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Low c-Met expression levels 
are prognostic for and predict 
the benefits of temozolomide 
chemotherapy in malignant 
gliomas
Ming-Yang Li1,*, Pei Yang2,*, Yan-Wei Liu2, Chuan-Bao Zhang1, Kuan-Yu Wang3, Yin-
Yan Wang2, Kun Yao4, Wei Zhang1, Xiao-Guang Qiu5, Wen-Bin Li6, Xiao-Xia Peng7, Yong-
Zhi Wang1 & Tao Jiang1,2

Aberrant c-Met has been implicated in the development of many cancers. The objective of this 
study was to identify an unfavorable prognostic marker that might guide decisions regarding 
clinical treatment strategies for high-grade gliomas. C-Met expression was measured using 
immunohistochemistry in 783 gliomas, and we further analyzed c-Met mRNA levels using the Agilent 
Whole Genome mRNA Microarray in 286 frozen samples. In vitro, we performed cell migration and 
invasion assays. Cell sensitivity to temozolomide (TMZ) chemotherapy was determined using MTT 
assays. Both mRNA and protein levels of c-Met were significantly associated with tumor grade 
progression and inversely correlated with overall and progression-free survival in high-grade gliomas 
(all P < 0.0001). These findings were nearly consistent at the mRNA level across 3 independent cohorts. 
Multivariable analysis indicated that c-Met was an independent prognostic marker after adjusting for 
age, preoperative Karnofsky Performance Status (KPS) score, the extent of resection, radiotherapy, 
TMZ chemotherapy, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation 
status. Further analysis in vitro revealed that downregulating the expression of c-Met dramatically 
inhibited cell migration and invasion capacities, enhanced sensitivity to TMZ chemotherapy in H4 and 
U87 glioma cells. Our results suggest that c-Met may serve as a potential predictive maker for clinical 
decision making.

Gliomas are the most frequent primary tumors of the central nervous system in humans with glioblastoma 
(WHO grade IV), which is the most common and malignant histological tumor type. Due to the heterogeneity 
and instability of cancer, the 5-year survival of patients with glioblastoma is <3%1, despite the use of multimodal 
therapies involving surgery, radiotherapy and chemotherapy. To date, a biomarker panel with predictive power to 
distinguish between treatment-sensitive and treatment-refractory gliomas is not available. Therefore, it is imper-
ative to identify important markers, and ultimately, to target the mechanisms of these molecules. This approach 
will likely have a substantial influence on future treatment strategies for highly invasive gliomas.
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Currently, it is widely accepted that the most consistent abnormalities associated with well-known molecular 
aberrations of aggressive gliomas, such as chromosome 7 amplification and chromosome 10 deletion (which were 
the primary concerns of our present study), are present in 80% to 90% of cases2–4. Recent developments in cytoge-
netic and molecular biology have provided new approaches for analyzing prognoses. Tumor suppressor genes, 
proto-oncogenes and markers of metastatic propensity and proliferation are some of the different research tools 
that have been used. Among these tools, the most interesting tumor marker is Met (a hepatocyte growth factor 
receptor), which is a transmembrane receptor protein that has been implicated in the pathogenesis of glioblasto-
mas (GBMs) through autocrine and/or paracrine mechanisms that potentially affect tumor cell growth, survival, 
invasion, migration, and angiogenesis5–8. Hepatocyte growth factor (HGF) binding activates the tyrosine kinase 
of the Met receptor, which results in the auto-phosphorylation of several tyrosine residues in its cytoplasmic 
domain. The phosphorylation of each tyrosine residue initiates a distinct signal transduction cascade, and these 
cascades involve Erk, Akt, and Stat39,10.

In humans, the c-Met gene is located on chromosome 7 at band 7q21–q31 and can be activated not only 
by binding HGF, its ligand, but also by the overexpression or amplification of factors that have been reported 
to occur in a wide variety of cancer types, including lung, stomach, liver, prostate, ovarian, colon, and pancre-
atic cancers11–15. In lung adenocarcinoma, immunohistochemical assessments of Met protein expression have 
revealed that Met is an independent predictor of a poor prognosis16, but its expression has not been revealed to be 

Figure 1.  c-MET differences in all grades and all three databases. (A) The protein expression patterns of 
c-Met in the CGGA IHC validation cohort, which contained 887 glioma tissues. (B, C, D) c-Met expression 
patterns in the microarray validation cohorts, which contained 286 (CGGA), 317 (REMBRANDT) and 264 
(GSE16011) glioma tissues. Single spots indicate the gene expression values of individual patients. The lines in 
the middle indicate the mean expression values. (E) Representative antibody staining for c-Met (Grade II-left, 
Grade III-middle, and pGBM-right) showing that c-Met expression increased gradually with increasing tumor 
grade. All slides stained for c-Met were individually reviewed at 200x magnification. Scalebar 20 μ m. ANOVA 
was to examine the overall P values.
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a prognostic and/or predictive marker of the effects of anti-MET/HGF therapeutics in a large high-grade glioma 
population.

Based on this background information, the objective of this study was to identify a molecular marker that 
can predict the effect of treatment and may be used as a prognostic marker for unfavorable outcomes in patients 
with highly diffuse astrocytomas. Therefore, we selected c-Met as the molecular target and evaluated the signifi-
cance of the correlations of this marker with overall survival, progression-free survival and therapy outcomes in 
a large-scale study of high-grade tumor specimens.

Materials and Methods
Patients and Tumor Samples.  A total of 885 patients with 486 grade II, 202 grade III, and 197 grade IV 
primary gliomas were included in the immunohistochemistry study. All of these patients were managed with 
surgical resection and subsequent chemoradiotherapy and were independently re-evaluated by 2 experienced 
neuropathologists who were blinded to the clinical outcomes of the patients, according to the World Health 
Organization 2007 criteria17. This study was approved by the Ethics Committee of Beijing Tiantan Hospital, 
the methods were carried out in accordance with the approved guidelines, and written informed consent was 
obtained from all patients included in this study.

Treatment.  Maximal tumor resection while preserving the key eloquent cortex was the principle goal dur-
ing surgery. The extent of resection was assessed on the postoperative enhanced MRI within 72 h and graded as 
gross total or subtotal resection. Patients subsequently underwent concomitant TMZ and RT or radiotherapy in 
addition to concomitant and adjuvant TMZ chemotherapy (RT +  TMZ) or postoperative radiotherapy only (RT 
only). Postoperative adjuvant radiotherapy was routinely delivered to the patient within four weeks after surgery. 
The total dose was 54–60 Gy, which was divided into 30 daily fractions of 1.8–2 Gy each, and five fractions were 
administered per week. For the patients who received adjuvant chemotherapy, the treatment was administered 
four weeks after radiation, and at least two cycles of chemotherapy were administered. Concomitant chemother-
apy consisted of oral TMZ at a daily dose of 75 mg/m18 that was given seven days per week from the first to the 
last day of radiotherapy for at most 49 days. After a four-week break, the patients received adjuvant oral TMZ 
(150–200 mg/m2) for five days every 28 days. A total of six cycles of TMZ chemotherapy were administered if no 
disease progression or irreversible hematological toxic effects were observed.

Surveillance and follow-up.  Survival data were collected in the clinics during the patient visits. The 
patients who underwent only tumor biopsy were not followed up at our center and were therefore excluded 
from the survival analysis. The baseline examinations included CT and magnetic resonance imaging (MRI), full 
blood counts and blood chemistry tests and physical examinations. During radiotherapy (with or without TMZ), 
the patients were seen every week. Twenty-one to 28 days after the completion of radiotherapy and every three 
months thereafter, the patients underwent comprehensive evaluations that included physical examinations and 
radiologic assessments of the tumors. During the adjuvant TMZ therapy, the patients underwent monthly clinical 
evaluations and comprehensive evaluations at the end of cycles 3 and 6. Overall survival (OS) was defined as the 
time between surgery and death. Progression-free survival (PFS) was defined based on the RANO criteria19.

Microarray Datasets.  We used the whole genome mRNA expression microarray data for all tumor grades 
from Chinese Glioma Genome Atlas (CGGA) database20 (http://www.cgga.org.cn) as a validation platform. 
The US National Cancer Institute Repository for Molecular Brain Neoplasia Data (REMBRANDT, http://
caintegrator-info.nci.nih.gov/rembrandt), GSE16011 Data21 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc= GSE16011) and the Cancer Genome Atlas (TCGA) Database22 (http://cancergenome.nih.gov) were used 
to validate the mRNA and protein sets.

Characteristics Grade III N =  179 Grade IV N =  175

Gender

  Female/male 79/99 (44%) 67/108 (38%)

Age 

  Median (range) 42 (14–74) 51 (9–81)

KPS score

  Median (range) 80 (50–98) 80 (50–70)

Median OS 

  (days, 95% Cl) 704 (1.4–3.2) 382 (1.0–2.2)

Median PFS 

  (days, 95% Cl) 510 (1.6–3.6) 255 (1.0–2.1)

Extent of resection 

  GTR (%) 43% 48%

Table 1.  Clinical characteristics of 354 high-grade gliomas by IHC. Abbreviations: IHC, 
mmunohistochemistry; KPS, Karnofsky Performance Status; OS, overall survival; PFS, progression-free 
survival; GTR, gross total resection.

http://www.cgga.org.cn
http://caintegrator-info.nci.nih.gov/rembrandt
http://caintegrator-info.nci.nih.gov/rembrandt
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
http://cancergenome.nih.gov
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DNA extraction and DNA pyrosequencing for the IDH1 mutation and MGMT promoter 
methylation.  All of the materials were selected for DNA extraction via an elaborate examination of cor-
responding hematoxylin and eosin-stained sections. Every selected sample contained at least 80% of the vital 
tumor and was quick-frozen in liquid nitrogen and maintained at − 80 °C. Genomic DNA was extracted 
from the frozen tumor tissues using a QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s pro-
tocol. The genomic region spanning wild-type R132 of IDH1 was analyzed with pyrophosphate sequenc-
ing using the following primers: (forward) 5′ -GCTTGTGAGTGGATGGGTAAAAC-3′  and (reverse) 
5′ -biotin-TTGCCAACATGACTTACTTGATC-3′ . For O-6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation, bisulfite modification of the DNA was performed using an EpiTect Kit. The following 
primers were used to amplify the MGMT promoter region: (forward) 5′ -GTTTYGGATATGTTGGGATA-3′  and 
(reverse) 5′ -biotin-ACCCAAACACTCACCAAATC-3′ .

Cell lines and Cell Culture.  The human glioma cell lines H4 and U87 were purchased from the Institute of 
Biochemistry and Cell Biology, Chinese Academy of Science. The cells were cultured in DMEM containing 10% 
FBS, 50 U/ml penicillin G and 250 μ g/ml streptomycin in a humidified atmosphere containing 5% CO2 at 37 °C. 
H4 and U87 cells were transfected with c-Met shRNA (3 target-specific plasmids, GeneChem, China, MET-RNA1 
(15908-1), MET-RNA2 (16973-1), and MET-RNA3 (16985-1) and a control vector) using Lipofectamine 
2000 (Invitrogen) according to the manufacturer’s instructions. The MET-RNA1 target sequence was 
5′ -CTTATATGAAGTAATGCTA-3′ , the MET-RNA2 target sequence was 5′ -ACGATGAATACATTGAAAT-3′ , 
and the MET-RNA3 target sequence was 5′ -AACTTCTTTGTAGGCAATA-3′ .

Western blot.  Whole cells were washed with cold PBS and lysed in RIPA buffer. Equal amounts of total pro-
tein (30 μ g) from cell lysates were loaded onto 10% SDS/PAGE gels, transferred to PVDF membranes (Millipore), 

Figure 2.  The prognostic value of the c-Met protein in the CGGA and validation datasets. Kaplan-Meier 
curves for the two high-grade glioma databases that were constructed according to the protein expression of 
c-Met. In the CGGA datasets, overall survival (A) and progression-free survival (B) show that grade III patients 
carrying negative c-Met protein expression survived significantly longer. Overall survival (C) and progression-
free survival (D) show that pGBM patients carrying negative c-Met protein expression survived significantly 
longer. In the TCGA datasets, overall survival (E) and progression-free survival (F) show that pGBM patients 
carrying negative c-Met protein expression survived longer. The CGGA values were acquired via IHC, and the 
TCGA values were downloaded from the TCGA web site. The log-rank test was used to calculate the P values.
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and detected using an ECL Western Blotting Detection System (Bio-Rad). The antibodies used were c-Met 
(1:2000 dilution, EP1454Y, Abcam) and GAPDH (1:5000 dilution, Proteintech).

Cell Proliferation.  For the MTT assays, the cells, including all transfectants, were grown to the exponential 
phase and detached by trypsin treatment. A total of 2000 cells/well were plated onto 96-well tissue culture plates 
(100 μ l complete medium/well) and cultured at 37 °C in 5% CO2. Different TMZ concentration gradients were 
performed on H4 and U87 cells, and after 3 days, 20 μ L per well of MTT reagent was added and incubated at 37 °C 
for 1 hour. Subsequently, the absorbance values of each well were measured with a microplate spectrophotometer 
at 490 nm. Results were plotted as means ±  SD of three independent experiments.

Cell migration and invasion assays.  24-well chambers with 3.0 μ m pore size (Corning) were used in 
cell migration and invasion assays. Cells were resuspended in 500 μ L serum-free medium and 100 μ L (about 
100,000 cells) were seeded into the upper chamber (without or pre-coated with 200 ng/ml Matrigel solution (BD 
Biosciences, Bedford MA 01730, USA) in migration or invasion assay separately), 600 μ L of DMEM containing 
10% fetal bovine serum was placed in the lower chamber. After 24 h of incubation, the upper chambers were 
removed from the plates and cells on the top side of the chamber were wiped with a cotton swab. Migrating or 
invading cells were fixed and then stained. Four randomly fields were counted under a microscope and photos 
were taken.

Immunohistochemistry (IHC).  Tumor samples collected during surgery or biopsy were embedded in par-
affin and evaluated by experienced neuropathologists. One appropriate block from each specimen was selected, 
and serial 4 μ m-thick sections of tissue were used for the immunohistochemical analyses of c-Met expression. 
In brief, immunoperoxidase staining for c-Met (Santa Cruz Biotechnology, sc-161) was performed following 
the standard protocol recommended by the manufacturer to show membrane and cytoplasmic staining. Each 
slide that was stained for c-Met was individually reviewed at 200x magnification and scored by two independ-
ent observers. Discrepancies in scoring between the two observers were resolved by an additional review of the 
specimens and a discussion was held between the reviewers until a consensus was achieved. The proportions of 
positively stained tumor cells were graded as follows: 0, no positive tumor cells; 1, <10% positive tumor cells; 2, 
10–30% positive tumor cells; and 3, >30% positive tumor cells. The intensity of staining was recorded on the fol-
lowing scale: 0 (no staining), 1 (weak staining, light yellow), 2 (moderate staining, yellowish brown), and 3 (strong 
staining, brown). The staining index was calculated as follows: staining index= staining intensity× tumor cell 
staining grade. High c-Met expression was defined as a staining index score ≥4, and low expression was defined 
as a staining index <4.

Figure 3.  c-Met expression was correlated with treatment according to protein expression. Overall survival 
(A) and progression-free survival (D) of all of the pGBM patients who received combined chemotherapy and 
radiotherapy were longer than those who received only radiotherapy. The overall survival (B) and progression-
free survival (E) of participants who received combined chemotherapy and radiotherapy and who displayed 
negative c-Met protein expression were longer. Overall Survival (C) and progression-free survival (F) of 
participants who received combined chemotherapy and radiotherapy and displayed positive c-Met protein 
expression were not significant longer than participants who received only radiotherapy. All values were 
acquired by IHC. R, radiotherapy; C, chemotherapy.
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Statistical Analysis.  Descriptive statistics, included counts, mean values, and standard errors, were calcu-
lated, as appropriate. The differences in c-Met expression were examined with ANOVA. The OS was calculated 
from the date of surgery to the date of the last follow-up or the date of death. The PFS was calculated from the date 
of the first surgery until the recurrence or the last follow-up. Survival curves were drawn using the Kaplan–Meier 
method, and the differences between the groups were compared with log-rank tests. P-values <  0.05 were consid-
ered statistically significant. Univariate analyses and multivariate analysis were performed with the Cox regres-
sion model. The factors that exhibited no significant association were eliminated (P >  0.05), and the remaining 
factors (P <  0.05) that were entered into the multivariate analysis were assumed to be independent predictors of 

Variable

Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Sex 0.811 0.554–1.188 0.282

Age 1.020 1.005–1.034  < 0.010 0.975 0.946–1.005 0.103

IDH1 mutation 0.580 0.316–1.067 0.08

MGMT promoter methylation 0.552 0.346–0.881 0.013 0.758 0.331–1.738 0.513

c-Met 1.640 1.115–2.412 0.01 2.389 1.126–5.072 0.023

KPS 0.973 0.955–0.991  < 0.01 0.962 0.938–0.988  < 0.01

Extent of resection 1.579 1.086–2.297 0.017 0.826 0.397–1.720 0.610

Radiotherapy 0.490 0.294–0.818  < 0.01 0.478 0.199–1.150 0.099

Chemotherapy 0.387 0.262–0.569  < 0.01 0.237 0.113–0.499  < 0.01

Table 2.  Cox Hazard Regression Analysis of Clinicopathologic Factors and the MET for Overall Survival in 
pGBM (n = 175). Abbreviations: pGBM, primary glioblastomas multiforme; IDH1, isocitrate dehydrogenase 1; 
MGMT, O6-methylguanine–DNA methyltransferase; KPS, Karnofsky Performance Status.

Figure 4.  c-Met knockdown inhibits glioma cell proliferation in vitro. Western blot analysis showed the 
biological effects of 3 c-Met shRNAis. (A) The c-Met protein levels of U87 and H4 cells transfected with shRNA 
1, one of 3 c-Met shRNAis, were nearly knocked down compared to control shRNA (Ctrl shRNA). In vitro 
growth of U87/Ctrl shRNA, U87/Met shRNA2 cells and H4/Ctrl shRNA, H4/Met shRNA2 cells were measured 
using MTT assays. (B) The proliferation of cells with low c-Met expression who received TMZ-treatment was 
clearly inhibited. The results represent at least 3 separate experiments. Bars, SD.
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survival. All data analyses were performed with GraphPad Prism, R and SPSS (Statistical Package for the Social 
Sciences) software.

Results
Patient Demographic Characteristics.  For immunohistochemistry, we selected a patient population with 
available concrete clinical information that included 429 grade II, 179 grade III, and 175 pGBMs for our training 
set. The characteristics of patients with grade III and primary GBM are given in Table 1. Regarding the mRNA 
platform, among the data from the 286 glioma patients whose medical records were obtained from the CGGA 
database, there were 126 grade II gliomas, 51 grade III gliomas and 109 pGBMs. The other 264 and 317 samples 
from the GSE16011 and Rembrandt databases, respectively, were used as validation sets.

MET was overexpressed in high-grade gliomas.  The expression of c-Met was measured in a series of 
885 glioma samples by IHC (Fig. 1E). As shown in Fig. 1A, the pGBMs and anaplastic gliomas exhibited signifi-
cantly higher levels of c-Met expression than the low-grade gliomas (P <  0.0001). To further confirm this result, 
the other 3 validation data sets were examined, and the microarray results revealed that the pGBMs exhibited a 
significant increase in c-Met transcript level compared with the mean expression levels observed in the low-grade 
gliomas and anaplastic gliomas (P <  0.0001; Fig. 1B–D).

MET was a strong prognostic marker in the high-grade gliomas.  To achieve stratification based on 
c-Met protein expression, the patients were divided into high c-Met expression and low c-Met expression groups 
based on the staining indices. The mean overall survival times of the pGBM and grade III patients with high 
c-Met expression were obviously shorter than those of the corresponding patients with low c-Met expression 
(P =  0.01 and P =  0.01, respectively, by log-rank test; Fig. 2). The mean progression-free survival time of pGBM 
and grade III patients with low c-Met was significantly longer than that of patients with high c-Met expres-
sion (P =  0.01 and P <  0.01, respectively, by log-rank test; Fig. 2). Subsequently, these results were confirmed 
based on the mRNA levels in the three validation sets (Figure S1). To determine the prognostic value of c-Met in 
high-grade gliomas, we conducted univariate Cox regression analyses using the clinical and genetic variables of 
the high-grade patients. We found that age, preoperative KPS score, extent of resection, radiotherapy, chemother-
apy, MGMT promoter methylation, and c-Met expression were statistically associated with the OS of the pGBM 
patients. Next, multivariable regression analysis was applied to evaluate the independent prognostic values of 
these clinicopathologic factors for patient survival. Ultimately, all of the data revealed that c-Met expression was 
an independent prognostic factor when age, preoperative KPS score, extent of resection, radiotherapy, chemo-
therapy, and MGMT promoter methylation were considered (Table 2). Unexpectedly, the same result was not 
observed in the grade III glioma patients (data not shown).

Figure 5.  c-Met knockdown inhibits glioma cell migration and invasion. Quantification of migration and 
invasion cells showed that the cell migration and invasion capacities in c-Met-shRNA group were remarkably 
inhibited (P ≤  0.01). Representative images and accompanying statistical plots were presented. Data are 
presented as the mean ±  SD (n =  4, each group).



www.nature.com/scientificreports/

8Scientific Reports | 6:21141 | DOI: 10.1038/srep21141

Association of c-Met expression with the efficacy of currently available therapies.  In our 
research, the patients who received aggressive therapy achieved the best OS and PFS, and the patients with 
pGBMs who received only radiotherapy exhibited the worst survival (Fig. 3A, D; All P <  0.0001). To further 
explain this phenomenon, we postulated an association between c-Met expression and therapeutic outcome and 
divided the patients into high-expression and low-expression groups and then further subdivided these groups 
into alkylating agent-treated and non-alkylating agent-treated subgroups. We found that the patients in the 
low-expression group were perfectly separated, which indicates that the patients who accepted aggressive therapy 
experienced longer OS (Fig. 3B, P <  0.0001) and PFS (Fig. 3E, P <  0.0001) than the patients who received only 
radiotherapy but that the same phenomenon was not observed in the high-expression group (Fig. 3C, P =  0.2833; 
Fig. 3F, P =  0.0687). The same method was also applied to the whole-genome mRNA expression microarray data 
and the same phenomenon was observed (Figure S2).

c-Met sensitizes temozolomide (TMZ) therapy in vitro.  To underscore the potential for a 
medication-guiding role for c-Met, we first downregulated the expression of c-Met in two glioma cell lines 
that originally expressed c-Met at high levels. We followed this with a functional assay. Compared with control 
shRNA, MET-RNA2 clearly decreased the protein expression of c-Met (Fig. 4A), and H4 and U87 cells presented 
inhibited proliferation with TMZ-treatment in the absence of c-Met (Fig. 4B) according to an MTT assay, whereas 
application of c-Met with control shRNA had a reduced effect. The same result was also verified by analysis of 
mRNA and protein levels (Figure S3). Consequently, inhibiting MET enhanced the effect of TMZ sensitivity in 
both cell lines.

Cell migration and invasion were decreased by c-Met-RNA2.  The migration assay and Matrigel inva-
sion assay were performed using U87 and H4 cells. The migration assay showed that remarkable cell migration 
diminution in c-Met-shRNA group compared with in the control shRNA group (Fig. 5). The Matrigel invasion 
assay also showed numbers of invading cells in the control shRNA group were significantly increased compared 
with the c-Met-shRNA group (Fig. 5).

Discussion
C-Met has been demonstrated to be expressed by various cell types, including epithelial cells, vascular endothe-
lial cells, lymphatic endothelial cells, neural cells and hepatocytes23–25. Furthermore, c-Met is also overexpressed 
in multiple malignancies and is associated with aggressive disease26. Based on immunohistochemical analysis, 
Nabeshima et al. concluded that the expression of c-Met is correlated with the grade of malignancy in human 
astrocytic tumors27, Lee et al. found that the overexpression of c-Met is associated with the survival of patients 
with colorectal cancer28, and Kong et al. and Petterson et al. came to similar conclusions for patients who have 
GBMs29,30. Our findings that c-Met expression in the brain is associated with glioma progression and that among 
the patients with high-grade gliomas, those with high levels of c-Met expression exhibited shorter OS and PFS 
compared with the patients with low levels of expression strongly corroborate these previous results. Accordingly, 
it is also notable that our results expand on the previous results which included a larger and more ethnically 
diverse clinical population and are thus more persuasive. Further analyses indicated that the patients with low 
c-Met expression levels gained greater survival benefits from alkylating radiochemotherapy (P <  0.001 for OS and 
PFS at both the protein and mRNA levels) than did those with high c-Met expression levels (all P >  0.1). In vitro 
analysis revealed that the downregulation of the expression of c-Met dramatically enhanced sensitivity to TMZ 
chemotherapy in H4 and U87 glioma cells.

MGMT gene promoter methylation is well known to be a prognostic marker of favorable outcomes and is 
predictive of the benefits attained by alkylating agent chemotherapy in patients with GBM31. Accumulating exper-
imental evidence indicates that constitutive activation of the P13K/AKT signaling pathway is associated with 
tumor cell resistance to conventional chemotherapy32,33, and Wang et al. noted that the effectiveness of TMZ 
is dramatically enhanced when STAT3 is inhibited34. However, no stronger molecular characterization of this 
malignancy had been identified in pGBM, so we identified c-Met as a robust marker with independent prognostic 
value for pGBM when considering much more important clinical information.

Highly diffuse glioma is a morphologically heterogeneous type of tumor for which the median survival has 
been reported to be only 15 months in clinical trial populations. Therefore, despite many advances in the treat-
ment of these tumors, malignant gliomas remain the leading global cause of cancer-related deaths. Therefore, 
further research is needed to identify novel therapeutic targets for use in individualized treatment. In our sam-
ples, we focused on alkylating agent treatments and observed that the patients who received combined chemo-
therapy and radiotherapy experienced had longer survival than the patients who had only received radiotherapy. 
However, survival varied widely across patients. Therefore, we addressed the question of whether the patients 
with pGBMs displayed distinct biological features that responded differentially to combined chemo-radiotherapy 
and, if so, which biological mechanisms or genes were responsible for this phenomenon. Recently, Ozasa reported 
that c-MET overexpression might play an important role in acquired resistance to cytotoxic anticancer drugs35. 
According to this report, a potential therapeutic strategy aimed at inhibiting aberrant Met signaling is a prom-
ising therapeutic tactic for glioblastomas. In this study, we uncovered, for the first time in such a large-scale 
population, a previously unknown role for c-Met in gliomas. Our study revealed that patients with low levels of 
c-Met expression who received alkylating treatments had longer survival times and PFS than those who received 
non-alkylating treatment, but there was no significant difference in the high-expression c-Met group. To confirm 
these findings in vitro, we used c-Met knockdown via shRNA with TMZ treatments to inhibit glioma cell prolifer-
ation and compared results with Met-positive glioma cells, further supporting a role for downregulating expres-
sion of c-Met in temozolomide sensitivity. In order to further explore the crucial role of c-Met in the biological 
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processes of tumor cell. We performed Cell migration and invasion assays which significantly revealed that 
c-Met-shRNA cells were obviously inhibited migration and invasion abilities of the glioma cells. Taken together, 
this study provided evidences that the decrease of c-Met expression was associated with prognosis and the biolog-
ical functions of gliomas. Moreover, we found that high expression of c-Met might predict TMZ chemotherapy 
resistance both for patients and in vitro. Based on these results, c-Met may be a useful biomarker for identifying 
patients who should be candidates for more aggressive therapies such as c-Met targeted medicine.
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