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Abstract. A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a hetero-
geneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assess-
ment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor
classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter
spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples
acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter com-
puted tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification
using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aper-
ture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of
the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo
simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify
the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them
with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respec-
tively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue
samples and reconstruct differential coherent scatter cross sections that are highly correlated with those mea-
sured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter
images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of
a minute per slice. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.1.013505]
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1 Introduction
Coherent scatter imaging has been shown to spatially differen-
tiate healthy and cancerous breast tissue.1–3 Whereas conven-
tional x-ray imaging provides contrast between different breast
tissues primarily based on differences in electron density, coher-
ent scatter imaging provides contrast based on molecular struc-
ture in the tissue. The source of this contrast, i.e., changes in
molecular structure in the tissue, has been shown to accompany
cancer as a disturbance in the structure of collagen in the breast
tissue.1,4 As a result, the coherent scatter pattern associated with
breast tissue has been demonstrated to consistently differentiate
between adipose, fibroglandular, normal (50∕50 adipose/fibro-
glandular) and cancerous tissues.2,5–10

Specifically, the differences in the coherent scatter intensity
distributions between cancerous and healthy breast tissue are
shown in Fig. 5. As an example of why the coherent scatter
behaviors are different for the different tissue-types: adipose tis-
sue is comprised primarily of only fat molecules, whereas fibro-
glandular, 50∕50 adipose/fibroglandular, and cancerous tissues
all contain more complex mixtures of stroma and (often) fat
molecules.1 It has been suggested that the fat cells in adipose tis-
sue are aligned to behave with a relatively higher degree of order,

which results in adipose tissue having more evidence of diffrac-
tion effects or a sharper coherent scatter cross section peak.11

Coherent scatter computed tomography (CSCT) has been
successfully applied previously to identify malignant and
other tissue types in the human body.3,12,13 In order to acquire
coherent scatter signal to reconstruct cross-sectional images of
the sample, CSCT is usually implemented with a collimated
pencil beam of incident x-rays. The beam is raster scanned
along two axes and then rotated about the target object at multi-
ple projection angles to generate a tomographic CSCT image.
This scanning approach makes it necessary to perform thou-
sands of pencil beam acquisitions in order to reconstruct a
three-dimensional (3-D) coherent scatter image of a sample.
This process is prohibitively time-consuming and difficult to
implement experimentally with high precision, particularly
when volumes as large as a breast or lung must be imaged.
Moreover, x-ray tube heating coupled with the inefficiency of
collimating the source to produce thin pencil beams makes it
prohibitive to generate thousands of pencil beams in a clinical
setting. Long scan times degrade the clinical effectiveness of the
imaging technology not only due to the inconvenience for
patients and clinicians but also because patient-motion and its
accompanying motion-artifacts become more significant with
increasing imaging-time.
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In this work, we demonstrate an alternative method of gen-
erating 3-D coherent scatter images without a need for tomo-
graphic rotation of the sample or of the imaging system.

We design and demonstrate the coded aperture coherent scat-
ter spectral imaging14 technique for breast cancer imaging and
diagnosis. Coded aperture coherent scatter spectral imaging,
which has been used for material-identification in nonmedical
15,16 and medical 17–19 applications, uses a coded aperture placed
in front of the detector to make multiplexed measurements of the
scatter. When the coded aperture is placed in front of the x-ray
detector, it spatially modulates the scattered x-rays by a fre-
quency dependent on the location of the scatter origin. By iden-
tifying the origin of scatter along the pencil beam, the coded
aperture enables reconstruction of images of the sample without
any need for tomographic rotation.

To demonstrate the technique, we first performed a quanti-
tative assessment of the accuracy of the imaging system using
Monte Carlo simulations. We then constructed a pencil beam
experimental x-ray coded aperture scatter imaging system
and imaged two surgically resected human breast tissue sam-
ples. One of the samples contained cancerous tissue and the
other did not (known a priori through histology). After imaging,
the type of breast tissue in each voxel was identified by match-
ing its reconstructed differential coherent scatter cross section
dσcohðqÞ∕dΩ to the known cross sections of different breast tis-
sue types from literature. Volumetric images of the distributions
of healthy and cancerous tissue in the samples were generated.

2 Methods
In this section, we first present the (a) Monte Carlo simulations
used, (b) experimental implementation of the coded aperture
imaging system, and (c) the algorithms used for image
reconstruction and tissue classification.

2.1 Monte Carlo Modeling

Monte Carlo simulations of the imaging system were developed
in GEANT4.20 We have previously described the use of this sim-
ulation in modeling medical imaging systems21,22 and the bench-
marking of its electromagnetic physics against experiment.23,24

The code was used in this study to evaluate the accuracy of the
imaging system.

A visualization of the Monte Carlo simulation of the coded
aperture system is shown in Fig. 1(b). Instead of modeling a
point source followed by pinhole collimators, we directly mod-
eled a perfectly collimated pencil beam of x-rays in order to
optimize total simulation time.

The energy spectrum of the x-rays was modeled to resemble
an x-ray tube with a tungsten-rhenium anode at 125 kVp—in
order to match the spectrum of the x-rays in the experiment—
using the XSPECT software.25,26 The x-ray beam fluence in the
simulation was made to match the fluence used in the experi-
ment based on x-ray tube mAs: the x-ray tube mAs used in the
experiment was recorded, and the x-ray tube mAs used in the
simulation can be calculated based on recording the number of
x-ray histories that are simulated and converting that number
into the corresponding mAs from the fluence per unit mAs val-
ues calculated by XSPECT (which for the 125 kVp, tungsten-
rhenium anode x-ray tube used in this work was 17 × 106 x-rays
per mAs in the 0.75 mm-diameter collimated pencil beam). The
energy spectrum from XSPECT was validated in two ways: by
measuring the directly transmitted x-ray beam spectrum in
the experiment using an energy-sensitive photon-counting
CdTe detector-array with 6.5 keV full width at half maximum
(FWHM) energy resolution that we used for the coherent scatter
imaging measurements in this work, and by measuring the
Compton scatter off of a known object with a single energy-
sensitive pixel (Amptek model XR100T) that has 1 to 2 keV
FWHM energy resolution.

Fig. 1 (a) Visualization of the Monte Carlo simulation, (b) picture of experimental implementation, and
(c) picture of the coded aperture. In (a) and (b), the letter “S” stands for scatter shield, “C” for pinhole
collimator, “M” for coded aperture mask, and “D” for detector. The simulation was modeled based on the
experimental setup and was used to quantitatively assess the accuracy of the system for cancerous pixel
detection. The coded aperture modulates the detected scattered x-rays to enable resolution along the
beam direction, eliminating the need to rotate the sample as in tomography.
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Finally, in order to optimize simulation time, the energy-sen-
sitive detector array was modeled as a logical volume that
reports 100% quantum or intrinsic detection efficiency along
with the energy of each photon, as opposed to modeling it as
a CdTe crystal. Spatial binning, energy binning, and energy
blurring were performed as postprocessing steps.

The digital breast tissue phantom [Fig. 2(a)] taken from
Ref. 27 was formed by inserting a mathematical lesion—
whose shape is based on tomosynthesis images of breast
tumors—into a 25-mm cube containing a distribution of healthy
breast tissues taken from a segmented cone beam CT image of a
healthy patient’s breast. Specifically, the lesion shape and size
(∼1.92 cm) were generated using a mathematical tumor model
based on lesions segmented from high resolution transmission-
based tomosynthesis images; the mathematical tumor model that
was used was previously shown to be indistinguishable by radi-
ologists from lesions in CT images.28 The tissue distribution was
obtained from breast phantoms that comprise segmentations of
three tissue-types (pure fibroglandular, pure adipose, and mix-
tures of the two) from high-resolution CT images of the breasts
of a healthy patient. The segmentation was performed using
three steps: (1) denoising the images using a 3-D anisotropic
diffusion algorithm, (2) applying histogram thresholding to pro-
duce initial gland and skin segmentations, and (3) applying a
glandular linking and extension protocol based on a skeletoni-
zation of the skin and glandular segmentations. This breast
phantom and others produced using the same procedure have
been shown to mimic realistic breast phantoms.

Because the electromagnetic interference that occurs
between coherently scattered x-rays in diffraction is not inher-
ently modeled in Monte Carlo simulations, we modified the
GEANT4 code to model the spatial probabilistic distribution
of coherent scattering for each of the different types of breast
tissue described in Kidane et al11 (100 breast specimens vali-
dated through histological analysis), which are also shown in
Fig. 5. The modification of the GEANT4 code is described in
more depth in Ref. 29 and 30. Each breast specimen was
assigned the coherent scatter attributes of the corresponding tis-
sue type (as well as density from Ref. 31 and atomic composi-
tion from Ref. 32) prior to undergoing the simulated scan. Due
to our modification, when an x-ray in the simulation undergoes
coherent scattering in a breast tissue medium, the scatter angle
of the x-ray is chosen based on the differential coherent scatter
cross section for that breast tissue-type as measured in Ref. 11,
as opposed to the simulation using the differential coherent scat-
ter cross sections for the individual atoms in the medium (e.g.,
the Hubbell form factors from Ref. 33), which is what is mod-
eled in the code by default.

As in the experimental acquisition, the virtual simulated scan
was performed by raster scanning the breast sample through the
pencil beam along the x direction through a 28-mm field-of-
view (FOVx) in steps of 4 mm. An x-ray tube-current product
of 290 mAs (which required the tracking of 5 × 109 incident x-
rays in the pencil beam in the simulation) was used for each
acquisition, which was the x-ray fluence found to provide the
best qualitative balance between simulation time and classifica-
tion accuracy. The Monte Carlo simulations of all raster scans
were run on a computer cluster of 300 parallel processors using
the technique for distribution described in Ref. 34, which
resulted in a 3-hour computational run time∕100 mAs (i.e.,
1.7 × 109 x-rays). Other than the FOVand tube-current product,
the remaining specifications of the system modeled in the Monte

Carlo simulations were identical to the experimental system
described in the Sec. 2.2.

2.2 Experimental Data Acquisition

The experimental setup (based on Ref. 14) comprised an x-ray
tube, two pinhole collimators, a translation stage, a coded aper-
ture, and a linear array of 128 energy-sensitive x-ray detector
pixels. The experimental implementation of the coded aperture
scatter imaging system is shown in Fig. 1(a). Each component of
the experimental system is described later.

The x-ray tube (Varian model G1593BI) used a rotating tung-
sten-rhenium anode and a focal spot size of 0.8 mm, operating at
125 kVp and 50 mA. The x-rays were collimated to a pencil
beam of diameter 0.75 mm at the detector with angular diver-
gence of∼1 mrad using a two-stage collimator. In the first stage,
a pair of 1-mm slits was used to collimate the beam to 1 mm ×
1 mm cross section. Then, in the second stage, a 3-mm-thick
lead sheet with a 0.75-mm diameter circular hole was used to
further collimate the beam to 0.75-mm-diameter circular
cross section. The beam spatial profile was verified using a
higher spatial-resolution detector, specifically a stationary amor-
phous silicon indirect cesium iodide (CsI) flat panel energy-inte-
grating detector (Paxscan, 4030 CB series, Varian Medical
Systems) with a pixel size of 194 μm.

Two breast samples were used in this study that were
obtained through a protocol approval from the Duke University
Health System Institutional Review Board. The pair of samples
was surgically excised from the human breast: one was a healthy
tissue sample and the other, a matched tumor excised from the
same patient [see Fig. 3(a)]. The absence of cancer in the first
sample and the presence of it in the second were confirmed
using tissue histology (routine clinical workup through H&E
staining35 performed prior to the tissue being procured by our
group). Both samples weighed approximately 40 g and were
roughly 2.5 cm in size. Each breast specimen was placed in
the beam separately [see Fig. 6(a)] and scanned using a raster
scanning method in x (i.e., across the table, perpendicular to the
beam) and y (i.e., height above the table, perpendicular to the
beam) using a computer-controlled translation stage for precise
translation of the sample. The imaging was performed in a raster
fashion with 2.5-mm-sized steps in both x and y directions in
order to cover a 30 mm × 15 mm area. Excluding the time
required for allowing the x-ray tube to cool down between
runs, the time required for this 30 mm × 15 mm volumetric
scan was approximately 12 min ∕sample.

The resolution in z (i.e., parallel to the beam) was achieved
using the coded aperture. The coded aperture was constructed
from a 1-mm slab of bismuth–tin alloy machined into a series
of uniform slits [see Fig. 1(c)]. The spatial frequency of the peri-
odic slits was u ¼ 0.5 mm−1, with each of the slits measuring
1 mm × 1 mm × 50 mm (width × thickness × height). The
coded aperture was placed dCA ¼ 83 mm in front of the detector
to modulate the scatter.

The scattered x-rays were measured using an array of
128 energy-sensitive CdTe detector pixels (Multix ME-100
Version 2) aligned along the x-axis. The first detector pixel
was placed at the beam center so that the remaining detector
pixels were a known distance along x off the beam axis. In addi-
tion, a lead attenuator was placed just in front of the first pixel
to reduce the primary beam intensity in order to prevent the
detector from being saturated by the primary beam. Each detec-
tor pixel measured 0.8 mm × 0.8 mm. The spacing between
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adjacent energy bin centers was 2.2 keV (measured through
energy calibration of the detector pixels), and the range of ener-
gies was ∼20 to 160 keVover a total of 64 energy channels. The
energy resolution of the detector pixels was 6.5 keV (FWHM)
and was nearly uniform over the energy range of the detector.14

2.3 Image Reconstruction and Tissue Classification

Both the Monte Carlo simulation data and the experimental data
were reconstructed using the same procedure, described in this
subsection. The acquired data for each pencil beam acquisition
in both the simulation and experiment were in the form of pho-
ton counts across the 128 pixels and 64 energy channels. The
differential coherent scatter cross section [dσcohðq; zÞ∕dΩ] as a
function of q (which is known as the momentum transfer) and z
position (i.e., location along the pencil beam) were recon-
structed for each pencil beam acquisition using a maximum a
posteriori estimation method with total-variation (TV) regulari-
zation based on the algorithm developed in Ref. 36. Each pencil
beam acquisition was reconstructed separately and then finally
combined to form the full image. As mentioned in the Sec. 1, the
relative scatter intensity or the shape of the differential cross
section [dσcohðqÞ∕dΩ] for a given pixel in the field-of-view
as a function of momentum transfer q can be used to identify
the type of tissue at that point in space. Therefore, once
dσcohðqÞ∕dΩ is reconstructed for each pixel along z in each
of the pencil beam projections across the sample (in both x
and y), the resulting voxels in the reconstructed 3-D coded
aperture scatter image can be classified to determine the corre-
sponding tissue type: adipose, 50∕50 adipose/fibroglandular,
fibroglandular, cancerous tissue (or there may no match)
based on the shape of its dσcohðqÞ∕dΩ function. Specifically,
we classified each voxel in the 3-D coded aperture scatter
images based on a match of its coherent scatter pattern
[dσcohðqÞ∕dΩ] with the scatter patterns reported in Kidane
et al.11 The match was performed by evaluating the correlation
coefficient between the actual (Kidane) and measured (Monte
Carlo) scatter patterns. If a given voxel showed a correlation
coefficient below 0.8 (minimum threshold value), it was not
classified as tissue and was instead classified as air or “nothing.”
Mixtures or cases of multiple tissue types within a single voxel
were not explicitly considered in this work (other than 50∕50
adipose/fibroglandular tissue).

In the case of the Monte Carlo simulations, the ground-truth
phantom is known and can therefore be used to do a quantitative
accuracy assessment of the imaging system. The ground-truth
phantom was sampled to match the sampling rate used in the
reconstructed image, and was then used to calculate the

sensitivity (true classification rate of positive voxels), specificity
(true classification rate of negative voxels), and accuracy of the
imaging system for the detection of cancerous voxels.

3 Results
The first step of this work was to use Monte Carlo simulations of
the imaging system in order to evaluate its classification perfor-
mance against a known ground truth. The classification results
of the coherent scatter imaging generated from the imaging sys-
tem in Monte Carlo simulations are shown in Fig. 2(c), juxta-
posed with the ground truth shown in Fig. 2(b). The ground truth
image in Fig. 2(b) is the original phantom from Fig. 2(a) used in
the simulations but subsampled based on the raster-scan step-
size along x (4 mm) used in the image acquisition process.
When we quantitatively assess the accuracy of the pixel classi-
fication—specifically for the task of detecting cancerous
pixels—the classification image shown in Fig. 2(c) was found
to have a sensitivity (i.e., the percentage of cancerous pixels that
were correctly identified as being cancerous) of 92.4%, speci-
ficity (i.e., the percentage of healthy pixels correctly identified
as healthy) of 91.9%, and accuracy for cancerous pixel detection
of 92.0%. The 8% of pixels classified inaccurately were pri-
marily attributed to spatial blurring due to the finite spatial res-
olution of the system along the z-direction (i.e., along beam
propagation), Poisson noise and residual model error in the
reconstruction. The spatial blurring along z leads to misclassi-
fication in two ways: (a) detection of signal in pixels where the
object was not originally present, and (b) blending of the differ-
ential coherent scatter cross sections between neighboring pixels
causing one or both of them to be misclassified. Despite this
error margin, the imaging system demonstrated high classifica-
tion accuracy (92%) for cancer classification, strengthening the
promise of the technique for experimental implementation.

Experimental coherent scatter images for the cancerous
breast tissue sample are shown in Figs. 3(b)–3(d), and volume
renderings of the four types of breast tissue classified in the sam-
ple are shown in Fig. 4. Figure 3(b) shows the volume rendering
of the sample based on its measured scatter intensity, and
Figure 3(c) shows the scatter intensity for a single slice through
the sample. Figure 3(d) shows the material identification results
for the sample with the material type in each pixel classified as
one of the four available tissue types: cancerous (black), 50∕50
adipose/fibroglandular (red), adipose (blue) tissue (note: fibro-
glandular tissue was not explicitly detected in this slice). As
expected for this cancerous tissue sample, the classified
image showed several pixels of cancerous tissue, which are vis-
ible in Fig. 3(d) in the region labeled “A.” It can be seen that the

Fig. 2 Comparison of the (c) classification results obtained for the reconstructed coherent scatter images
from the Monte Carlo simulations with (b) the sampled ground-truth phantom and the (a) modeled phan-
tom. As in Fig. 3(d) and Fig. 6(c), the color scheme used here is white (air), black (cancerous tissue), red
(50∕50 adipose/fibroglandular tissue), magenta (fibroglandular tissue), and blue (adipose tissue). The
sensitivity, specificity, and accuracy for classification of the cancerous pixels are 92.4%, 91.9%, and
92.0%, respectively, supporting the accuracy of the coherent scatter imaging technique for cancer
imaging.
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scatter intensity alone from Fig. 3(c), which would be akin to the
transmission image, is insufficient to identify regions of cancer.

Figure 5 shows the coherent scatter differential cross sections
reconstructed at pixel locations labeled “A,” “B,” and “C” in
Fig. 3(d). For reference, Fig. 5 also shows the expected coherent
scatter differential cross sections from Kidane et al. for cancer-
ous, 50∕50 adipose/fibroglandular and adipose tissue. The cor-
relation of the curves in Fig. 5 that were reconstructed here to
those from Kidane et al. is the basis used for classifying the type
of tissue in the voxel. The 50∕50 adipose/fibroglandular and adi-
pose curves measured experimentally in this study strongly
resembled the average curves reported by Kidane et al., whereas
the carcinoma curves measured here deviated to a certain degree
from those reported by Kidane et al. These deviations in our
sample could stem from structural changes caused by repeated
thawing and freezing of the specimen. In addition, the variations
in coherent scatter signal in the cancerous specimen are also

caused by the known heterogeneity of cancer: a variety of
types of carcinoma occur and samples that fall into the histologi-
cal classification for carcinoma typically contain some healthy
tissue.11

Experimental images for the healthy breast tissue specimen
from the same patient are shown in Fig. 6. The material-classi-
fied image in Fig. 6(c) shows that no cancerous tissue was
present in the sample.

4 Discussion

4.1 Accuracy of Imaging System and Potential
Medical Applications

In this work, we measured coherent scatter cross-sections and
compared them against theoretical values reported in literature.
The match between the experimental and theoretical differential
coherent scatter cross sections not only corroborates the utility

Fig. 3 Images of the cancerous breast tissue sample scanned experimentally. The scatter intensity
reconstructed from the sample is visualized in (b) and (c), whereas the pixels classified into different
tissue types is shown in (d). In (d) white is air, black is cancerous tissue, red is 50∕50 adipose/fibrogland-
ular tissue, magenta is fibroglandular tissue, and blue is adipose tissue. The results show that the coher-
ent scatter imaging system is able to detect cancerous voxels inside the breast tissue sample that was
known a priori to be cancerous.

Fig. 4 Volume renderings of the four types of tissue in the cancerous tissue sample based on voxel
classification results of the reconstructed coherent scatter image from Fig. 3. The coherent scatter im-
aging technique can be used to determine the distribution of cancerous tissue through the volume, which
would prove to be an important capability for diagnostic medical applications such as surgical margin
detection.

Fig. 5 Comparison of the coherent scatter differential cross sections [dσcohðqÞ∕dΩ] reconstructed for the
voxels labeled in Fig. 3(d) with those from validated x-ray diffraction measurements of homogeneous
samples from Kidane et al.11 The correlation of the curves reconstructed here with those from
Kidane et al. enables the tissue identification performed in this work. The curves were normalized in
order to optimize the match between the literature and experimental results.
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of coherent scatter imaging in cancer detection, but also attests
to the presence of population-invariant attributes that make x-ray
diffraction useful for tissue identification and differentiation.
The coherent scatter imaging system accurately determined
the nature of the specimen (i.e., malignant or healthy) by iden-
tifying the tissue type in each voxel within the specimen. Cancer
was found only in the specimen known to be malignant, whereas
the specimen known to be healthy was classified as 50∕50 adi-
pose/fibroglandular. Finally, the Monte Carlo assessment of the
imaging system showed a cancer detection accuracy of 92.0%
(Fig. 2).

In current clinical practice, transmission-based x-ray imaging
is the most commonly used noninvasive diagnostic technique for
breast cancer identification.37 However, the advantage of coher-
ent scatter imaging over conventional transmission imaging lies
in its material identification ability, which is shown in Figs. 3(d),
6(c) and 2(c), which comes from the increased contrast between
cancerous and healthy tissue that is attainable from the scatter
signal as opposed to the transmission signal. In a conventional
transmission image, a radiologist must manually read the image
and identify suspicious regions to detect cancer or other abnor-
malities. On the other hand, the coherent scatter images provide
the differential coherent scatter cross section for every voxel in
the sample that can be used as an identifying molecular signature
of the tissue in that voxel, thereby enabling accurate and auto-
matic classification (and subsequently detection) of the disease.

The coded aperture scatter imaging technique described in
this work was able to map out the distribution of cancerous
breast tissue in the specimen using a single-angle imaging
approach (i.e., without any tomographic rotation of the sample
or of the imaging system). This approach results in reduced dose
and short scan-durations, making it appealing for both ex vivo
and in vivo analyses in clinical settings. An example of a clinical
application of ex vivo analysis of breast tissue is in surgical mar-
gin detection, where a surgically removed tumor must be ana-
lyzed to confirm positive margins (i.e., the absence of cancer
cells along the periphery of the tumor). The coded aperture scat-
ter imaging technique could be an effective tool to obtain such
confirmation through a quick x-ray scan obtained directly in the
operating room immediately following surgery.

The results of this work also support the use of coherent scat-
ter imaging for in vivo applications where the path-length of the
beam through the object is less than ∼3 cm (i.e., the sizes of the
tissue samples imaged here). Based on our other investigations
using thicker objects,29 the imaging system can be optimized to
image thicker objects such as compressed breasts typically
imaged through mammography. These findings suggest that
coherent scatter imaging could potentially evolve as a stand-
alone diagnostic tool or serve as a complementary tool to mam-
mography for breast cancer detection.

4.2 Future Improvements to Spatial Resolution and
Scan Duration

The spatial resolution along the beam (z) direction determined in
this work was ∼2.5 mm (whereas the spatial resolution along
the x and y directions is the beam width, which was
0.75 mm). While this is an encouraging start, it would be insuf-
ficient for clinical applications. For example, the long thin spic-
ules that are typically seen in breast lesions have width that is
submillimeter,38 which would make them difficult to detect if
the spicule were oriented perpendicular to the z direction of
the imaging system. However, the spatial resolution provided
by coherent scatter imaging is most likely superior to the sam-
pling rate achieved using tissue histology which has been shown
to sample only 10 to 15% of a tissue specimens surface in intra-
operative margin detection.39

The resolution could be improved further. As seen in Fig. 2,
the extent along the z-direction is larger for the classified object
than the ground truth, which is due to the limited spatial reso-
lution achieved by the coded aperture. The use of a coded aper-
ture with finer features or greater spatial frequency would
improve this spatial resolution,16 especially at the boundaries
of the sample, which are the most important regions of the speci-
men for the surgical margin application. In addition, acquiring
additional projection data at a second view that is 90 deg from
the original view would also improve the spatial resolution
along the z direction. (Acquiring data for a second view will
increase the total scan time). Finally, we are currently develop-
ing random forest algorithms and spectral unmixing approaches
to classification for classifying fractions of each tissue-type in a
given voxel, which will result in more accurate cancer-detection
results for a fixed spatial resolution.

Similarly, although the scan duration in this work was
acceptable (∼12 min ∕specimen), it can be reduced further by
using additional detector pixel arrays: adding detector pixel
arrays, which increases the total area across which scattered
photons are measured, will increase the intensity of scattered
photon signal that we collect per unit of scan time, thereby reduc-
ing the scan time that we require. As an example, the Monte Carlo
simulations in this study modeled an x-ray tube-current product
of 290 mAs∕acquisition, which would result in a scan time of
41 s to acquire the entire slice shown in Fig. 2(c) using an x-ray
tube operating at 50 mA (as was used in the experimental part of
this work). Increased parallelism in the measurements such as
using a fan beam instead of a pencil beam is also a potential
future strategy to realize additional speedup in scan time.40

5 Conclusion
In this work, we have demonstrated experimentally that the
coded aperture scatter imaging technique can be used to map

Fig. 6 Images of the healthy breast tissue sample. As in Fig. 3(d), the color scheme used here in Fig. 6(c)
is white (air), black (cancerous tissue), red (50∕50 adipose/fibroglandular tissue), magenta (fibrogland-
ular tissue), and blue (adipose tissue). The results show that the coherent scatter imaging system is able
to rule out the presence of cancerous voxels in this breast tissue sample, which was known a priori to be
healthy.
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the distribution of cancerous and other types of breast tissue
inside a sample. Using Monte Carlo simulations, we demon-
strated that the system has the potential to achieve high cancer
detection accuracy (92.0% in this simulation study). The differ-
ential coherent scatter cross sections obtained for adipose,
50∕50 adipose/fibroglandular and cancerous tissue in our work
closely resembled those measured in other x-ray diffraction
studies. Coded aperture scatter imaging can generate volumetric
images without the need for tomographic rotation of the sample,
and it can map the distribution of different types of breast tissue
in the sample automatically (as opposed to requiring a human
reader). Therefore, it could serve as an effective tool for analyz-
ing breast tissue samples in a clinical context in the future.
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