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Background. Chronic kidney disease (CKD) is a covert disease. Accurate prediction of CKD progression over time is necessary for
reducing its costs and mortality rates. The present study proposes an adaptive neurofuzzy inference system (ANFIS) for predicting
the renal failure timeframe of CKD based on real clinical data.Methods.This study used 10-year clinical records of newly diagnosed
CKDpatients.The threshold value of 15 cc/kg/min/1.73m2 of glomerular filtration rate (GFR)was used as themarker of renal failure.
A Takagi-Sugeno type ANFIS model was used to predict GFR values. Variables of age, sex, weight, underlying diseases, diastolic
blood pressure, creatinine, calcium, phosphorus, uric acid, andGFRwere initially selected for the predictingmodel. Results.Weight,
diastolic blood pressure, diabetes mellitus as underlying disease, and current GFR

(𝑡)
showed significant correlation with GFRs and

were selected as the inputs of model. The comparisons of the predicted values with the real data showed that the ANFIS model
could accurately estimate GFR variations in all sequential periods (Normalized Mean Absolute Error lower than 5%). Conclusions.
Despite the high uncertainties of human body and dynamic nature of CKD progression, our model can accurately predict the GFR
variations at long future periods.

1. Introduction

Chronic kidney disease (CKD) is a growing health problem
worldwide (about 10 to 15 percent of the adult population in
USA, 11.2% in Australia, 10.1% in Singapore, 18.7% in Japan,
and 8.3% to 18.9% in Iran) [1, 2]. It is a progressive disease
associated with a high risk of cardiovascular diseases, mortal-
ity andmorbidity rates, and high health care costs.Therefore,
early detection of the disease to control and manage the
consequences is of prime significance [3, 4].The world health
organization has estimated an amount of 1.1 trillion dollars
as the cost of dialysis in the last decade [5]. Because of the
dynamic nature of renal disease, its covert nature in the early
stages, and heterogeneity of patients, predicting the renal

failure progression with reasonable accuracy is necessary [6].
The renal failure progression can be considered as a function
of various parameters including underlying renal diseases,
blood pressure, hypertension, proteinuria, and age [7, 8].

In recent years, early diagnosis of the disease, especially
determining the appropriate time to apply medical treat-
ments for CKD has received great attention among clinicians
and researchers [9–11]. Researchers through epidemiological
and registry-based studies try to diagnose CKD in high risk
patients as soon as possible and to control identified risk fac-
tors aggravating the disease progression to End Stage Renal
Disease (ESRD) like hypertension, proteinuria, and hyper-
phosphatemia [9, 10, 12]. Based on the evaluations of these
variables, different models have been developed to accurately
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predict progression to ESRD in CKD stages [9, 12]. However,
they cannot quantitatively predict the variations of glomeru-
lar filtration rate (GFR) in the patients. Aguilar et al. evaluated
the effective factors associated with CKD on 103 patients with
mean age of 70.8±13 years.The CKD associated factors were
age >65 years old, male sex, positive history of cardiovascular
disease, anemia, and obesity (BMI > 30). Their findings
showed that age and anemia were the strongest factors associ-
ated with CKD in their population [13]. There have been sev-
eral studies on the GFR variations among different popula-
tions of CKD patients [9, 10, 14–16]. In this regard, intelligent
and machine learning methods have been increasingly used
in the context of health and disease forecasting. Gaspari et al.
(2004) compared renal function derived from 12 prediction
equations with GFR measurement by plasma iohexol clear-
ance as reference method in a group of 81 renal transplant
recipients [16]. They concluded that all models overestimate
renal function. However, Modification of Diet in Renal
Disease (MDRD) and Walser formulas showed the best per-
formance with the lowest bias and the highest precision [16].
Brier et al. (2003) compared artificial neural networks with
traditional logistical regression in the prediction of delayed
graft function (DGF) in kidney transplant patients. They
compared the results of neural network with logistic regres-
sion method and founded more sensitivity of logistic regres-
sion in the prediction of no DGF (91 versus 70%), while the
neural network was more sensitive to the prediction of eyes
for DGF (56 versus 37%) [17]. Hussain et al. (2011) proposed
an intelligent tool for detecting breast cancer using support
vector machines (SVM). They compared the performance
of the proposed method with other classification methods.
Accordingly, SVM improved the diagnosis of the disease [18].

In recent years, fuzzy intelligent methods, especially
fuzzy expert systems, have been increasingly used to predict
different diseases. It seems that employing this method along
with the clinical tools for diagnosis of different diseases and
conditions may drastically reduce diagnostic errors. Fuzzy
expert technique is more accurate than machine learning
techniques.

Adaptive neurofuzzy inference system (ANFIS) is a learn-
ing based system based on the neural networks concepts.
The ANFIS network used in the present study is based on
the model proposed by Jang et al. [19]. This is a learner
network equivalent to Takagi-Sugeno fuzzy inference system.
Learning in this network is continuous update of the network
parameters. Factors of layers I and IV are of learner type
that, respectively, determinemembership functions and first-
order estimated function. The ANFIS training algorithm is a
hybrid algorithm in which ordinary least squares algorithm
is used to update coefficients of output functions (𝑓

𝑖
), while

error back propagation algorithm is used to update funda-
mental factors of the system [19, 20].

If we canmodel and predict the renal functionworsening,
we can effectively manage this disorder. In this regard, an
appropriate parameter should be considered as the marker
of disease worsening. The GFR is the only reliable parameter
of the renal function and progression of CKD [16]. The
Cockroft-Gault (C-G), MDRD, and chronic kidney dis-
ease epidemiology collaboration (CKD-EPI) equations are

the most common and validated equations to calculate GFR
[21]. For different age and racial groups, these equations yield
different accuracy in estimating renal function [21]. Accord-
ing to the clinical measurements (independent physiological
parameters) and clinical outcomes, when GFR reaches less
than 15 cc/kg/min/1.73m2, renal replacement therapy (RRT)
including dialysis or transplant is necessary for the patient
survival. If GFR variation is predicted in a CKD patient, we
can appropriately predict the time to reach GFR threshold
value of 15 cc/kg/min/1.73m2. In other words, the time for
renal replacement therapy is predicted. In this study, speed
of GFR decrease in CKD patients has been predicted based
on the follow-up of the CKDpatients during the study. To our
knowledge, there has not been any efficient method proposed
for predicting the timeframe of CKDworsening in individual
cases [22]. Furthermore, fuzzy intelligent techniques have
not yet been used to predict renal function worsening.
The present study proposes an ANFIS based model for
predicting the renal failure timeframe of CKD based on a
10-year real clinical data. The main objective is to provide a
practical and reliablemethodwith acceptable accuracy to find
underpinning of a decision support system in health care and
to support clinical decision making systems.

2. Materials and Methods

2.1. Data Collection. All the data of the present studywere the
clinical records of a cohort study of newly diagnosed CKD
patients who were serially admitted to the Clinic of Nephrol-
ogy, Imam Khomeini Hospital (Tehran, Iran), during Octo-
ber 2002–October 2011. The inclusion criteria for CKD def-
inition included small sized kidney in ultrasound images or
GFR less than 60 cc/kg/min/1.73m2 for more than 3 months.
The datasets were built using the clinical and laboratory data
of different parameters. All the procedures of the study were
approved by the ethics committee of Tehran University of
Medical Sciences that completely coincide with the Decla-
ration of Helsinki Ethical Principles for Medical Research
Involving Human Subjects. The written consent form was
obtained from each patient to participate in the study.

The patients were divided into two groups according to
the pattern of their adherence to follow-up schedule in the
clinic. A total of 465 CKD patients were enrolled in the study.
The test group consisted of 389 patients who continuously (at
least every six months) were visited in the clinic. The control
group consisted of 76 patients who did not regularly follow
their visit schedule in the clinic, but their visits had lasted at
least one year. The details of demographic data and clinical
measurements of the patients are presented in Table 1.

2.2. Input Selection. The present study used ANFIS neural
networks to predict GFR values and compared the accuracy
of the method. At each visit, patient’s demographic data,
weight, blood pressure, blood sample test variables including
serum creatinine levels, fasting plasma glucose levels, lipid
profile, calcium, phosphorus, hemoglobin, and other param-
eters were monitored. The appropriate treatments for blood
pressure, bone mineral metabolism indices, and hemoglobin
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Table 1: Baseline characteristics of the study population (𝑛 = 465).

Variable Mean ± standard deviation
GFR (cc/min/m2) 34.8 ± 11.0
Age (years) 61.3 ± 14.9
BMI (kg/M2) 26.5 ± 4.2
Systolic blood pressure (CmHg) 14.0 ± 2.7
Diastolic blood pressure (CmHg) 7.8 ± 1.3
Hemoglobin (gr/dL) 12.6 ± 2.1
Phosphorus (mg/dL) 4.10 ± 0.8
Uric acid (mg/dL) 8.1 ± 1.9
Cholesterol (mg/dL) 198.5 ± 58.9
Triglyceride (mg/dL) 205.6 ± 134.5

control were administered to each patient based on the
clinical evaluations. The GFR was calculated using MDRD
equation.The end point of data collecting for each patient was
either GFR value less than 15 cc/kg/min/1.73m2, start of RRT,
or patient death. All quantitative variables were used as con-
tinuous to have a better training of model. According to the
nephrologists’ opinions and the kidney function, ten variables
were initially selected as influencing parameters on the GFR
variations. These variables included age, sex, weight, under-
lying diseases, diastolic blood pressure (dbp), creatinine (Cr),
calcium (Ca), phosphorus (P), uric acid, and GFR.They were
considered as the inputs of the predicting model. Some of
these variables did not necessarily show strong correlation
with the output (GFR

(𝑡+𝑝)
). On the other hand, in ANFIS

model, input number reduction increased the accuracy of
prediction and better training of model. Therefore, only the
more significant inputs were selected according to the level
of their correlation with the output. Pearson correlation coef-
ficients test was used to determine the most significant input
variables to be introduced in the ANFIS model. The Pearson
correlation coefficients test was used because of the continu-
ous nature of the variables. Table 2 represents the correlation
coefficients between the inputs and output (GFR

(𝑡+𝑝)
) at 6-

month interval. Of the 10 inputs, only four inputs underlying
disease, dbp, weight, and GFR

(𝑡)
have an acceptable corre-

lation with the output (GFR
(𝑡+𝑝)

). Therefore, just these four
variables were selected for future processing and modeling.
In the next step, the GFR values were predicted at 6-, 12-,
and 18-month intervals usingANFIS networkmodel.The real
data recorded during a ten-year period were recorded at 6-
month intervals.Therefore, theGFRvalueswere predicted for
three sequential 6-month intervals at 6-, 12-, and 18-month
intervals. The GFR

(𝑡+𝑝)
with 𝑝 = 1, 2, 3 represents the GFR

values at 6-, 12-, and 18-month intervals; that is, if 𝑝 = 1, GFR
prediction is performed for the subsequent 6-month interval.

2.3. Building Training and Test Datasets. Thefirst step to train
all neural networks and accurate modeling was to divide data
into training and test datasets. Training data were used to
optimize the weights and other parameters in the model.
The test data were used to evaluate the quality of estimates
and forecasts. In all further processing and modeling, the
test dataset was not used for training models. Test data

Table 2: The correlation coefficients between all inputs and target
output (GFR

𝑡+𝑝
) for 6-month period. dbp = diastolic blood pressure;

Cr: creatinine; Ca: calcium; P: phosphorus; underlying disease
(Diabetes); GFR: glomerular filtration rate.

Input Input number Correlation coefficient
between input 𝑖 and output

Underlying disease
(𝑡)

1 0.2505
Sex
(𝑡)

2 0.0706
Age
(𝑡)

3 −0.1043
dbp
(𝑡)

4 0.7145
Cr
(𝑡)

5 0.0322
Ca
(𝑡)

6 −0.2224
P
(𝑡)

7 −0.1444
Uric acid

(𝑡)
8 0.1089

Weight
(𝑡)

9 0.8120
GFR
(𝑡)

10 0.5196

realistically simulated the model in the case where there was
no information about the future.

The test data were randomly selected so that all data had
an equal chance to participate in the selection process. The
test datasets are usually selected among 30 to 40% of the
available data. In this study, 30% of the data were selected as
test dataset.The remaining 70% were used as training dataset
to estimate and train models.

2.4. Fuzzification of Input Variables. Genfis3 code in MAT-
LAB was used to fuzzify input variables and to establish
the rule base. Genfis3 uses fuzzy 𝑐-means (FCM) clustering
technique to fuzzify variables.Themembership functions are
Gaussian.

2.5. Establishing a Fuzzy Rule Base for ANFIS. It is easy to
establish a fuzzy rule base for ANFIS after fuzzifying variables
using FCM clustering technique in Genfis3. The number of
fuzzy rules is equal to the number of membership functions
of input variables (11 functions). Thus, 11 fuzzy rules have
been created in the rule base and used to estimate GFR
values. Figures 1 and 2, respectively, show the ANFIS network
structure and schematic diagram of the predicting model
used in the present study.

3. Results

A total of 465 CKD patients were evaluated in the
study, 277 of them were male. Diabetes mellitus was the
underlying disease in 153 patients (33%). The GFR values
ranged from 45 to 60 cc/kg/min/1.73m2 in 154 patients
(33.1%); 30–45 cc/kg/min/1.73m2 in 215 (46.2%); and 15–
30 cc/kg/min/1.73m2 in 96 patients (20.7%).

3.1. GFR Prediction with ANFIS. According to the clinical
dataset recorded from patients, fuzzy clustering of the four
significant input variables is shown for the period of 6months
in Figures 3–6. Inputs 1, 2, 3, and 4 were assigned to under-
lying disease (as diabetes), diastolic blood pressure (dbp),
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Figure 1: Schematic diagram of predicting model and input of variables.
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Figure 2:The ANFIS network structure used in the study to predict
GFR values.

weight, and GFR, respectively, in the modeling and figures.
For each input, 10 clusters were considered. According to the
trial and error, 10 clusters provide better results (with the
lowest error).

3.2. Training ANFIS. The rules in the rule base build a
fuzzy inference system. After training, it was converted to
a fuzzy inference system called ANFIS. ANFIS training was
performed using MATLAB.

Considering GFR modeling at one, two, or three future
periods with the selected input variables including under-
lying disease, diastolic blood pressure, weight, and GFR

(𝑡)

values, the number of observations for modeling was 674
rows. 30%of the data, 202 records, for the test dataset, and 472
records were used as training dataset to train the ANFIS.The
trained ANFIS was used for estimating GFR at subsequent
6, 12, or 18 months. Figures 7 and 8, respectively, show the
performance of ANFIS model for training and test datasets
for the 6-month period. The GFR changes are well followed
by ANFIS in test dataset (Figure 8).

In next step, the GFR function was estimated for the
6-month period according to the patients’ records. The
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Figure 3: The fuzzy functions selected for input 1, underlying
disease (diabetes), for the 6-month period.

results are presented as fitted surfaces for the output variable,
GFR
(𝑡+1)

, which is the value of GFR at 6-month interval
(Figures 9–14). The fitted surfaces also show the relationship
between input variables and GFR.

In next step, themodel was used to predict theGFR values
at sequential 12- and 18-month intervals (Figures 15–18). The
results showed that ANFIS was able to predict GFR with an
acceptable accuracy for the test data.The assessments showed
that, despite increasing the forecast period, ANFIS was still
able to predict GFR with an acceptable accuracy (Figures 15–
18).

For further assessments and comparisons of the model-
ing, the results were examined based on the error criteria.
Considering the variations of the results, appropriate error
criteria should be used to evaluate the accuracy and efficiency
of the predicting model. Three criteria were selected to
evaluate and compare the accuracy of the fuzzy model: Mean
Square Error (MSE), Mean Absolute Error (MAE), and Nor-
malizedMSE (NMSE). Of them, the NMSE is preferred since
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Figure 4: The fuzzy functions selected for input 2, diastolic blood
pressure (dbp), for the 6-month period.
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Figure 7: Comparison of the ANFIS prediction and real GFR
(𝑡+1)

values for the training dataset at 6-month interval.
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Figure 8: Comparison of the ANFIS prediction and real GFR
(𝑡+1)

values for the test dataset at 6-month interval.

it provides the normalized error ranged from0 to 100 percent.
The formulas for error criteria are expressed by (1) as follows:

MSE =
∑
𝑁

𝑖=1
(𝑦
𝑖
− 𝑦̂
𝑖
)
2

𝑁
,

MAE =
∑
𝑁

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦̂𝑖

󵄨󵄨󵄨󵄨

𝑁
,

NMSE =
∑
𝑁

𝑖=1
(𝑦
𝑖
− 𝑦̂
𝑖
)
2

∑
𝑁

𝑖=1
(𝑦
𝑖
)
2
× 100.

(1)

Table 3 compares the ANFIS results at 6-, 12-, and 18-month
intervals for the training and test datasets based on the error
criteria. The comparisons show the high accuracy of ANFIS
model for predicting GFR values for all sequential 6-, 12-
and 18-month intervals in both training and test datasets.
With reference to the low error rate of test data, the proposed
ANFIS could be generalized to predict GFR level in new
patients.

As the number of input variables increases, the modeling
error decreases. As the ratio of observations to variables
increases, the reliability increases, and thereby estimation
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Figure 15: Comparison of the ANFIS prediction and real GFR
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for the training dataset for the 12-month period.
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Figure 16: Comparison of the ANFIS prediction and real GFR
(𝑡+2)

values for the test dataset for the 12-month period.

Table 3: Comparison of error criteria for the training/test datasets
for 6-, 12-, and 18-month periods. MSE: Mean Square Error; MAE:
Mean Absolute Error; NMSE: Normalized MSE.

Training dataset ANFIS Test dataset ANFIS

6 months
MSE 48.7053 58.6253
MAE 4.9960 4.7654
NMSE 3.7428% 4.7676%

12 months
MSE 53.1676 54.885
MAE 5.1170 5.5010
NMSE 4.1714% 4.3019%

18 months
MSE 62.5255 64.0022
MAE 5.5640 5.9302
NMSE 4.8709% 4.8787%

error of themodel parameters decreases.Themodeler prefers
fewer variables, provided that the model error remains low.
Reviewing the relationships between the independent and
dependent variables, among 10 independent variables, four
of themost important independent variables with the highest
correlation with the dependent variable (GFR) were selected.
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Figure 17: Comparison of the ANFIS prediction and real GFR
(𝑡+3)

values for the training dataset for the 18-month period.
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Figure 18: Comparison of the ANFIS prediction and real GFR
(𝑡+3)

values for the test dataset for the 18-month period.

The accuracy of models was enhanced through eliminating
other variables.

The present study was conducted in specific clinical
situations (predicting the CKD progression) by integrated
fuzzy modeling. This can be helpful in expediting medical
applications. However, a question whether the numbers of
time periods or lags considered for prediction affectmodeling
and error rate arises. It is noteworthy that a modeler always
prefers to do forecasts for long periods, provided that the
forecast error is not very high. Therefore, the time delay (𝑝)
should be selected so that is a tradeoff between time interval
and the modeling error. The implementation of models and
comparisons confirm that ANFIS provides highly reliable
results for the all 6-, 12- and 18-month periods. Therefore,
the ANFIS is considered as an acceptable model. The main
reasons for preferring the ANFIS are as follows.

(i) The model provides the ability to model fuzzy vari-
ables. In this regard, the uncertainty can be appropri-
ately modeled.

(ii) Themodel is able to estimate and predict GFR, so that
the error rate has been reduced to 4% in some cases.



8 Computational and Mathematical Methods in Medicine

(iii) In addition to GFR prediction, the model produces
a fuzzy database. The database shows the complex
relationships between experimental inputs and GFR
as simple linear models in different modeling envi-
ronments. The transparency of GFR membership
function in the ANFIS is the advantage of ANFIS
compared to other models such as statistical model
like regression or neural network like multilayer
perceptron neural network.

4. Perspectives of Practical Implementation

The proposed model can be used as a core computational
component in a perspective medical decision support system
(MDSS) to help physicians in making appropriate decisions
about the time of renal replacement therapy. This system
can take physiological parameters as input and predict the
GFR values at future intervals. Using appropriate threshold
value of GFR, nephrologists can effectively manage the CKD
patients. To build such MDSS, it is necessary to complement
the predicting model through evaluating the other possible
influential parameters in kidney function.

5. Discussion

The results of modeling and forecasting by ANFIS networks
show that the models have a reliable accuracy for all periods
of 6, 12, and 18 months. Therefore, fuzzy model could
be used to predict GFR with a high reliability. The main
challenge in modeling the renal failure progression is the
high uncertainties of the human body as the environment
as well as high dynamicity of the disease. Statistical and
machine learning based prediction models cannot effectively
overcome these problems. However, the proposed model
could significantly control these issues using neurofuzzy
approach. Furthermore, our model can accurately predict
the GFR values in long future period so that increasing the
forecasting period to 12 and 18 months do not reduce the
accuracy of the predictionmodel (4.88%NMAE).Thismodel
can be used in clinical practice.

One of the main concerns of clinicians has been the
efficacy of CKD patients’ supervision and regular follow-
up on decreasing the speed of disease progression and
prevention of its inevitable complications. Therefore, the
use of efficient predicting model proposed in this study for
decision support system in the field of kidney diseases as
well as CKD management in a more quantitative manner
may be an important strategy for reducing its burden. Using
this model, it is possible to monitor the impact of each
variable, routinely measured in CKD patients. Rucci et al.
found that patients with proteinuria and a baseline estimated
GFR (eGFR) of >33mL/min/1.73m2 had faster decline of
GFR (2.8mL/min/1.73m2) than those with baseline eGFR
of <33mL/min/1.73m2 and a baseline serum phosphorus
of >4.3mg/dL in their retrospective study. Among patients
without proteinuria, those younger than 67 years exhibited
a significantly faster progression, which was even faster for

the subgroup with diabetes. Among patients aged older than
67 years, females had more steady eGFR than men [12].

Our results in comparison with the results of Tian et
al. [23] on the survival time of hemodialysis patients as
well as other studies using machine learning based methods
are of high validity and reliability. Furthermore, choosing
appropriate input variables is the most important feature of
the model that can improve prediction accuracy. One of the
limitations of this study may be the presence of intrinsic
errors in eGFR calculated with MDRD. Recently, Fan et al.
introduced a new method for eGFR calculation based on
cystatin C and concluded that it may be a better filtration
marker than the equations based on serum creatinine value
particularly in elderly patients [24]. To validate our proposed
model, we can model the renal failure worsening framework
using different equations of eGFR.

6. Conclusion

An ANFIS based model was developed for modeling the
renal failure progression and predicting the renal failure
time. The model could accurately (>95%) predict the GFR
for sequential 6-, 12-, and 18-month intervals. The main
limitation of this study from the clinical point of view was
that urine protein was not among the variables evaluated for
the prediction of GFR in 6 to 18 months.
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