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Individual Variations in Nucleus 
Accumbens Responses Associated 
with Major Depressive Disorder 
Symptoms
Masaya Misaki1, Hideo Suzuki1, Jonathan Savitz1,2, Wayne C. Drevets1,3 & Jerzy Bodurka1,4,5

Abnormal reward-related responses in the nucleus accumbens (NAcc) have been reported for major 
depressive disorder (MDD) patients. However, variability exists in the reported results, which could 
be due to heterogeneity in neuropathology of depression. To parse the heterogeneity of MDD we 
investigated variation of NAcc responses to gain and loss anticipations using fMRI. We found NAcc 
responses to monetary gain and loss were significantly variable across subjects in both MDD and 
healthy control (HC) groups. The variations were seen as a hyperactive response subtype that showed 
elevated activation to the anticipation of both gain and loss, an intermediate response with greater 
activation to gain than loss, and a suppressed-activity with reduced activation to both gain and loss 
compared to a non-monetary condition. While these response variability were seen in both MDD and 
HC subjects, specific symptoms were significantly associated with the right NAcc variation in MDD. 
Both the hyper- and suppressed-activity subtypes of MDD patients had severe suicidal ideation and 
anhedonia symptoms. The intermediate subjects had less severity in these symptoms. These results 
suggest that differing propensities in reward responsiveness in the NAcc may affect the development of 
specific symptoms in MDD.

Major depressive disorder (MDD) is a heterogeneous disease associated with multiple symptoms and showing 
large variability across patients. The Diagnostic and Statistical Manual of Mental Disorders (DSM) assigns the 
diagnosis of MDD to patients with heterogeneous clinical syndromes1. Multiple symptom factors including 
depressed mood, anhedonia, psychomotor symptoms, and somatic symptoms, are characteristic of MDD2, per-
haps explaining why no single biomarker meets the clinically useful levels of specificity and sensitivity3. This 
heterogeneity needs to be accounted for in attempts to elucidate the neurobiological basis of MDD4,5.

Abnormalities in reward processing are considered a major component of MDD pathology6–8. Anhedonia 
is one of the two core symptoms, along with depressed mood, in MDD9. Abnormal reward-related behaviors 
in various probabilistic learning and decision-making tasks10–13 as well as fMRI-measured brain activation in 
reward-processing regions such as the nucleus accumbens (NAcc), the striatum, and the medial prefrontal cortex 
have been reported in MDD14–24. Although abnormalities of reward processing have consistently been reported 
for MDD, the degree of dysfunction varies across studies8,25,26. Several studies showed reduced neural activity 
during the anticipation of reward16,18, while others showed reduced activity during receipt of rewards14,15,27 or in 
both anticipation and receipt of reward19,20,22. There is also another report21 showed no difference at both antici-
pation and acceptance of reward within the NAcc. This variability could be due to heterogeneity of MDD subjects. 
Indeed recent work28 reports two types of MDD subjects with higher and lower activity after reward receipt com-
pared to healthy control (HC) in the ventral tegmental area (VTA) and the ventral striatum.

The heterogeneity of MDD patients imposes limitations on the standard study approach, in which subjects are 
classified into case (MDD) and control groups based on their diagnoses and/or symptom measures and then a dif-
ference between the groups is examined. While some studies carefully selected the case subjects based on specific 
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criteria (e.g. anhedonia), symptom-based selection does not necessarily ensure patient group homogeneity. As 
anhedonia is not a specific symptom in MDD, but can also be seen in schizophrenia, substance abuse disorders, 
Parkinson’s disease, and over-eating patients9, identical symptoms are likely associated with different forms of 
neuropathology. For instance, distinct brain abnormalities have been reported in depressed and schizophrenia 
patients with anhedonia27.

Moreover, the control group may also be heterogeneous. Individual variability in activation of the NAcc has 
been reported for healthy subjects29–31. Deficits in reward-related brain responses similar to those reported in 
MDD have also been found in remitted MDD subjects32,33 and psychiatrically-healthy subjects with a paren-
tal history of depression34–36. A twins study37 indicated that more than 46% of reward responsiveness could be 
explained by genetic factor, which suggest reward responsiveness may reflect a genetically-influenced trait that is 
distributed across the population.

Heterogeneity in both MDD and HC groups and possible variability of associated neuropathology suggest that 
diagnosis- or symptom-based classification and comparison of group averages can limit elucidation of the neuro-
biological basis of MDD. Studies focusing on group average differences could have missed important information 
residing in individual variability, which might be able to explain heterogeneous symptoms in MDD. In this study, 
we focused on individual variability across subjects within a healthy and depressed group and its association 
with depression symptoms. The importance of investigating individual variability within a diagnostic group has 
been raised in the Research Domain Criteria (RDoC) project of the National Institute of Mental Health (NIMH) 
Strategic Plan5. RDoC suggested a dimensional approach, which examines the full range of variation from normal 
to abnormal among the fundamental functional components4,5. In line with the RDoC dimensional approach, our 
study identified heterogeneity of reward-related brain activation independent of diagnosis and symptomatology.

Specifically, we extracted subtypes of fMRI-measured NAcc activations to reward and punishment using an 
unsupervised classification analysis for MDD and HC subjects together. The extracted subtypes were then used 
as a reference to extract symptom factors that correlated with the derived phenotypic subtypes. We coined this 
approach as “Unsupervised Brain Subtyping and Symptoms Association”. Importantly, this approach not only 
directly identifies neurobiological variability without reference to diagnosis and symptomatology, but also allows 
for a bottom-up approach to understanding neurobiology instead of a top-down symptom-based search for the 
neurobiological correlates of interest.

Here we focus on the NAcc activation during the anticipation of reward and punishment. The NAcc, com-
prising part of the ventral striatum, is a critical component of the dopaminergic reward evaluation circuit in 
the brain26. Although the blunted activation to reward has been reported in both anticipation and acceptance 
of rewards, behavioral experiment indicated that MDD with anhedonia showed reduced wanting (expecting) 
of reward but no difference in liking (acceptance) of reward compared to HC17. Animal models of depression 
also indicated that VTA-NAcc dopaminergic circuit represents prediction or anticipation of reward25,38,39. Taken 
together, we hypothesized that reward-processing abnormality in the NAcc for MDD is characterized by its acti-
vation in reward anticipation more than in reward acceptance40.

We first examined variation of NAcc activation to anticipating monetary gains and losses across MDD and HC 
subjects using principal component analysis (PCA). We then applied a clustering analysis to the NAcc responses 
to describe the variation of response patterns. The extracted clusters were associated with symptom scores using 
a linear discriminant analysis (LDA). LDA was used to extract symptom subspace that was correlated with the 
NAcc response variation.

Results
Demographic and symptom rating.  Table 1 shows subjects’ demographics and symptom ratings. Gender 
composition and mean age did not differ significantly between groups. The mean scores on all four symptom rat-
ing scales (sum scores for each scales) were significantly higher for MDD than HC by linear mixed-effect model 
(LMM) analyses41. For the SHAPS score, one HC and two MDD subjects who had missing values in some items 
were excluded from the statistical analysis of the SHAPS in Table 1.

HC MDD

N (male/female) 45 (33/12) 44 (32/12) gender difference P =  1.000

Age (range, 
mean ±  SD)

21–55, 
32.0 ±  9.3

20–55, 
35.3 ±  11.1 t(83.9) =  1.524, P =  0.131

HAM-D 2.6 ±  2.3 17.3 ±  5.6 F(1,85) =  264.200, P <  0.001

HAM-A 3.0 ±  3.1 17.8 ±  5.9 F(1,85) =  229.921, P <  0.001

MADRS 2.5 ±  2.8 23.0 ±  6.8 F(1,85) =  351.676, P <  0.001

SHAPS 18.3 ±  4.3 28.9 ±  6.2 F(1,82) =  85.667, P <  0.001

Table 1.   Gender composition, age, and symptom rating scale scores for the HC and MDD subjects. The 
result of Fisher’s exact test for gender composition, Welch’s two-sample t-test (two-tailed) for age, and main 
effect of diagnosis in linear-mixed effect model analysis with fixed effect of diagnosis, age, and gender are 
shown in the table. HC: healthy control. MDD: major depressive disorder. HAM-D: Hamilton rating scale for 
depression-21 item. HAM-A: Hamilton anxiety rating scale. MADRS: Montgomery-Asberg Depression Rating 
Scale. SHAPS: Snaith-Hamilton Pleasure Scale (higher total SHAPS score indicated higher levels of present state 
anhedonia).
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Diagnostic group average of NAcc response.  We employed a monetary incentive delay (MID) task42 
to measure NAcc response to monetary gains and losses. Supplementary Fig. S1 shows procedures of the task. 
NAcc responses during the anticipation (delay period in Supplementary Fig. S1) and outcome (feedback period in 
Supplementary Fig. S1) were evaluated separately. Average responses in the left and right NAcc regions for each of 
four monetary conditions (− $1.0, − $0.25, +$0.25, + $1.0) contrasted to the non-monetary condition ($0) were 
calculated in each subject.

Figure 1 shows group averages of NAcc responses for MDD and HC. LMM analysis with fixed effects of diag-
nosis, monetary condition, and their interaction along with age and gender was performed. Although the main 
effects of the monetary condition in both anticipation and outcome periods (P <  0.001 for both left and right 
NAcc) were significant, main effect of diagnosis was not significant (P =  0.325 and P =  0.405 for left and right 
NAcc, respectively. See Supplementary Table S1 for comprehensive statistics). Interaction between condition and 
diagnosis was significant for the left NAcc (P =  0.043) and post-hoc analysis (Tukey’s test) indicated that MDD 
had significantly lower activity at the +  $1.0 condition in the left NAcc (P =  0.013 corrected).

NAcc response variation.  Figure 2 shows results of PCA for the left and right NAcc response patterns 
in the anticipation period. Figure 2a shows percentage of explained variance with standard error of mean, and 
Fig. 2b shows distribution of principal scores in the first and the second principal components evaluated with 
leave-one-out cross-validation. More than 70% of variation was explained by the first principal component. The 
distribution of the first and the second principal scores for MDD and HC groups were highly overlapped.

To examine the response variation even further, we performed a clustering analysis on the NAcc activation 
patterns. Clustering was applied to four-dimensional vectors of response pattern (two loss and two gain condi-
tions contrasted with the non-monetary condition). Similarity of NAcc activation between subjects was calcu-
lated by Euclidian distance between vectors of response pattern. We note that the responses to gain and loss were 
extracted as separate dimensions so that if there were unique difference either in gain or loss anticipation, which 
was suggested by a previous report for MDD43, the analysis could extract it.

Supplementary Fig. S2 shows a dendrogram of the clustering result for the NAcc response patterns and the 
process of cluster extraction. Four clusters for the left and three clusters for the right NAcc were extracted using 
the Bayesian information criterion (see Supplementary Fig. S2 for details). Figure 2c shows distribution of the 
first principal scores for each cluster. This indicated that cluster divisions were aligned to the first principal axis, 
which is not surprising considering majority of variance across subjects was explained by the first principal axis.

Left and right subtypes were highly overlapped (Supplementary Table S2) and association between the left 
and right NAcc subtypes were significant by a chi-square test (χ 2(6) =  56.149, P <  0.001). Although the left and 
right subtypes were overlapped, there were still dissociations between them and hemispheric asymmetry of brain 
pathology in MDD has often been reported44, so we reported the results of left and right subtypes separately.

Table 2 shows the results of LMM analysis for subtype difference in the NAcc responses. Main effects of 
subtype and monetary condition and their interaction were significant (P <  0.001). Diagnosis effect was not 

Figure 1.  Group average of the left and right NAcc responses with standard errors of mean ((a) anticipation, 
(b) outcome periods), for HC and MDD subjects. A significant difference between groups was only seen at 
the +  $1.0 condition in the left NAcc (*P <  0.05 by Tukey’s multiple comparison test).
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significant except the three-way interaction of subtype ×  condition ×  diagnosis in the right NAcc (P =  0.002). 
Post-hoc analysis revealed that the difference between HC and MDD was significant only for the − $0.25 con-
dition in subtype A of the right NAcc (MDD >  HC, P =  0.009). Comprehensive post-hoc test results are shown 
in Supplementary Tables S3, S4, S5, and S6 for the anticipation and outcome periods of the left and right NAcc, 
respectively.

Figure 3 shows average response patterns for each subtype. In the left NAcc, subtype A showed significantly 
higher increases in the hemodynamic response during the anticipatory period to both gain and loss trials rel-
ative to the $0 (P <  0.001, Supplementary Table S3a). This subtype showed reversed response for the loss con-
dition in the outcome period. Response to the − $1.0 outcome was significantly reduced compared to the $0 
(P <  0.001, Supplementary Table S4a). Subtype B also showed significant increase of hemodynamic response to 
anticipated gains and losses (P <  0.001, Supplementary Table S3b) being more active to anticipated gains than 
losses (P <  0.001, Supplementary Table S3b). This subtype showed insensitivity to the differing outcome levels to 
gain and loss (Supplementary Table S4b). Subtype C showed insensitivity to the differing incentive levels of both 
the gain and loss trials in the anticipation periods (Supplementary Table S3c). This subtype showed significantly 
reduced response to the − $1.0 outcome relative to the $0 (P =  0.002, Supplementary Table S4c). Subtype D man-
ifested significantly lower responses during the anticipation of both gains and losses relative to the $0 (P <  0.05, 
Supplementary Table S3d) except for the +  $1.0 condition (P =  0.952, Supplementary Table S3d). This subtype 
showed insensitivity to the differing outcome levels (Supplementary Table S4d).

In the right NAcc, subtype A showed significantly higher response in anticipation of both gains and losses 
relative to the $0 condition (P <  0.001, Supplementary Table S5a). This subtype showed significantly reduced 
response to the loss outcomes relative to the $0 (P <  0.005, Supplementary Table S6a). Subtype B showed moder-
ate activity to gains (P <  0.001, Supplementary Table S5b) but less response to losses. They showed significantly 
reduced response to the loss outcome (− $1.0) relative to the $0 condition (P =  0.014, Supplementary Table S6b). 
Subtype C showed significantly reduced response to both anticipated gains and losses compared to the $0 con-
dition (Supplementary Table S5c). They showed insensitivity to the differing outcome levels to gain and loss 
(Supplementary Table S6c).

Figure 4 shows the proportions of the HC and MDD groups composing each subtype. The relative pro-
portions of each subtype did not differ significantly between MDD and HC (χ 2(3) =  4.755, P =  0.191 and 
χ 2(2) =  3.085, P =  0.214, for the left and right NAcc, respectively by chi-square test). Gender composition, 

Figure 2.  Percentage of explained variance in principal component analysis (a), distribution of principal 
scores in the first (PC1) and the second (PC2) principal components (b), and distribution of the first principal 
component score (PC1) across clusters.
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socioeconomic status (Hollingshead Four Factor Index of Socioeconomic Status), and behavioral responses 
in the MID task (reaction time, hit rate, and total earned money) were not significantly different between 
subtypes (see supplementary Table S7 for comprehensive statistical test results). Significant difference 
between subtypes was found in mean age (supplementary Table S7b). Post-hoc test showed that in the 
left NAcc subtype C was older than subtype B (P =  0.018) and in the right NAcc subtype C was older than 
subtype A (P =  0.015). For the MDD subjects, difference in total scores of each symptom scale, number 
of depressed episodes, and years since the first episode were not significantly different between subtypes 
(Supplementary Table S7g-l).

Symptoms associated with the NAcc subtypes.  Although the variability in the NAcc response 
patterns are not distinctive between MDD and HC, it might nevertheless be depression-related since previ-
ous studies have demonstrated that on average NAcc activation differs between healthy and MDD groups in 
response to rewarding stimuli14,16,19,27. Here we investigated symptom factors that could be related to NAcc 
response subtypes.

Symptoms associated with the NAcc response subtypes were extracted using linear discriminant analysis 
(LDA). Our purpose of using LDA is not classification but to extract symptom items that characterize the 
difference between NAcc subtypes. Fifty-nine symptom variables from the Hamilton rating scale for depres-
sion (HAM-D)45, the Hamilton anxiety rating scale (HAM-A)46, the Montgomery-Asberg Depression Rating 

Factor

Left NAcc Right NAcc

DFs F P DFs F P

Subtype 3, 79 95.465 < 0.001 2, 81 91.897 < 0.001

Condition 3, 243 41.845 < 0.001 3, 249 35.183 < 0.001

Diagnosis 1, 79 0.101 0.752 1, 81 0.126 0.723

Age 1, 79 0.076 0.784 1, 81 0.022 0.883

Gender 1, 79 0.000 0.986 1, 81 0.080 0.778

Subtype ×  Condition 9, 243 10.506 < 0.001 6, 249 9.653 < 0.001

Subtype ×  Diagnosis 3, 79 0.597 0.619 2, 81 0.129 0.879

Condition ×  Diagnosis 3, 243 1.754 0.157 3, 249 1.886 0.132

Subtype ×  Condition ×  Diagnosis 9, 243 0.666 0.740 6, 249 3.517 0.002

Table 2.   Results of the linear mixed-effect model analysis for nucleus accumbens responses during 
anticipating gain or loss. The model included fixed effects of response subtype, monetary condition, diagnosis, 
age, and gender and random effect of subject. NAcc =  nucleus accumbens, DFs =  degrees of freedom

Figure 3.  Average NAcc responses for each subtype in anticipation period (a) and outcome period (b) with 
standard errors of mean.
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Scale (MADRS)47, and the Snaith-Hamilton Pleasure Scale (SHAPS)48 were used as independent variables 
and the subtypes of NAcc response was used as dependent variable in the LDA. To extract critical symptom 
items that characterize the NAcc subtypes and to compensate for over-fitting problem in LDA, we used 
shrinkage discriminant analysis (SDA)49 combined with recursive feature elimination (RFE)50. This analysis 
was performed only for the MDD subjects since there were no or very small variances in these symptom 
scores for the HC group.

Supplementary Fig. S3 shows the history of recursive feature elimination and the distribution of the dis-
criminant scores in the extraction of symptom items associated with the NAcc subtypes (See Methods for 
detailed procedure). The best classification score with a leave-one-out cross-validation was achieved with a 
set of 25 variables for the left and with nine variables for the right NAcc subtypes. Table 3 lists the selected 
symptom items and correlations between each score and the discriminant function output. We performed 
LMM analyses on the symptom items that significantly correlated with the subtype discriminant functions 
after Bonferroni correction.

Figure 5 shows the distribution of symptom scores extracted for the analysis. For the left NAcc subtypes, 
LMM analyses with subtype, age, and gender as fixed effects showed significant main effect of subtype on 
‘Depersonalization and Derealization (HAM-D)’ (F(3,38) =  3.394, P =  0.028) and ‘Insomnia (HAM-A)’ 
(F(3,38) =  3.086, P =  0.039). However, neither relationship remained significant after correcting for the number 
of LMMs performed in this step.

For the right NAcc subtypes, significant main effect of the subtype were seen in ‘Suicidal Ideation 
(HAM-D)’ (F(2,39) =  5.887, P =  0.005), one anhedonia item, ‘I would enjoy looking smart (SHAPS)’ 
(F(2,39) =  5.855, P =  0.006), and ‘Somatic (Sensory) (HAM-A)’ (F(2,39) =  4.348, P =  0.020). Only the rela-
tionships between suicidal ideation and the anhedonia item remained significant after correcting for the 
number of LMMs performed.

Discussion
We investigated variability of NAcc responses to the anticipation of monetary gains and losses for MDD and HC 
subjects. Variations with either exaggerated or attenuated hemodynamic responses were observed among both 
healthy and depressed subjects without significant differences in the proportions of the subtypes between groups. 
The MDD and HC groups did, however, differ in their response to anticipating the largest potential monetary gain 
condition in the left NAcc on group average. This result is consistent with previous reports showing blunted ven-
tral striatal activity during anticipation of monetary gains in MDD relative to HCs16, though there is considerable 
variability across studies. This variability may reflect biological heterogeneity within the population meeting DSM 
criteria for MDD and is consistent with our findings.

Importantly, while we observed the blunted NAcc response to gain anticipation for the average of MDD com-
pared to the average of HC, we also found that the distribution of the NAcc response patterns to gain and loss 
anticipations were highly overlapped (Fig. 2b) and the response type variability was not significantly different 
between MDD and HC groups (Fig. 4). This indicated that population inference, such as a statistically significant 
difference between group averages does not necessarily suggest that NAcc activity to gain and loss in the context 
of the MID task is a sensitive marker for distinguishing individuals of MDD subjects from HC subjects.

Variability in the responsiveness to reward and loss also has been reported in healthy subjects29–31 and the 
results from several studies suggest that brain responsiveness to rewarding stimuli is a heritable factor34,35,37. These 
data suggest that the subtypes of NAcc response may constitute a trait-like property that is distributed throughout 
the general population.

Although the variable NAcc response patterns are not specific to depression, they may nevertheless be 
depression-related. Studies have demonstrated that on average NAcc activation differs between healthy and MDD 
groups not only in response to rewarding stimuli14,16,19,27 but also in response to other types of positively-valenced 
emotional stimuli51,52. Taken together, these results suggest that NAcc activity could be related to the vulnerability 
to or development of depression symptoms.

We thus extracted symptoms that were associated with the NAcc subtypes for MDD subjects. The results 
showed that NAcc response subtypes were indeed related to different symptoms (Table 3). Post-hoc analysis 
(Fig. 5) revealed that only the right NAcc response subtypes were significantly associated with suicidal ideation 
and anhedonia symptoms. We should mention that multivariate exploration analysis such as LDA with RFE in 
our analysis could aggressively extract any symptoms even if their association with the NAcc subtype was weak, 
so post-hoc analysis is important to confirm the validity and significance of the finding.

Figure 4.  Proportions of NAcc subtypes in HC and MDD. 
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Right-side bias of depression-related neuropathology has often been reported24,44. Greenberg et al.24 showed 
abnormal reward expectation (RE) and prediction error (PE) signals only in the right ventral striatum. They also 
reported that group averages of HC and MDD either for the RE or PE signal were not significantly different, but 
distribution of individuals in RE ×  PE relationship (correlation between RE and PE) were different between the 
groups. This demonstrated the importance of investigating not only group averages but also individual variability 
to elucidate a neuropathology of depression.

Subjects in both hyper- and suppressed-activity subtypes for the right NAcc had greater severity in suicidal 
ideation and anhedonia symptoms. This result indicated that different types of neural activities could be associ-
ated with the same symptom. We also note that there was no significant difference in general symptom severity 
(sum score of multiple symptom scales) between subtypes (supplementary Table S7g-j). The association of both 
suicidal ideation and anhedonia appears consistent with reports indicating that anhedonia is a significant pre-
dictive risk factor for future suicide attempts53. Notably, our sensitivity to detect such a relationship may have 
been reduced by the exclusion of volunteers who presented a high risk for imminent suicidal behavior during 
screening.

a.

Symptom LD(A) LD(B) LD(C) LD(D)

Insomnia (HAM-A) 0.024 − 0.263 0.566** − 0.338

Reduced sleep (MADRS) 0.019 − 0.164 0.471* − 0.334

Depersonalization and Derealization (HAM-D) − 0.375 − 0.262 − 0.119 0.660**

Severity of diurnal variation (HAM-D) 0.450 − 0.147 0.221 − 0.422

Somatic (Muscular) (HAM-A) − 0.442 − 0.214 0.208 0.332

I would get pleasure from helping others (SHAPS) 0.432 0.222 − 0.174 − 0.366

Anxiety Somatic (HAM-D) − 0.372 − 0.266 0.095 0.443

enjoy seeing other people’s smiling faces (SHAPS) 0.238 0.344 − 0.282 − 0.227

Somatic (Sensory) (HAM-A) − 0.181 − 0.389 0.376 0.132

Autonomic Symptoms (HAM-A) − 0.340 − 0.201 0.057 0.395

Concentration difficulties (MADRS) 0.272 0.233 − 0.258 − 0.170

I would find pleasure in my hobbies or pastimes (SHAPS) 0.251 0.069 − 0.396 0.146

Insomnia Late (Early Awakening) (HAM-D) 0.046 − 0.191 0.366 − 0.222

I would enjoy a warm bath or refreshing shower (SHAPS) 0.388 − 0.178 0.046 − 0.168

Retardation (HAM-D) − 0.083 0.344 − 0.170 − 0.098

Insomnia Early (Sleep Onset Insomnia) (HAM-D) 0.143 0.033 0.176 − 0.319

I would enjoy being with my family or close friends (SHAPS) 0.191 0.043 − 0.257 0.075

Loss of Weight (HAM-D) − 0.143 0.186 0.080 − 0.155

be able to enjoy my favorite meal (SHAPS) 0.261 0.048 − 0.240 0.000

Reported Sadness (MADRS) − 0.119 − 0.169 0.077 0.176

Work and Activities (HAM-D) 0.289 − 0.033 − 0.031 − 0.156

Apparent Sadness (MADRS) 0.018 − 0.248 0.072 0.155

Obsessional and Compulsive Symptoms (HAM-D) 0.032 0.219 − 0.042 − 0.194

Fears (HAM-A) − 0.006 − 0.185 − 0.027 0.212

Inner tension (MADRS) − 0.237 0.090 0.076 0.014

b.

Symptom LD(A) LD(B) LD(C)

Suicidal ideation (HAM-D) 0.653** − 0.811** 0.539**

I would enjoy looking smart when I have made an effort with 
my appearance (SHAPS) 0.606** − 0.748** 0.494**

Behavior at Interview (HAM-A) 0.311 − 0.522** 0.477*

Genital Symptoms (HAM-D) 0.177 − 0.488** 0.582**

Somatic (Sensory) (HAM-A) − 0.698** 0.459* 0.084

Somatic (Muscular) (HAM-A) − 0.418* − 0.021 0.530**

Insomnia Late (Early Awakening) (HAM-D) − 0.302 − 0.059 0.453*

I would get pleasure from helping others (SHAPS) 0.373 − 0.144 − 0.208

Loss of Weight (HAM-D) − 0.190 0.223 − 0.137

Table 3.   List of symptom items selected for discriminating NAcc response subtypes and their correlations 
with the output of the linear discriminant function (LD) for (a) left NAcc and (b) right NAcc. Items having a 
significant correlation after Bonferroni correction with a NAcc subtype discriminant function indicated by bold 
font, were placed at the top of the list. The other items are ordered by their average absolute correlation value in 
descending order. *P < 0.05, **P < 0.01 (corrected).
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Regarding anhedonia symptoms, while the association between the suppressed-activity and greater anhedonic 
symptom is convincing, the association between the hyperactive subtype and anhedonia symptom reported here 
appears counter-intuitive. This finding may conceivably be related to the reversed response patterns between 
anticipation and outcome periods. Subjects with hyperactive response to the anticipation of reward showed lower 
response at reward outcome (Fig. 3). This reversed response pattern appears consistent with the reinforcement 
learning model based on animal studies of dopamine neurons in the VTA and NAcc54. Changes in the electro-
physiological responses of VTA and NAcc neurons can represent errors between the predicted value of reward or 
punishment and actual outcome value, so that unreasonably high expectations could result in reduced hedonic 
response during receipt of rewards. However, in the current results, the NAcc response of the hyperactive sub-
type at reward outcome was not significantly different from the other subtypes, while it was lower than the other 
subtypes. This hypothesis, therefore, was not confirmed in the current results. The reason that only one SHAPS 
item showed significant association with NAcc subtype is also not clear in the current results. As anhedonia is 
not a monolithic symptom and SHAPS cannot evaluate whole spectrum of anhedonia8, we might need further 
development of symptom measures to sort out various types of anhedonia.

Several limitations of the current study merit comment. While we focused on the NAcc response variability 
in gain and loss anticipations, this variability alone cannot explain the variance across all depressive phenotypes. 
Combined responses in both anticipation and outcome phase might elucidate another variability that may char-
acterize MDD24. Thus, the same methodology should be applied to other neuroimaging paradigms and brain 
regions to account for subjects’ individual variations. To further elucidate the association between neuropathol-
ogy and psychiatry symptoms, we also need to investigate transdiagnostic groups. Our proposed methodology, 
which elucidates subject variability independently of diagnosis, is definitely compatible with transdiagnostic 
study design and data analysis. The effect of sample size should also be considered in searching for subtypes. 
For example, since the number of subjects from a particular group in some subtypes was relatively small, our 
sensitivity was reduced for detecting a true difference in the relative proportions of subtypes between groups. We 
should also note that while we extracted clusters that showed statistically significant difference between groups, 
these clusters were not discrete groups. The cluster division was along with the first principal component (Fig. 2c) 
and subjects were continuously distributed in this axis (Fig. 2b). The NAcc response subtypes, therefore, were not 
distinctive groups but continuously distributed throughout the population.

In summary, we elucidated variations of NAcc responses to monetary gain and loss using an unsupervised 
brain subtyping and symptoms association analysis independent of DSM diagnosis. For MDD subjects, sub-
types of NAcc responses were associated with anhedonia and suicidal ideation. Our novel study approach that 

Figure 5.  Distributions of symptom scores for each subtype in the left (a) and right (b) NAcc. Each point 
indicates a subject.
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identified variability in brain activations and then symptoms associated with the variations provides a useful 
novel strategy for elucidating pathophysiology heterogeneity associated with neuropsychiatric disorders.

Methods
Participants.  Forty-four individuals with MDD (32 female) and 45 healthy control (HC) individuals (33 
female) who had no personal history of a psychiatric disorder and no family history (in first degree relatives) 
of a mood disorder participated in the study. The study was approved by the Western Institutional Review 
Board, Puyallup, WA. Human research in this study was conducted according to the principles expressed in 
Declaration of Helsinki. All subjects gave written informed consent to participate in the study and received finan-
cial compensation.

The psychiatric diagnosis was established according to Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition, Text Revision (DSM-IV-TR)55 criteria using both the Structural Clinical Interview for DSM-IV 
disorders administered via a trained clinical interviewer and an unstructured interview with a psychiatrist. 
Exclusion criteria included serious suicidal ideation, psychosis, major medical or neurological disorders, current 
pregnancy, general MRI exclusions, exposure to psychotropic medications or to any medication likely to influence 
cerebral function or blood flow within three weeks (8 weeks for fluoxetine), and meeting DSM-IV criteria for 
drug/alcohol abuse within the previous one year or for an alcohol/drug dependence (excepting nicotine) within 
the lifetime. Additional exclusion criteria applied to the HCs were current or past history of axis I psychiatric 
conditions either personally or in first degree relatives, as assessed using the Family Interview for Genetics Studies 
(FIGS)56.

Experimental design of monetary incentive delay task.  Supplementary Fig. S1 shows a procedure 
of the monetary incentive delay task. Five conditions composed of the following win/loss contingencies: − $1.0, 
− $0.25, $0, +  $0.25, +  $1.0, were applied in the task. One session consisted of 75 trials (15 trials for each of five 
conditions) and two sessions were performed. Before the experimental session, a practice session with 25 trials 
(5 for each condition) was performed in the scanner. The response time during the practice session was used to 
adjust the target duration. The target duration was set for a hit rate around 66%. The target duration was also 
adjusted during the experimental session by reducing one frame (1/75 s) after two consecutive hits and increasing 
one frame after one failure to keep the hit rate around 66% throughout the session.

MRI measurement.  Imaging was conducted on a whole-body 3 tesla MRI scanner (Discovery MR750, 
GE Healthcare, Milwaukee, WI) equipped with a 32-channel receive-only head array coil (Nova medical, 
Wilmington, MA). A single-shot gradient-recalled echo-planner imaging (EPI) sequence with sensitivity encod-
ing (SENSE) was used for fMRI in the MID task session. The EPI imaging parameters were TR =  2000 ms, 
TE =  30 ms, FA =  90°, FOV =  240 mm, 37 axial slices with 3.0 mm thickness and 0.2 mm gap, matrix =  96 ×  96, 
SENSE acceleration factor R =  2, number of volumes =  272, and scan time =  9 m 4 s. The EPI images were recon-
structed into a 128 ×  128 matrix resulting 1.875 ×  1.875 ×  3.2 mm3 voxel volume. A T1-weighted image with 
magnetization-prepared rapid gradient-echo (MPRAGE) sequence (FOV =  240 ×  192 mm, matrix =  256 ×  256, 
120 axial slices, slice thickness =  0.9 mm, 0.9375 ×  0.9375 ×  0.9 mm3 voxel volume, TR =  5 ms, TE =  2.0 ms, 
R =  2, flip angle =  8°, delay time =  1400 ms, inversion time =  725 ms, sampling bandwidth =  31.2 kHz, scan 
time =  5 min 40 s) was acquired to provide anatomical reference for fMRI data.

MRI data processing.  Analysis of Functional NeuroImages (AFNI) software57 (http://afni.nimh.nih.gov/
afni/) was used for fMRI data analysis. The first five volumes before starting the first trial in each session were 
excluded from analysis. Functional images underwent despiking, slice-timing correction, and motion correction 
by aligning to the first volume. The anatomical image was registered to the first functional volume and then was 
spatially normalized to the MNI template brain using Advanced Normalization Tools (ANTs, http://picsl.upenn.
edu/software/ants/)58. The target template brain was resampled to 1.875 mm3 isotropic voxel. The nonlinear warp-
ing parameters estimated for the registered and resampled anatomical image were used to normalize the func-
tional images. As a result, the voxel volume of the normalized functional image was 1.875 mm3 isotropic. Spatial 
smoothing was applied by convolving a 4.0 mm full width at half maximum (FWHM) Gaussian kernel. The signal 
time course was scaled to percent change relative to the mean signal across time in each voxel.

General linear model (GLM) analysis was conducted to evaluate hemodynamic brain activation. The design 
matrix included modeled responses for the delay period activation with variable duration boxcar function for 
each of the five conditions, the target onset and button press event with a delta function, and the feedback dura-
tion for each of the five conditions with a boxcar functions. Hit and miss trials were modeled separately for the 
feedback duration. These response models were convolved with a hemodynamic response function. Six motion 
parameters, their temporal derivatives, 4th-order polynomial regressors, and mean time-course of cerebrospinal 
fluid region were also included in the design matrix as noise regressors.

Beta coefficients for the delay period regressors at gain and loss conditions contrasted with the non-monetary 
condition were extracted as estimates of brain activation during anticipating gains and losses. Estimate of brain 
activation to gain outcomes was extracted by the contrast of hit trials in the reward condition to hit trials in the 
non-monetary condition. Estimate of brain activation to loss outcomes was extracted by the contrast of miss trials 
in the loss condition to miss trials in the non-monetary condition.

NAcc region of interest analyses.  Average responses in the left and right NAcc regions for each of four 
monetary conditions contrasted to the non-monetary condition were calculated in each subject. The NAcc mask 
was extracted from a FreeSurfer 5.3 (http://freesurfer.net/) segmentation map for the MNI template brain.

http://afni.nimh.nih.gov/afni/
http://afni.nimh.nih.gov/afni/
http://picsl.upenn.edu/software/ants/
http://picsl.upenn.edu/software/ants/
http://freesurfer.net/
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Principal component analysis was applied to the NAcc responses to elucidate response variation across sub-
jects. Standard error of explained variance percentage was evaluated by the Jackknife resampling and principal 
scores were evaluated by leave-one-out cross-validation. Hierarchical clustering analysis was used to identify 
subtypes of NAcc activations to gain and loss anticipations. The analysis was applied to all subjects independent 
of diagnostic groups. Average responses in the left and right NAcc regions for each of four monetary condi-
tions (contrasts with the non-monetary condition) were calculated in each subject. Similarity of NAcc activations 
between subjects was calculated by Euclidian distance between vectors of response pattern. Cluster tree was built 
by Ward’s method. An automatic cluster cut algorithm59 was applied to extract clusters (see Supplementary Fig. 
S2 for details). This algorithm extracts clusters in multiple levels and LMM analysis was used to find an optimal 
level. The level with significant main effect of cluster and with the minimum Bayesian information criterion value 
in the LMM analysis was taken as the optimal level to extract clusters.

Extracting symptom items associated with the NAcc response subtypes.  Twenty-one items 
in the Hamilton rating scale for depression (HAM-D)45, fourteen items in the Hamilton anxiety rating scale 
(HAM-A)46, ten items in the Montgomery-Asberg Depression Rating Scale (MADRS)47, and fourteen items of the 
Snaith-Hamilton Pleasure Scale (SHAPS)48 were used for symptom scores. The scores of each item were used as 
individual variables, which yielded fifty-nine symptom variables in the LDA analysis. For the SHAPS we used the 
range of 1–4 for scoring each item60 rather than the original 0–1 scoring range. This analysis was performed only 
for the MDD subjects since there were no or very small variances in these scores for the HC group.

To extract critical symptom items that characterize the NAcc response subtypes and to compensate for 
over-fitting problem in LDA, we used shrinkage discriminant analysis (SDA)49 combined with recursive feature 
elimination (RFE)50. Shrinkage regularization, which shrinks the off-diagonal values of the estimated covariance 
matrix toward zero, could reduce over-fitting risk when the number of variables is larger than the sample size, 
which was the case in our analysis using 59 symptoms for 44 MDD subjects. We used the ‘sda’ package in the 
R statistical computing language and environment. SDA learns a discriminant function LD(k) for each class k 
whose output is proportional to the log posterior probability of a class. RFE is a feature selection method in which 
unimportant variables for classification are eliminated step by step. A correlation-adjusted t-value (cat) score, 
which measures the individual contribution of each variable to separate groups after removing the effect of all 
other variables, was used to eliminate the unimportant variables49. One variable with the lowest cat score was 
removed at each RFE step. The cat scores were re-evaluated after eliminating a variable. Generalization perfor-
mance at each elimination step was evaluated by a leave-one-out cross-validation. The symptom set that achieved 
the best generalization score was extracted. Note that the evaluated classification performance could be overes-
timated since we picked the best performance during RFE. The aim of this analysis, however, was not to estimate 
prediction accuracy from symptoms to NAcc subtypes, but to extract symptom subspace related to the NAcc 
subtypes.

Statistical analysis.  The LMM analysis was used for statistical tests of behavioral responses, symptom 
scores, and NAcc region of interest responses. The LMM analysis was performed with the R statistical computing 
language and environment nlme package41. Tukey’s test was used as a post-hoc test of LMM analysis. Reported 
P-values for post-hoc tests were corrected values.
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