOD1 has been shown to cause abnormal 

calcium release from the ER in primary astrocytes, as a consequence of disrupted store 

operated calcium entry (SOCE) regulation (Kawamata et al., 2014). In motor neurons, 

clearance of cytosolic calcium largely depends on mitochondria (Lautenschlager et al., 2013; 

Tadic et al., 2014), and mitochondrial calcium capacity is diminished in the spinal cord of 

transgenic mutant SOD1 mice (Damiano et al., 2006). Increasing mitochondrial calcium 

capacity by genetic ablation of the permeability transition facilitator, cyclophilin D, 

prevented mitochondrial dysfunction in SOD1 mutant mice, but did not ameliorate the 

disease outcome (Kim et al., 2012; Parone et al., 2013), suggesting that, rather than focusing 

on mitochondrial calcium handling alone, we need to consider calcium dynamics involving 

ER, mitochondria and other cell compartments, in the whole cell context. The aberrant 

interactions of mutant SOD1 with Bcl-2 (Pasinelli et al., 2004; Pedrini et al., 2010), which is 

found both at the mitochondrial and ER membranes (Janiak et al., 1994), could in part define 

the mechanisms whereby mutant SOD1 affects calcium regulation, as Bcl-2 has been 

proposed to modulate IP3R activity (Eckenrode et al., 2010).

Other MAM proteins

In addition to the MAM proteins discussed above, other MAM resident proteins have been 

shown to be associated with ALS in various models, although no mutations have yet been 

linked to the disease. VDAC, a major component of the MAM, was shown to be partially 

inactivated by the physical association with mutant SOD1 aggregates, although the impact 

on MAM structure and function has not been investigated directly (Israelson et al., 2010). 

Another protein found both in mitochondria and ER is Bcl-2. Interestingly, it was shown that 

upon interactions with mutant SOD1 Bcl-2 undergoes a conformational change that exposes 

the pro apoptotic BH3 domain of the protein and results in toxicity (Pedrini et al., 2010). 

Lastly, polymorphisms in the IP3R have been associated with increased risk for ALS in a 

large genome wide study, suggesting that calcium abnormalities at MAM could predispose 

to the disease (van Es et al., 2008). However, this finding was not confirmed in a different 

patient cohort (Fernandez-Santiago et al., 2011).

MAM proteins in different neurodegenerative diseases

It is worth noting that mutations in proteins that are clearly associated with 

neurodegenerative diseases, such as presenilin 1 and 2 (PS1/2) in Alzheimer disease (AD) 

and α-synuclein in Parkinson disease (PD), lead to alterations of the mitochondria-ER 

contacts and calcium dynamics. While mutant PS1/2 cause increase contacts between the 

two organelles (Area-Gomez et al., 2012), mutant α-synuclein results in decreased MAMs 

(Guardia-Laguarta et al., 2014). Another class of MAM proteins involved in 

neurodegeneration comprises components of the mitochondrial fusion and fission 

machinery. Mutations in dynamin-related protein 1 (Drp1), the GTPase involved in 

mitochondrial fission, result in severe forms of encephalopathy (Waterham et al., 2007). 

Mutations in Mfn2, one of the two GTPases involved in outer mitochondrial membrane 

fusion and a regulator of ER-mitochondria tethering, are among the most common genetic 

causes of familial peripheral neuropathies (Reviewed in (Ranieri et al., 2013)). Although 
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mutations of these proteins are not commonly associated with ALS phenotypes, these 

observations strongly support the concept that MAMs may be “hot spots” for 

neurodegeneration.

Potential consequences of MAM alterations in ALS

Taken together, the observations described above suggest that MAMs and ER-mitochondrial 

communications, especially lipid metabolism and calcium signaling between the two 

organelles, are logical points of intersection in the pathogenesis of different forms of ALS. 

Based on the extensive functional and physical interactions between the two organelles, 

discussed above, one could hypothesize multiple detrimental consequences of impaired ER-

mitochondria communication. Decreased ER-mitochondrial interaction could result in 

insufficient calcium transfer from the ER stores to mitochondria and defective bioenergetic 

coupling. It could also alter the autophagic process, because of impaired vesicle 

biosynthesis. In the early phases of ER stress response, there is increased coupling of ER-

mitochondrial contacts with mitochondrial bioenergetics to increase intracellular ATP 

content (Bravo et al., 2011). However, abnormally increased or persistent ER-mitochondria 

contact might result in enhanced calcium flux into mitochondria, triggering mitochondrial 

permeability transition and apoptosis. The latter scenario has not been explored in the 

context of ALS, but it has been demonstrated in other pathologies, such as obesity (Arruda 

et al., 2014).

Oxidative stress and mitochondria-ER involvement in ALS

One putative mechanism underlying alteration in mitochondria-ER contacts could involve 

redox signaling and imbalance, resulting in post-translational modification of proteins that 

are critical for inter-organellar interactions. Cysteine residues are crucial to regulation of 

redox responses, because they are readily oxidized under oxidative conditions. Formation of 

intra- or intermolecular disulfide bonds, sulfenic acid intermediates, or mixed disulfides with 

glutathione or nitric oxide, are some of the reversible thiol oxidation reactions that can alter 

protein functions. Thus, cysteine residue modifications by S-nitrosylation or S-

glutathionylation are likely outcomes of redox signaling alterations in neurodegeneration. 

While many of these thiol-modifications are reversible and thought to protect proteins from 

permanent oxidative damages, the function of the thiol-modified proteins can be altered, 

causing further downstream effects. For example, we found that in mutant SOD1 astrocytes 

persistent S-glutathionylation of STIM1, an ER resident protein involved in SOCE, caused 

dysregulation of ER calcium signaling and calcium-dependent secretion that affected motor 

neuron viability (Kawamata et al., 2014).

Many proteins can be modified by S-nitrosylation or S-glutathionylation in the context of 

neurodegenerative processes (Halloran et al., 2013). Here we focus on those that are 

potentially involved in ALS and mitochondria-ER connections (table 2). Mutations in VCP 

have been associated with ALS (Abramzon et al., 2012; Johnson et al., 2010). VCP belongs 

to the AAA protein family and is involved in various cellular processes including ERAD and 

Pink1/Parkin-mediated mitochondrial quality control. Mutations in VCP result in reduced 

VCP recruitment to mitochondria when Parkin ubiquitinates mitochondrial proteins (Kim et 

al., 2013). Oxidant induced S-glutathionylation of VCP leading to inactivation of its ATPase 
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activity has been proposed to be a regulatory mechanism to convert cellular oxidative stress 

signals into an ER stress response (Noguchi et al., 2005). While there are no reports on S-

glutationylation of VCP in ALS, mutations in VCP that introduce cysteine residues have 

been reported (Abramzon et al., 2012), which may cause further oxidation opportunities and 

may be detrimental to VCP function.

Mutations in matrin3 (MATR3) have been recently linked to ALS (Johnson et al., 2014b). 

Through proteomic and protein interaction studies it was shown that MATR3 associates with 

glutathione transferase π 2, GRP78/BIP, and GRP75. This study was performed in thymoma 

cells, and did not directly demonstrate glutahtionylation of MATR3 (Osman and van 

Loveren, 2014). However, it is possible that MATR3 could be oxidatively modified (Chiang 

et al., 2012) in ALS. Interestingly, the study also pointed out that MATR3, a nuclear matrix 

protein whose function includes transport of RNA interacts with proteins in the ER (GRP78) 

and MAMs (GRP75).

Other proteins involved in mitochondrial quality control and dynamics are also known to be 

S-nitrosylated and could play a role in pathogenic processes. Drp1 becomes hyperactive 

when S-nitrosylated. Nitrosative stress due to mutant proteins such as huntingtin and the Aβ 

peptide is known to nitrosylate Drp1, causing accumulation of persistent small and de-

energized mitochondria (Cho et al., 2009; Haun et al., 2013). Parkin is also S-nitrosylated 

(Yao et al., 2004), and excessive Parkin oxidation can disrupt its ligase activity and cause 

protein aggregation (Meng et al., 2011). While it is not yet known whether SNO-Drp1 or 

SNO-Parkin are involved in ALS, it would not be surprising to find that such alterations 

underlie some of the abnormalities in mitochondrial dynamics and quality control observed 

in ALS.

The involvement of PDI in ALS pathogenesis is debated (Jaronen et al., 2014), but S-

nitrosylation of PDI in SOD1-associated models and ALS patient spinal cords have been 

reported (Jeon et al., 2014; Walker et al., 2010). S-nitrosylation of PDI at the active site 

cysteine residue is thought to reduce both chaperone and isomerase PDI activity, and result 

in accumulation of misfolded proteins and cell death (Jeon et al., 2014). While PDI levels 

increase as a part of the UPR in ALS (Atkin et al., 2006; Atkin et al., 2008), this PDI could 

be inactive allowing for accumulation of misfolded mutant SOD1. In G93A rats, PDI levels 

were upregulated early on in disease course, whereas at end stage, there was a marked 

reduction of PDI (Ahtoniemi et al., 2008). More recently, genetic variants in PDIA1 (PDI) 

and PDIA3 (ERp57) have been reported (Gonzalez-Perez et al., 2015), as well as intronic 

variants of PDIA1 as a genetic risk factor for ALS (Kwok et al., 2013), which warrants 

further attention to the involvement of this key protein in oxidative folding in the 

pathogenesis of ALS.

RyRs are also susceptible to oxidative modifications. RyRs contain cysteine residues that are 

modified by oxidants, affecting muscle contractile properties (Sun et al., 2013). RyR 

oxidation in neurons was also shown to regulate brain function (Kakizawa et al., 2012). In 

motor neurons, RyRs can modulate glutamatergic stimulation (Jahn et al., 2006), and it is 

possible that RyRs are dysregulated in ALS causing abnormal cytosolic and mitochondrial 

calcium influx (Grosskreutz et al., 2010). However, while the RyR inhibitor dantrolene 
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showed protective effects on SOD1 mutant motor neurons in culture, it did not extend 

survival of G93A mice (Staats et al., 2012). Therefore, modulating the oxidative state of the 

RyR might provide a better approach than inhibiting it.

What could cause redox alterations in ALS cells? Many evidence exist for mutant SOD1 

effects on redox. Oxidative stress has been long involved in ALS pathogenesis (Albers and 

Beal, 2000), where mitochondrial ROS production was considered the main culprit, possibly 

contributing to ER stress (Ilieva et al., 2007). Several mutant forms of SOD1 retain 

dismutase activity to varying degrees (Borchelt et al., 1994), but aberrant ROS production 

from mutant SOD1 has also been proposed (Bogdanov et al., 1998; Ferrante et al., 1997), 

and peroxynitrite formation due to zinc deficiency in SOD1 increases motor neuron 

vulnerability (Estevez et al., 1998). In mitochondria, SOD1 localizes in the intermembrane 

space (IMS) and can be protective from superoxide produced locally (Kawamata and 

Manfredi, 2008; Vijayvergiya et al., 2005). However, accumulation of mutant SOD1 in the 

IMS can cause havoc (Igoudjil et al., 2011; Magrane et al., 2009; Son et al., 2008; Son et al., 

2007) and mitochondrial proteins can be abnormally oxidized (Mattiazzi et al., 2002). 

Furthermore, increased superoxide generation through NADPH oxidase (NOX) activity in 

mutant SOD1 microglia have been demonstrated (Harraz et al., 2008; Marden et al., 2007). 

PDI upregulation upon ER stress has also been associated with NOX activation in non-

neuronal cells (Janiszewski et al., 2005; Laurindo et al., 2008; Santos et al., 2009). Another 

major source of oxidative stress is through ER protein folding involving PDI and Ero1. 

Since the proper folding of intramolecular disulfide bond produces a molecule of hydrogen 

peroxide (H2O2) by the activity of Ero1, futile cycles of protein folding have been suggested 

to cause oxidative stress in the ER (Haynes et al., 2004). As mentioned above, hyper-

oxidation of the ER can result in thiol modifications of ER resident proteins that can alter 

their functions. In addition, futile oxidative protein folding cycles could result in depletion of 

glutathione (GSH) and ATP consumed by chaperones, further worsening the oxidative stress 

and energy imbalance in ALS (figure 1). Changes in GSH pool could be sensed by the 

organelles, because their redox state depends on the balance between reduced and oxidized 

GSH. The ER environment is highly oxidative and contains GSH:GSSG ratios that are 

significantly lower than the cytosol and mitochondria. In the early phases of ER stress, 

mitochondria increase their bioenergetic functions and ATP production (Bravo et al., 2011). 

The increased need for ATP could be due to the fact that the function of chaperones like BIP, 

which bind and release misfolded substrate proteins, depend on ATP hydrolysis. 

Furthermore degradation of misfolded proteins by the ERAD and the proteasome is also 

energy dependent. Thus, under increased burden of misfolded proteins, the ER may signal to 

mitochondria via calcium to boost ATP synthesis. Based on these putative mechanisms, it is 

logical to hypothesize that likely candidates for inter-organellar communication that go in 

disarray in ALS are small molecules, such as calcium, ROS, particularly the diffusible ones, 

H2O2 and nitric oxide, GSH, and ATP.

Conclusions

The involvement of impaired mitochondria-ER contacts in ALS pathogenesis remains to be 

fully elucidated. Perturbation of proteins at contact sites, such as VAPB, PTPIP51, and 

Sigma1R has been implicated in ALS. While it is unlikely that all MAM protein alterations 
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result in motor neuron degeneration and ALS, MAM abnormalities have also been linked to 

other neurodegenerative conditions, such as Parkinson disease with α-synuclein mutations 

(Guardia-Laguarta et al., 2014) and Alzheimer disease with presenilin mutations (Area-

Gomez et al., 2012), suggesting that ER-mitochondrial contacts are vulnerable targets in 

neuronal degeneration.

ER-mitochondrial communication in ALS could be globally affected in all cell types, but 

cell-type-specific outcomes may be diverse. Motor neurons appear particularly sensitive to 

perturbations. Sensitivity to calcium dysregulation may be affected by calcium binding 

proteins, since motor neurons have lower amounts of these proteins compared to ALS-

spared neurons (Bernard-Marissal et al., 2012). It is also possible that regulatory 

mechanisms and proteins involved may be different among different cell types. For example, 

while non-excitable cells, such as astrocytes, utilize SOCE dependent on STIM1 and Orai1 

channels, in neurons the situation may be different. Studies have suggested that STIM2 is 

prevalent over STIM1 in neurons (Gruszczynska-Biegala and Kuznicki, 2013). On the other 

hand, neurons could be less sensitive to changes in intracellular calcium stores, compared to 

non-excitable cells. The enhanced ER calcium signaling and excess calcium-dependent 

secretion in mutant SOD1 astrocytes suggest that ER oxidative stress and altered STIM1 

function underlies non-cell autonomous toxicity to motor neurons (Kawamata et al., 2014).

In fALS, and likely in sporadic cases as well, the underlying mutant proteins exists from 

conception, but it takes many years for motor neurons to die and ALS to manifest. During 

this long pre-symptomatic period, protein misfolding, ER stress, mitochondrial dysfunction 

and faulty mitochondria-ER communication could be taking place, but cells are able to cope. 

The timing of cellular dysfunction and its manifestations may be different in different cell 

types, or coping mechanism may fail at the same time but the effects may differ among cell 

types, with motor neurons degenerating and dying while glia becomes toxic. Together, these 

effects can create a perfect storm scenario, leading to the rapid development of the disease. 

Understanding the sequence of events that lead to this scenario over the lifetime of affected 

individuals and specifically the transition from ER-mitochondria functional to dysfunctional 

interactions would certainly provide ample windows of therapeutic opportunities. Targeting 

ER oxidative stress early on and preventing the accumulation of misfolded proteins in 

mitochondria and ER could synergistically help to maintain healthy ER-mitochondria 

interactions and prolong the pre-symptomatic phase of the disease and possibly prevent it 

entirely.
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Figure 1. ER oxidative protein folding could be the hub of multiple pathogenic pathways in ALS
SOD1 misfolding or other ALS-related proteins could cause ER oxidative stress, which 

could represent a common origin of a multitude of pathogenic pathways that have been 

identified in ALS, including ER stress, GSH depletion, aberrant calcium handling, protein 

secretion, and mitochondrial dysfunction.

Manfredi and Kawamata Page 18

Neurobiol Dis. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Manfredi and Kawamata Page 19

Table 1

MAM-localized proteins that are associated with ALS and other neurodegenerative conditions.

Protein Function Association with Disease Reference

Sigma1R Calcium signaling Mutations cause fALS (Al-Saif et al., 2011)

VAPB Membrane interactions, vesicular trafficking Mutations cause fALS (Nishimura et al., 2004)

IP3R Calcium signaling Polymorphisms associated with ALS (van Es et al., 2008)

VDAC Calcium signaling Mutant SOD1 affects protein function (Israelson et al., 2010)

Bcl-2 Anti-apoptotic protein Mutant SOD1 affects protein function (Pedrini et al., 2010)

SIL1/BIP ER molecular chaperone SIL1 reduced in ALS motor neurons
Mutations cause
Marinesco–Sjögren syndrome

(Filezac de L’Etang et al., 2015)

PERK Unfolded protein response Activated in ALS (Wang et al., 2011)

Mfn2 Mitochondrial fusion Mutations cause neuropathy (Ranieri et al., 2013)

DRP1 Mitochondrial fission Mutations cause fatal encephalopathy (Waterham et al., 2007)

PACS2 ER localization of transmembrane proteins Involved in Aβ toxicity? (Hedskog et al., 2013)

α-synuclein Synaptic function Mutations (linked to PD) decrease MAMs (Guardia-Laguarta et al., 2014)

Presenilin 1/2 Gamma secretase complex Mutations (linked to AD) increase MAMs (Area-Gomez et al., 2012)

Grp75 Links VDAC and IP3R Interacts with MATR3 and with FUS (Osman and van Loveren, 2014)
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Table 2

ER and mitochondrial proteins for which thiol oxidation modifications are potentially involved in 

neurodegeneration.

Protein Modification Normal Function Functional consequences of oxidation Reference

Drp1 S-nitrosylation Mitochondrial fission Hyperactive GTPase; increased 
mitochondrial fission

(Cho et al., 2009)
(Haun et al., 2013)

Parkin S-nitrosylation E3 ubiquitin ligase Loss of activity; Increased protein 
aggregates

(Yao et al., 2004)

PDI S-nitrosylation Protein folding
Chaperone

Loss of activity; accumulation of 
misfolded proteins

(Walker and Atkin, 2011)
(Jeon et al., 2014)

STIM1 S-glutathionylation SOCE Loss of ER calcium sensitivity; 
unregulated SOCE

(Hawkins et al., 2010), (Kawamata et 
al., 2014)

VCP S-glutathionylation Protein quality control Reduced mitochondrial recruitment for 
mitophagy

(Noguchi et al., 2005)
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