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Abstract

Most clinical and biomedical data contain missing values. A patient’s record may be split across 

multiple institutions, devices may fail, and sensors may not be worn at all times. While these 

missing values are often ignored, this can lead to bias and error when the data are mined. Further, 

the data are not simply missing at random. Instead the measurement of a variable such as blood 

glucose may depend on its prior values as well as that of other variables. These dependencies exist 

across time as well, but current methods have yet to incorporate these temporal relationships as 

well as multiple types of missingness. To address this, we propose an imputation method (FLk-

NN) that incorporates time lagged correlations both within and across variables by combining two 

imputation methods, based on an extension to k-NN and the Fourier transform. This enables 

imputation of missing values even when all data at a time point is missing and when there are 

different types of missingness both within and across variables. In comparison to other approaches 

on three biological datasets (simulated and actual Type 1 diabetes datasets, and multi-modality 

neurological ICU monitoring) the proposed method has the highest imputation accuracy. This was 

true for up to half the data being missing and when consecutive missing values are a significant 

fraction of the overall time series length.
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1. Introduction

Missing values occur in almost all real world data, and are especially common in biomedical 

data [1] due to equipment errors, varied sampling granularity, or fragmentation of the data. 

Data collected from a hospital, such as from ICU data streams or an electronic health record 

(EHR), can have missing values due to patients moving between hospitals and units (or 

having gaps in medical care), monitors being disconnected to perform a surgical procedure, 

and sensors being displaced and among other reasons. In the neurological ICU data we 

analyze, a catheter measuring temperature in the bladder was displaced, intracranial 

monitors are disconnected to perform an angiogram, and dropped packets led to some values 

not being stored on the server. Data collected in an outpatient setting, such as from 

individuals with Type 1 diabetes wearing a continuous glucose monitor, may have even 

more potential for missingness. In the real world a patient may choose to not wear a sensor 

for social reasons, devices may not be suitable for all activities, and they may fail more 

frequently. In the diabetes-related dataset we analyze in this paper, not all sensors could be 

worn during aquatic activities, for example, and in one case a device failed while a 

participant was rock climbing.

While analyses of these various data can uncover factors leading to recovery from stroke or 

causing unhealthy changes in blood glucose, there are practical issues around missing data 

that must be addressed first. Causal inference is key to effectively predicting future events or 

preventing them by intervening and has been a growing area of work in biomedical 

informatics [2]. When data are not missing completely at random, though, the independence 

assumptions of these methods will fail and spurious inferences may be made. Ignoring 

missing values can lead to computational problems such as bias (if an expensive test is only 

ordered when a doctor suspects it will be positive), difficulties in model learning (when 

different subsets of variables are present for different patients), and reduced power (if many 

cases with missing values are not used).

Many approaches have been developed for imputing values, but they have failed to address a 

few key issues: correlations between variables across time, multiple types of missingness 

within a variable (making it both MAR – missing at random, and NMAR – not missing at 

random), and timepoints where all data are missing. Take Figure 1, showing three variables 

where x is correlated with both y and z at two different lags (lxy and lxz respectively). If x is 

missing at time t, then existing methods would impute this value using the values of y and z 

at time t. Instead, imputation should be based on the values of y and z at t − lxy and t − lxz 

respectively.

Second, there may be multiple types of missingness in a variable, yet most current methods 

(e.g. [3, 4]) assume that each variable can only have one type of missingness. In reality, the 

values of variables and their presence or absence are often correlated. For example, the 
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presence of measurements for blood glucose may depend on the past values of glucose but 

will also depend on insulin levels and food intake.

Finally, single devices are often used to measure multiple signals (e.g. cellphone 

accelerometer and GPS, laboratory test panel), making it likely that multiple values will be 

missing at a single instance. This poses challenges for many methods, which require some 

non-missing data to impute values for a particular instance.

In this paper we propose FLk-NN, which combines the Fourier transform and lagged k-NN 

to impute missing data from continuous-valued time series, where there may be lagged 

correlations between variables, data may be both MAR and NMAR, and entire time points 

may be missing. We compare the approach to others on multiple datasets from the biological 

domain (one simulated, and then actual clinical data and data from body-worn sensors), 

demonstrating that our proposed work has the highest imputation accuracy for all ratios of 

missing data on both datasets, even with up to 50% of the dataset missing and while being 

able to impute values for all missing points.

2. Related work

We briefly describe existing methods for handling missing data and refer the reader to [5, 6] 

for a full review.

First, there are multiple types of missing data that each require different imputation 

strategies. When data are missing completely at random (MCAR), the probability of a 

variable’s data being missing, P(V), is independent of both the variable itself and the other 

observed variables, O. That is:

(1)

For example, data from a continuous glucose monitor is only captured if the monitor is 

within the range of the receiver. If a patient walks to another part of a building and leaves 

the receiver in his or her office, then data will not be recorded. When data are MCAR, it is 

possible to ignore the missing values.

Missing at random (MAR) is when the probability of data for V being missing is dependent 

on variables other than V. Thus imputation can be based on the observed values of other 

variables. Mathematically,

(2)

For instance, the likelihood of a particular test being done (and its value being recorded) 

may depend in part on a patient’s health insurance. In the case of our ICU data, data missing 

due to a monitor being disconnected to perform a surgical procedure may be MAR.

Finally, data that are not missing at random (NMAR) are those that are neither MCAR nor 

MAR. Thus the probability of a variable being missing may depend on the missing variable 
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itself. For instance, a person who measures his or her glucose with a fingerstick monitor may 

measure more frequently if the values seem unusually high or low (suggesting either a 

calibration error or a dangerous change in glucose) or less frequently if values are stable and 

within their target range. Thus, blood glucose would be NMAR as its presence depends on 

itself rather than on other measured variables. With MAR and MCAR data, one can focus on 

correlations between missing and observed data, while NMAR needs specification of the 

missingness model.

2.1. Ignoring Missing Values

The simplest approach to missing data is simply to ignore it. With complete case analysis 

(also called listwise deletion), the most commonly used approach in clinical trials according 

to [7], only patients without missing data points are included in the analysis. In an extreme 

case, if all patients who experience no improvement in their condition drop out of a trial, 

then this approach would overestimate the efficacy of the intervention. That is, when the 

missing outcome data are not MCAR, the analysis may be biased [8]. Note that this 

approach would also ignore patients who missed an intermediate followup visit, as only 

those with complete data are included. All variables may not be used in all analyses, so 

another approach is pairwise deletion, which removes instances if the currently used 

variables are missing [3]. This will still lead to bias when the data are not MCAR, for the 

same reasons as above, and still reduces statistical power [5]. As a result, recent guidelines 

for patient-centered outcomes research have highlighted the importance of not ignoring 

missing data in addition to working to prevent its occurrence, making accurate imputation a 

priority [9].

2.2. Single Imputation (SI)

There are two primary categories of imputation methods. The first, single imputation, 

generates a single value to replace each missing value. Historically, an efficient way of 

doing this is to simply replace each missing value with the mean or mode for the variable 

[10, 11]. For biomedical data, mean imputation (MEI) would mean replacing every patient’s 

heart rate data with the mean value for heart rate in the dataset. This can lead to bias and 

also an underestimate of standard errors [12, 13].

One of the key problems with MEI is that it treats every missing instance identically, yet 

based on the similarity of an instance to other existing data, we can better estimate the value 

of missing variables. For example, if data from a continuous glucose monitor is missing, but 

we have blood glucose (BG) at the same time, then instances with a similar BG will provide 

better estimates than just the mean value. This is what k-Nearest Neighbor (k-NN) based 

methods do by identifying the k most similar instances using the observed values of other 

variables. Then the values are combined into a single estimate using approaches such as the 

weighted average [14] or a kernel function [15]. When a single nearest neighbor is used (k = 

1), this is called hot deck. These k-NN based methods may be appropriate when data are 

MAR, meaning that the missing value is correlated with other observed variables. However, 

since it does not incorporate the missing variable itself, it cannnot handle NMAR data.
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Further, while k-NN is generally more accurate than MEI, experiments on real high-

dimensional phenomic data did not find that a single method was best for all datasets when 

comparing variations of k-NN to methods such as Multivariate Imputation by Chained 

Equations (MICE) and miss-Forest [16]. One drawback of k-NN is that, because it relies on 

the values of other variables, it cannot impute a value when all variables are missing in an 

instance, and may be less accurate as more variables are absent. This is a major limitation 

when measurements come from one device or when they are always either all present or 

absent.

Other approaches such as model-based methods [17] and expectation maximization (EM) 

[18] may have higher accuracy, but are computationally expensive and problem specific. In 

clustering based single imputation (SI) methods [19, 20], data are first clustered using the 

non-missing values and then missing values are imputed using the instances of the cluster 

that contain the missing value instance. A hybrid clustering and model based method was 

proposed by Nishanth et al. [21] where they combine k-means with artificial neural network 

(ANN) and found that the method is more accurate than individual model based techniques 

(e.g. ANN) on financial data. However, the performance decreases when there are fewer 

complete instances and a higher missing rate. As with k-NN based methods, these assume 

that data are MAR. When they are NMAR, this will bias the parameter estimates. This has 

also been shown experimentally [22].

2.3. Multiple Imputation (MI)

The second key category of imputation methods are where multiple values are generated for 

each missing instance and then inferences from the multiple resulting datasets are combined 

[23].1 Since there is often uncertainty about the value of a missing result, imputing multiple 

possible values can capture both this uncertainty and the likely distribution of possible 

values.

Two methods for the imputation phase are the multi-variate normal (MVN) model, which 

assumes that the variables are continuous and normally distributed and ICE or MICE, which 

uses a chained equation to fill the missing values [26, 27]. MICE has several advantages 

over MVN such as enabling imputation with both continuous and categorical variables, and 

when variables have different types of missingness (though not when multiple types of 

missingness occur within a single variable).

Results of the imputation can be combined by averaging [28, 29], bagging [29], and 

boosting [30]. Schomaker and Heumann [29] experimented on simulated data and showed 

that model averaging can give more accurate estimates of the standard error.

Current methods make two primary assumptions that are not always appropriate for 

biomedical data. First, when data are MAR, variables are assumed to be correlated with no 

time lag. However, many biological processes (such as the metabolism of carbohydrates) 

have a temporal component, so carbohydrates from a meal will not be instantaneously 

reflected in blood glucose. Second, each variable is often assumed to have only a single type 

1For overviews, see [24, 25].
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of missingness, but in reality, the missing values will likely depend on the variable itself and 

other variables. Thus blood glucose may depend on both glucose itself as well as meals. 

Finally, we often encounter situations where all values are missing, due to either a failure of 

a single sensor or all sensors being disconnected, but methods such as k-NN cannot impute 

if there is no data for an instance. A brief comparison of our approach and others is shown in 

Table 1, where methods are compared in terms of ability to impute completely missing time 

instances, inclusion of time lags for correlations, and ability to handle variables that are both 

MAR and NMAR.

3. Method

We now introduce a new method for imputing missing values in time series data with lagged 

correlations and multiple types of missingness within a variable. Our proposed method, FLk-

NN, is a combination of two imputation methods: i) an extension of k-NN imputation with 

lagged correlations and ii) the Fourier transform. The system block diagram is shown in 

Figure 2. The Matlab code is available at https://github.com/kleinberg-lab/FLK-NN.

First, we develop an extension to k-NN with time lagged correlations using cross-

correlation. Since correlations may persist for a period of time and time measurements may 

be uncertain, we introduce lagged k-NN (Lk-NN), which has two parameters: k, the number 

of nearest neighbors, and p the number of time lags. Thus we take the p lags with the 

strongest correlation for each pair of variables and then later the k nearest neighbors across 

all lags (weighted by the strength of the correlation), averaging the results. While this 

incorporates time dependent correlations, it cannot account for dependencies of a variable on 

itself and cannot be used when all data at the lagged timepoints are missing. Thus we also 

develop an imputation approach based on the Fourier transform, which uses only the data for 

each variable to impute its missing values, enabling us to handle these completely missing 

instances. By combining Lk-NN, which handles MAR and the Fourier transform, which 

handles NMAR, we can impute values when both types of missingness occur.

Then, when results from both methods are available, they are averaged for each value 

(otherwise the one present value is used). Combining Lk-NN with the Fourier-based method 

overcomes the limitation of nearest neighbors methods requiring some data present at each 

instance and improves accuracy by handling both MAR and NMAR missing data.

3.1. Lk-NN Method

Normally, k-NN finds similar instances by, say comparing the values of variables at time 1 

to those at time 10. However, correlations may occur across time. For example, insulin does 

not affect blood glucose immediately and weight and exercise are correlated at multiple 

timescales. This is shown in Figure 1, where there is a lag between a change in the value of y 

and x’s response. To handle this, we develop a new approach for constructing the test and 

training vectors using lagged correlations, where the time lags can differ between pairs of 

variables. This is illustrated in Figure 3.

3.1.1. Calculating Time Lags—To form the test and training vectors, we first identify 

which variables are correlated and at which time lags. We use the cross-correlation, which is 
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a similarity measure of two time-series as a function of a time delay applied to one of them 

[31]. The cross-correlation, rxy, between variables, x and y, for time delay d is:

(3)

(4)

where T is the length of the series, χ̄ and ȳ are the mean of x and y respectively, d varies 

from −(D − 1) to (D − 1), and D is the maximum time delay. Since some values for x and y 

may be missing, we use only the instances where both are present in this calculation.

Matrices are constructed for each of the p lags, with the correlations ordered from 1 … p by 

decreasing strength. Thus, for each pair of variables L1 contains the lag, d, with the strongest 

correlation (max |rxy|) and Lp the lag with the weakest. Each L is an N × N matrix, where 

elements represent the time lags for each correlation between the N variables. An element lxy 

can be positive (values of variable y have a delayed response in time unit lxy to values of x) 

or negative (values of variable x have a delayed response of time unit lxy for values of y) and 

lxy = −lyx. The diagonal elements of the matrix are not computed since those elements give 

the auto-correlation of the signal and are not used in this algorithm. For all lxy, the 

corresponding correlation values, |rxy|, are stored in the matrices R1 … Rp, which are used in 

the neighbor selection step.

3.1.2. Forming Vectors—Formation of vectors with Lk-NN is more complex than for k-

NN since we must account for multiple lags that differ across variable pairs. Instead we 

create a set of test and training vectors for each of the p lags. Below we describe how to 

create the vectors for a single lag.

Say a variable, x, is missing at time t and x has a time lagged relationship with variables y 

and z, with lags lxy and lxz respectively. The test vector is then formed using the values of y 

and z at t+lxy and t + lxz. Training vectors are formed in similar way and the values of x, 

which are the candidate values for imputation, are stored separately. Training vectors are 

generated from the existing values of x and the time instances resulting after adding the lags 

must be within 1 to T (length of data). This makes the boundary of time instances of training 

vectors for a missing value:

(5)

where lx1, …, lxN are the time lags of correlations between x and all N variables for the 

current lag matrix.

3.1.3. Finding Neighbors and Imputing Missing Values—Once the lags are found 

and vectors formed, the next step is finding the nearest neighbors for each missing instance. 

Since the strength of the correlation between variables and across the p lags may differ 
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substantially, we incorporate a weight into our distance measure. Note that each neighbor 

may be based on different variables if some are missing. This ensures that neighbors based 

on highly correlated variables with their associated lags are given more weight rather than 

weakly correlated variables or only the nearest values in time.

Most current methods use the Euclidean distance as a proximity measure, but this does not 

incorporate the differing correlations. Instead we propose a weighted modification of the 

Euclidean distance that is similar to the Mahalanobis distance but can handle missing values 

in both test and training vectors.

The distance between instances x and y is:

(6)

where N is the number of variables, and wi is the weight, which is the normalized correlation 

coefficients between missing variables and ith variable. Here Σ wj = 1 for j being non-

missing pairs of variables of x and y. The logical and of x and y ensures that only instances 

where values for both are present are included. This is the average weighted Euclidean 

distance between two vectors computed for non-missing pairs of values, where highly 

correlated variables have larger impact on the distance compared with less correlated 

variables. The result is p sets of k nearest neighbors (one set of neighbors for each L matrix). 

We then average the values for the k neighbors with the lowest weighted distance (out of the 

set of p × k neighbors).

Algorithm 1

Fourier transform based imputation

Input:

Data matrix, Y = {V1, V2, …, VN}, is a set of variables, where each Vi = {v1, v2, …, vT}, and vj is the jth data 
point;

Output:

Data matrix, Y with imputed values

1: for each V in Y do

2:  ts = min(j), where vj is missing, 1 ≤ j ≤ T;

3:  while ts ≠ ∅ do

4:   te = min(j), where vj is non-missing, ts ≤ j ≤ T;

5:   F = DFT(v1, v2, …, v(ts−1));

6:   u = IDFT(F, te);

7:   vj = uj, where ts ≤ j ≤ te;

8:   ts = min(j), where vj is missing and 1 ≤ j ≤ T;

9:  end while

10: end for

11: return Y
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3.2. Fourier Method

While Lk-NN accounts for correlations between variables, we also need to incorporate 

patterns within a variable to handle data that are NMAR. To do this, we develop an 

imputation method based on the Fourier transform that uses past values of each variable to 

impute each missing value.

First, a data segment is formed with the data from the beginning of the signal up to the last 

non-missing data point. Where values v1 through vp−1 are present (or imputed), and vp … vq 

are missing, the Fourier descriptors are obtained with:

(7)

where Fk is the kth Fourier descriptor with 1 ≤ k ≤ (p − 1), and .

Then, the imputed value for time m, where p ≤ m ≤ q, can be calculated from the Fourier 

descriptors with:

(8)

where the notation is same as equation (7). Algorithm 1 shows the process where DFT(v) 

(the discrete Fourier transform) generates Fourier descriptors for a variable, v, and IDFT(F, 

t) (inverse DFT) regenerates a signal of length t from the Fourier descriptors, F. An example 

of the result on a set of simulated data is shown in Figure 4 where most of the imputed data 

points are near the actual value.

The proposed method aims to estimate the most accurate value for each missing value based 

on the observed data. Thus if the given data do not capture the high frequency components 

(i.e. sampling frequency is less than 2*Nyquist frequency), the FFT will not be as accurate 

on these components and will approximate a value using the lower frequency components of 

the data.

3.3. Combining the methods for FLk-NN

For each missing data point, we impute one value using each of the described methods and 

then must combine these. Since model averaging gives a more stable and unbiased result 

compared with other approaches such as bagging and weighted mean [29], we average the 

value estimated by the two methods, and call the resulting combined approach FLk-NN.

3.4. Time complexity

The computational complexity of Lk-NN is a combination of two processes: cross-

correlation and k-NN. For two time series of the same length, T, and maximum delay, D, the 

complexity is O(DT) for cross-correlation, making the complexity  for N 

variables. The complexity of k-NN for x missing values is O(xTN). Therefore, the total time 
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complexity of Lk-NN is . Note that the efficiency of this method can 

be improved by a look-up table of distance between instances. In our Fourier method, we 

used the fast Fourier transform (FFT) algorithm, which has the complexity O(T log T). Thus 

the complexity of imputing x missing values with the Fourier method is O(xT log T). Hence, 

the complexity of FLk-NN is .

4. Experimental Results

4.1. Data

We compared the proposed approach to others on three biomedical datasets, one simulated 

dataset (enabling complete control over the amount of data that is missing) and two real 

datasets, one collected from an ICU and another collected during daily life (free-living 

conditions).2

Simulated diabetes (DSIM) dataset—We used the glucose-insulin simulation model 

developed by Dalla-Man et al. [32] to construct a simulated dataset, DSIM. The model 

describes the physiological events occurring after a meal and was created by fitting the 

major metabolic fluxes estimated (endogenous glucose production, meal rate of appearance, 

glucose utilization, and insulin secretion) in a model-independent way on a wide population 

[32]. This model has been validated with human subjects [32] and approved by the FDA for 

use in pre-clinical trials [33], and is thus more realistic than examples such as random 

networks. The model contains a set of submodules that affect one another with varying 

delays. We generated one day of data for each of 10 patients by randomly selecting patient 

parameters (e.g. body weight, meal amount and timing, and insulin dose) within realistic 

ranges (e.g. body weight within 50kg–120kg). Data was recorded at every minute, yielding 

1440 time points for the 16 variables listed in Table 2. We added Gaussian noise to make the 

data more similar to real-world cases. The relationships embedded in the model are shown in 

Figure 5.

NICU dataset—In the second experiment we used physiologic data collected from a set of 

subarachnoid hemorrhage (SAH) patients admitted to the Neurological intensive care unit 

(NICU) at Columbia University [34]. Data on cardiac and respiratory variables, and brain 

perfusion, oxygenation, and metabolism were continuously collected from 48 patients. 

However, the set of variables collected (a max of 22) differed for each patient as did the 

number of timepoints, as it covered the duration of ICU stay. Data duration ranged from 2.5 

to 24.7 days, with a mean of 12.33 days. The majority of data were recorded at 5 second 

intervals, which were then minute-averaged so that all recordings were synchronized to the 

same time points. This resulted in an average of 17,771 time points for each patient, with a 

standard deviation of 10,216. As the amount of missing data differed widely due to factors 

2The DSIM data, code, and instructions for replicating results are available at https://github.com/kleinberg-lab/FLK-NN. The NICU 
data cannot be shared due to HIPAA privacy regulations. The DMITRI data are available through iDASH at http://idash.ucsd.edu/
dmitri-study-data-set.

Rahman et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kleinberg-lab/FLK-NN
http://idash.ucsd.edu/dmitri-study-data-set
http://idash.ucsd.edu/dmitri-study-data-set


such as interventions, device malfunctions and loss of connectivity between the device and 

network, we selected a subset of 9 patients with fewer missing values and used 3 days of 

data. It was necessary to ensure a sufficient amount of data present at the start, as we later 

removed varying amounts of data to test the methods and compare imputed to actual values. 

Table 3 gives the baseline amount of missing data for each subject. For the simulated 

missing data, the missing ratios indicate the total fraction of missing values (original + 

simulated).

DMITRI dataset—Our third dataset is the Diabetes Management Integrated Technology 

Research Initiative (DMITRI), developed by Heintzman [35]. Data were collected from 17 

individuals with Type 1 Diabetes (7 females) aged 19 to 61 years over at least 72 hours. The 

participants wore a number of sensors including a continuous glucose monitor (CGM), heart 

rate monitor, insulin pump, two activity monitors and a sleep monitor. Recording 

frequencies for the devices varied, but all were synced to the 5-minute intervals of the CGM. 

As in the NICU dataset, the data had varying amounts of missing values, ranging from 

around 16 to 30% per participant. This is due to factors such as loss of connectivity 

(between CGM and receiver), removal of devices (such as during bathing) and potential 

device malfunctions. Further not all sensors are used at all times (e.g. the sleep sensor is 

only worn during sleep). We excluded data from 3 of the 17 participants due to the large 

amount of missing data. This yielded an average of 1146 timepoints. Table 4 gives the 

baseline amount of missing data for each subject along with the number of variables.

4.2. Procedure

We created synthetic missing data by deleting randomly selected values. If the selected data 

point was already missing (which can occur in the NICU and DMITRI datasets), we select 

another and repeat this until the target missing ratio is reached. The ratios are 5% to 50%, 

10% to 50%, and 30% to 50% in increments of 5% for DSIM, NICU, and DMITRI 

respectively. The maximum length of consecutively missing values (gaps) for both the 

datasets are shown in Figure 6. The maximum gap length is 17 for DSIM, 1485 for NICU, 

and 843 for DMITRI.

We compared our system with several methods representing different types of imputation.

MEI [11]: Missing values are imputed by computing the mean of non-missing values of a 

variable.

Hot deck and k-NN [14]: Euclidean distance is used to find the k neighbors and the weighted 

average of these is used to impute. For k-NN, we used k = 5, which gave the best for this 

algorithm in preliminary tests and for Hot Deck k is always 1.

BPCA [18]. This probabilistic method applies Bayesian principal component analysis prior 

to the conventional E-M process. We used the authors’ BPCAfill.m code3 with two 

parameters set to their default values, k = number of variable −1 and maxepoch = 200.

3http://ishiilab.jp/member/oba/tools/BPCAFill.html
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EM [36]: This iterated linear regression analysis replaces the conditional maximum 

likelihood estimation of regression parameters in the traditional E-M algorithm with a 

regularized estimation method. We used the RegEM package4 with the default values for the 

parameters (e.g. maximum number of iteration: 30, regression method used: multiple ridge 

regression).

Inpaint [37]: This statistical model based approach extrapolates non-missing elements using 

an iterative process. We used the authors’ code5 with the default value for number of 

iterations, which is 100.

MICE [26]: As a multiple imputation method we used MICE, which employs chained 

equation to impute. We used the mice R package6 with all parameters set to their defaults.

FLk-NN: We used D = 60 (i.e. 1 hour), as this is a likely time window for most of the 

biological effects, and p = 3 to enable multiple lags without drastically increasing 

computational complexity. Using two randomly selected datasets from DSIM, we 

experimented with 1 to 9 neighbors (in increments of 2) and found that the commonly used 

value of 5 gave the highest accuracy(Figure 7). Thus we used k = 5.

We used the authors’ code for each algorithm when available and implemented MEI, hot 

deck, and k-NN ourselves.

We evaluate the performance of each approach based on distance between imputed and 

actual values, using the normalized mean absolute error (NMAE):

(9)

where n is the number of missing data points,  and  are the ith actual and imputed 

values respectively, and Vmin and Vmax are the min and the max value of variable of 

computed by ignoring the missing values. NMAE is computed for each subject individually 

(10 for DSIM, 9 for NICU), and then averaged.

4.3. Results

DSIM—Table 5 shows the mean of the NMAE for each method highlighting the lowest 

error. For all missing ratios our combined method, FLk-NN, gives the lowest average 

NMAE. Further, Lk-NN has lowest NMAE for the 5% missing ratio and is ranked second 

for all other ratios. Figure 8 shows the number of times each method gives the highest 

accuracy out of the 100 total datasets, with FLk-NN yielding the highest accuracy in 89 

cases and Lk-NN the highest in the other 11 cases. Thus, including lagged correlations in k-

NN improves accuracy when data have temporal correlations and the missing ratio is high.

4http://www.clidyn.ethz.ch/imputation/
5http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-n-d-arrays
6http://cran.r-project.org/web/packages/mice/index.html
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Among the existing methods, k-NN and BPCA had better results for lower missing ratios but 

their accuracy decreases significantly as the missing ratio increases. On the other hand, EM 

was less accurate for lower missing ratios but the accuracy did not decrease as significantly 

as the missing ratio increased and it gave better accuracy than k-NN and BPCA for higher 

ratios.

Note that the accuracy of the combined approach, FLk-NN, is higher than the individual 

approaches, Fourier and Lk-NN, for every missing ratio since the combined approach 

includes relationships within and across variables, and the DSIM data has auto-correlations 

with lagged correlations, as shown in Figure 5. For example, in Figure 5, liquid glucose in 

the stomach (Qsto2) depends on Qsto1 and itself.

Figure 6 shows the maximum number of consecutive occurrences of missing values (i.e. gap 

of values within observed values) where DSIM has a maximum gap length of 17. Large gaps 

have an impact on Fourier but less influence on Lk-NN, which uses lagged correlations with 

other variables and leads to better results when the methods are combined.

Our Lk-NN can impute if some of the variables are missing in test vector but is unable to 

impute if all the lagged values are missing (e.g. a subject wearing sensors went out of 

network coverage for a longer period of time) whereas the Fourier method can impute in this 

situation. On the other hand, Fourier cannot impute missing values that occur before the first 

observed value (e.g. due to starting delay of a device) while Lk-NN can handle this. Across 

the DSIM datasets an average of 1.27% of missing values could not be imputed by Lk-NN, 

while FLk-NN imputed all missing values.

A two tailed un-paired t-test (for unequal variance) found that for all missing ratios, the 

NMAE of FLk-NN is significantly different from that of other methods (p < 0.0003) except 

Lk-NN. FLk-NN and Lk-NN are significantly different for 20% to 50% (p < 0.0003), but not 

for 5% to 15% using the threshold p < 0.05.

NICU—For this dataset, we compute NMAE for the simulated missing data points only. 

Table 6 shows the mean NMAEs of NICU. The best mean values for each missing ratio are 

highlighted in bold. Our proposed methods out-performed all other methods, where Lk-NN 

has lowest mean NMAE for the 10% missing ratio and FLk-NN was best for all other 

missing ratios. Figure 8 shows the number of times each method gives the highest 

imputation accuracy for this dataset. FLk-NN has highest proportion (39 out of 81), with Lk-

NN being second (21 of 81), and Fourier third (11 of 81).

Compared with the DSIM dataset, the accuracy of many other methods such as BPCA 

deteriorated significantly due to the increased amount of non randomly-generated missing 

values whereas our method’s accuracy improved. k-NN and EM had the best accuracy of the 

existing methods but their accuracy drops significantly as the amount of missing data 

increases, while FLk-NN showed a more gradual decrease in accuracy as the ratio increased.

For the NICU dataset, Lk-NN could not impute an average of 1.71% of missing values, and 

for k-NN the amount is 1.99%, while FLk-NN imputed all missing values. The p-value of 

the difference between our approach and the others using an unpaired t-test was significant 

Rahman et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for all methods from 15% to 50% missing ratios (p < 0.0005). For the 10% missing ratio, all 

other methods are significantly different (p < 0.0007) except Lk-NN.

DMITRI—Once again we computed the NMAE for the simulated missing values, as 

reported in Table 7 where the lowest error is highlighted in bold. For this dataset our three 

proposed methods had the lowest error rates, with the Fourier method performing the best. 

The Fourier method has highest proportion of imputation accuracy (51 out of 70) with FLk-

NN being the second best (19 out of 70) as shown in Figure 8.

The p-value of the difference between Fourier and the others using an unpaired t-test was 

significant for all the methods from 30% to 45% missing ratios (p < 0.0085). For the 50% 

missing ratio, all other methods are significantly different (p < 2.4e−14) except FLk-NN.

4.4. Choosing an appropriate imputation method

While our combined method outperformed all other methods on the first two datasets, the 

Fourier transform by itself was best for the DMITRI data. If one knew that the DMITRI data 

were primarily NMAR, then they could know in advance that the Fourier-based method 

would be best. However in many cases it is difficult to know what type of missingness will 

be encountered and there has not yet been a way of testing whether data are MAR (though 

this assumption is made by k-NN methods) [38]. To determine what approach will be most 

accurate for a particular dataset, though, one can simulate missing values from a subset of 

the observed data points and compare the approaches.

To demonstrate this, we simulated 5% missing values on top of the existing missing values 

of our two real-world datasets (DMITRI and NICU) and then computed the NMAE of each 

imputation method for the simulated missing values only. The results are shown in Table 8 

with the lowest error highlighted in bold. We found that FLk-NN should be used for NICU 

and Fourier for the DMITRI dataset.

A similar approach can be used to evaluate the tradeoff between imputation accuracy and 

computation time. On the DSIM dataset, the average execution time per missing value was 

0.00005s for Fourier and 0.253 for Lk-NN and the combined method. Thus depending on the 

amount of data to be imputed and the accuracy of each, the faster method could be 

preferable. One could test both Fourier and the combined FLk-NN method on a subset of 

data with synthetically created missing values to determine the accuracy of each method. 

For example, if one decides that increase of NMAE from 0.018 to 0.026 (shown in table 8) 

is acceptable for the NICU dataset, the Fourier based method can be used for faster 

imputation.

4.5. Imputation with missing rows

One of the key benefits of our proposed approach is that the combined method enables 

imputation when an entire row is missing, meaning that all variables at a particular time are 

missing. This is a realistic challenge with biomedical data where measurements may come 

from a single device or there’s a loss in connectivity preventing recording.
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To evaluate this, we created another simulated missing dataset using the DSIM data. Here 

for each subject, 10% of rows were deleted. All imputation methods were applied and 

evaluated using the same approach as described earlier. Note that BPCA, hot deck, and k-

NN cannot impute at all in this case. For Lk-NN, though the time instances are fully missing 

for a missing value, the test vector may not be empty because of the use of time lags, where 

the lagged values may be present. However, this did not occur and Lk-NN was able to 

impute all missing values.

The NMAE for the remaining methods across the 10 datasets is shown in Table 9, which 

shows that our proposed method, FLk-NN, has the highest accuracy and lowest standard 

deviation. Lk-NN and Fourier were second and third respectively. A t-test shows that the 

NMAE of FLk-NN is significantly different from that of other methods (p < 0.0051) other 

than Lk-NN. Note that the accuracy of EM and MEI is the same here since EM first 

initializes missing values using MEI and then optimizes those values, but in this situation it 

did not optimize.

5. Conclusion

Missing values are common in big data, where often many variables have correlations across 

time. Further, these data are rarely missing completely at random, especially when multiple 

signals are collected from a single device that may face errors or malfunction. Here we 

propose a novel imputation method that incorporates varying time lags between correlated 

variables and auto-correlations within the variables. The main contributions of this paper are 

two-fold: i) it incorporates time lagged correlations between the variables during imputation 

and ii) it can handle multiple types of missingness occurring in a single variable, whereas 

existing methods cannot handle these cases. Moreover, the proposed system is able to 

impute with high accuracy in the case of empty instances while some of the state-of-the-art 

methods cannot impute values at all. The system obtained the best accuracy in terms of 

NMAE for both simulated and real world biological datasets and outperformed other bench-

mark methods. Experimental results show that the system can impute plausible data even if 

50% of a dataset is missing with many consecutively missing values and in the presence of 

fully empty instances in the data.
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Highlights

• We develop a new imputation method for missing data that are both MAR and 

NMAR

• This method enables imputation when all data at a time instance are missing

• Incorporates time lagged correlations improves accuracy

• Method significantly reduced imputation error on simulated and real biomedical 

data
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Figure 1. 
The value of x is missing at time t. Variables y and z are correlated with x at lags lxy and lxz 

respectively.
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Figure 2. 
Block diagram for Fourier and Lagged k-NN combined system (FLk-NN). Here, k is the 

number of nearest neighbors, p is the number of observed values from beginning to prior 

data point of a missing value, q is the number of missing values after those observed p 

values.
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Figure 3. 
An example of Lk-NN for a single missing value (indicated by the black cell), where N is 

the number of variables, T is the number of time-instances, Li is the ith time lag matrix, lxy is 

the time lag from x to y variable, p is the number of lag and correlation matrices, and k is the 

number of nearest neighbors.
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Figure 4. 
An example of Fourier based imputation for one variable, (a) with simulated missing data 

points, (b) the actual data (in blue) with the imputed data (in red).
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Figure 5. 
Simulated glucose data variables and relationships.
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Figure 6. 
Maximum gap length of DSIM and NICU datasets. Note that the NICU data begins at 10% 

and DMITRI data at 30% due to the existing missing values.
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Figure 7. 
Mean NMAE of our method for different number of nearest neighbors (k) on two DSIM 

datasets.
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Figure 8. 
Number of times each method gives the highest imputation accuracy.
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Table 1

Comparison of methods, with ours being FLk-NN.

Name Impute empty instances Lagged relationships NMAR Multi missingness in a variable

MEI Yes No No No

k-NN No No No No

Model-based Yes No No No

EM Yes No No No

Probabilistic EM No No No No

MICE Yes No No No

Fourier Yes No Yes No

FLk-NN Yes Yes Yes Yes
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Table 2

Variables in DSIM dataset.

Symbol Name

G Glucose concentration

Gp Glucose mass in plasma

Gt Glucose mass in tissue

I Insulin concentration

Ip Insulin mass in plasma

It Insulin mass in tissue

Ut Glucose Utilization

Xt Insulin in the interstitial fluid

EGP Endogenous glucose production

Ra Glucose rate of appearence

Qsto1 Solid glucose in stomach

Qsto2 Liquid glucose in stomach

Qgut glucose mass in the intestine

Ri Rate of appearence of insulin in plasma

Isc1 Nonmonomeric insulin in subcutaneous space

Isc2 Monomeric insulin in subcutaneous space
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Table 3

Baseline level of missing data in NICU dataset averaged across all variables.

Patient # of variables original missing

P1 11 0.1%

P2 14 9.37%

P3 16 3.28%

P4 14 8.16%

P5 16 4.62%

P6 18 8.68%

P7 13 9.96%

P8 16 6.57%

P9 18 4.54%
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Table 4

Baseline level of missing data in DMITRI dataset averaged across all variables.

Participant # of variables original missing

P1 11 29.68%

P2 9 25.81%

P3 9 25.66%

P4 11 15.67%

P5 10 25.19%

P6 9 25.79%

P7 11 21.61%

P8 10 28.38%

P9 8 15.89%

P10 11 20.98%

P11 10 21.97%

P12 10 27.53%

P13 11 26.67%

P14 10 22.2%
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Table 8

Mean of NMAE for additional 5% simulated data on NICU and DMITRI dataset

NICU DMITRI

BPCA 0.047 0.072

EM 0.048 0.07

Hot deck 0.029 0.073

Inpaint 1.42 42.95

k-NN 0.026 0.064

MEI 0.092 0.106

MICE 0.06 0.101

Fourier 0.0258 0.04

Lk-NN 0.019 0.063

FLk-NN 0.018 0.045
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