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Summary

Individualized treatment rules recommend treatments on the basis of individual patient 

characteristics. A high-quality treatment rule can produce better patient outcomes, lower costs and 

less treatment burden. If a treatment rule learned from data is to be used to inform clinical practice 

or provide scientific insight, it is crucial that it be interpretable; clinicians may be unwilling to 

implement models they do not understand, and black-box models may not be useful for guiding 

future research. The canonical example of an interpretable prediction model is a decision tree. We 

propose a method for estimating an optimal individualized treatment rule within the class of rules 

that are representable as decision trees. The class of rules we consider is interpretable but 

expressive. A novel feature of this problem is that the learning task is unsupervised, as the optimal 

treatment for each patient is unknown and must be estimated. The proposed method applies to 

both categorical and continuous treatments and produces favourable marginal mean outcomes in 

simulation experiments. We illustrate it using data from a study of major depressive disorder.
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1. Introduction

Individualized treatment rules are increasingly being used by clinical and intervention 

scientists to account for patient response heterogeneity (e.g., Ludwig & Weinstein, 2005; 

Hayes et al., 2007; Allegra et al., 2009; Cummings et al., 2010). These treatment rules 

belong to the new era of personalized medicine (Piquette-Miller & Grant, 2007; Hamburg & 

Collins, 2010). There is a vast literature on estimation of treatment rules that maximize the 

mean of a desirable clinical outcome using data from randomized or observational studies. 
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Regression-based methods model the response as a function of patient characteristics and 

treatment, and select treatments that maximize the predicted mean outcome (Brinkley et al., 

2010; Qian &Murphy, 2011). However, because such methods indirectly infer the optimal 

treatment rule through a regression model, an interpretable, parsimonious treatment rule can 

be obtained only via a simple regression model which is subject to misspecification; on the 

other hand, a complex regression model may mitigate the risk of misspecification but at the 

cost of producing an unintelligible treatment rule (Zhang et al., 2012b). Policy-search or 

direct-maximization methods offer an alternative to regression-based methods that attempt 

to search for the best treatment rule in a large class of potential rules (Zhang et al., 2012a, 

2012b; Zhao et al., 2012; Zhang et al., 2013), thereby separating the class of decision rules 

from an underlying regression model. However, without an interpretable representation of 

the model behind these approaches, clinical investigators may be hesitant to use the 

estimated treatment rule to inform clinical practice or future research.

Since Breiman et al. (1984) introduced the classification and regression tree algorithm, tree-

based methods have enjoyed a great deal of popularity in statistical and machine learning 

research, largely due to the interpretability and communicability of decision trees. Indeed, 

trees have been advocated as a tool for representing more complex prediction models to 

laymen (Craven & Shavlik, 1996). The classification and regression tree algorithm 

recursively partitions the covariate space into rectangular sets and then fits a simple model 

within each partition to the response (Breiman et al., 1984; Hastie et al., 2009, ch. 9.2); thus, 

the classification and regression tree algorithm provides a flexible nonparametric procedure 

to explore the underlying model structure (Ripley, 1996; Sutton, 2005).

Tree-based methods have been used in personalized medicine primarily for the purpose of 

identifying subgroups of subjects with outlying, large or small, treatment effects or strong 

adverse side-effects relative to subjects in some reference population of interest. Such 

methods include interaction trees (Su et al., 2008, 2009), virtual twins (Foster et al., 2011), 

and subgroup identification based on differential effect search (Lipkovich et al., 2011). 

Existing subgroup identification methods aim primarily to find interactions between 

treatment and covariates. Zhang et al. (2012a) recast treatment selection with binary 

treatments as a classification problem and used the classification and regression tree 

algorithm as an illustrative example.

We present a general purpose approach to estimating optimal personalized treatment rules 

representable as decision trees. The proposed method can be used with high-dimensional 

covariates, discrete or continuous treatments, and data from observational or randomized 

studies. In the case of continuous treatments, standard methods for estimating the mean 

outcome under a specified treatment rule, such as inverse probability weighting, cannot be 

applied because a required absolute continuity condition does not hold. We derive a novel 

kernel smoother for estimating the mean outcome in the case of continuous treatments by 

approximating a deterministic treatment rule with a stochastic one. The proposed estimator 

relies on a bandwidth parameter, and we derive a plug-in estimator of the optimal 

bandwidth. The proposed algorithms are available as part of the R package MIDAs (R 

Development Core Team, 2015) and are provided in the Supplementary Material.
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2. Minimum impurity decision assignments decision trees

2·1. Optimal individualized treatment rules

We observe , comprising n independent identically distributed triples 

(X, A, Y) where X ∈ ℝp denotes the baseline subject characteristics, A ∈  represents the 

treatment received, and can be discrete or continuous, and Y ∈ ℝ is an outcome coded so 

that higher values are more desirable. An individualized treatment rule is a map π : ℝp → 

such that a patient presenting with X = x is assigned treatment π(x). Let Y*(a) denote the 

potential outcome under treatment a ∈  (Rubin, 1978), and define Y*(π) = Y*{π(X)} to be 

the potential outcome under π. The performance measure of π is the marginal mean outcome 

E{Y*(π)}, and the optimal rule, πopt, satisfies E{Y*(πopt)} ≥ E{Y*(π)} for all π. Let p(a | X) 

denote the conditional density of A given X, with respect to an appropriate dominating 

measure. We make the following assumptions.

Assumption 1 (Positivity)—There exists ε > 0 such that p(a | X) ≥ ε with probability 1 

for all a ∈ .

Assumption 2 (Strong ignorability)—The potential outcomes {Y*(a) : a ∈ } are 

conditionally independent of A given X.

Assumption 3 (Consistency)—We have Y = Y*(A).

These assumptions are standard and will allow us to connect the potential outcomes with the 

observed data. Let Eπ denote the expectation with respect to (X, A, Y) under the restriction 

that A = π(X), i.e., that all patients are assigned treatments according to π; then, under 

Assumptions 1–3, it can be shown (Zhang et al., 2012b) that the marginal mean outcome 

under π is equal to Eπ (Y). We use this representation to construct an estimator of πopt that 

applies to either observational or randomized study data.

Unlike traditional decision tree problems, the target of estimation, πopt(x), is not directly 

observed for the associated patient characteristics X = x. For example, in a classification 

problem a correct label Y = y is observed for each observed X = x; similarly, in a regression 

problem an outcome Y = y is observed for each X = x. In the treatment selection problem, 

information about πopt(x) is available only indirectly through the outcome Y = y. Thus, any 

purity measure used to construct splits in a decision tree must make use of this indirect 

information. We develop purity measures for discrete and continuous treatments and then 

use these purity measures in a recursive algorithm to estimate an optimal tree-based 

individualized treatment rule.

2·2. Purity measures for treatment allocation

We first consider the binary treatment setting, where  = {0, 1}; generalizations are given 

below. In the binary treatment case, any decision rule π partitions the domain of X, ℝp, into 

two regions: ℛ0 = {x ∈ ℝp : π(x) = 0} and ℛ1 = ℝp \ ℛ0 = {x ∈ ℝp : π(x) = 1}. Let 

and  be the partition of ℝp induced by the optimal decision rule πopt. Then 

identification of πopt is equivalent to identifying  and . For a set of triples  = {(j, 
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τ, b)} where j ∈ {1, …, p}, τ ∈ ℝ and b ∈ {−1, 1}, we say that r is the rectangle defined by 

 if x ∈ r if and only if b(xj − τ) ≥ 0. The rectangle defined by ∅ is taken to be ℝp. We 

define a rectangular region as any finite combination of intersections and unions of 

rectangles. Both rectangles and their complements are rectangular regions. For simplicity of 

notation, we assume that X is a continuous random vector; this avoids having to distinguish 

between closed and open rectangles. A tree-based approach estimates the sets  and 

using rectangular regions in ℝp. Figure 1 shows an example of a decision rule composed of 

rectangles r1 = {(1, 1, 1)} and r2 = {(2,−3,−1)} with rectangular regions  and 

. The tree in Fig. 1 assigns treatment 0 to subjects presenting covariates X 

= x which satisfy x1 < 1 and x2 ≤ −3 and assigns treatment 1 otherwise. While this tree 

resembles a classification tree, with labels 0 and 1, it is fundamentally different in that the 

decision rule does not attempt to describe the rule by which the observed treatments were 

assigned but rather the rule by which treatments should be assigned to future patients.

To form a tree-based estimator of πopt, we need a measure of node purity that will facilitate 

a recursive splitting procedure. In determining how to create two child nodes from a parent 

node determined by, say, the rectangular region ℛ during the process of recursive 

partitioning, the general goal is to make the data corresponding to each of the child nodes 

more pure than the data in the parent node (Sutton, 2005). Intuitively, the first split in the 

tree is found by determining the rectangle r such that r and rc best approximate  and 

, respectively. Recursively, for a given terminal node ℛ, we seek the rectangle r such 

that splitting ℛ to form two new terminal nodes ℛ ∩ r and ℛ ∩ rc will most dramatically 

improve our current estimates of  and . A node purity measure provides a criterion 

to formalize the foregoing search procedure. We first describe a measure of node purity 

when there are a finite number of treatments, and then extend this measure to the continuous 

treatment case.

2·3. Purity measures for discrete treatments

In the discrete treatment case, the set of treatments is finite and coded so that  = {0, 1, …, 

K}. For a ∈  and x ∈ ℝp, let p(a | x) denote pr(A = a | X = x). We assume that the function 

p(a | x) is known and that p(a | X) is bounded away from 0 and 1 with probability 1 for each 

a ∈ . If these probabilities are not known, as is the case with observational data, they may 

be estimated from the data, for example by using a multinomial logistic regression. Recall 

that the performance measure of a rule π is the expected outcome when patients are assigned 

treatments according to π. Under the foregoing assumptions, we can apply a change of 

measure to express the performance of π in terms of the observed data. For any function g : 

ℝp → ℝ and policy π, define the random variable Lg(π) = Lg(π, X, A, Y) = {Y − 

g(X)}1π(X)=A/p{π(X) | X} and let Cg(π) = E{Lg(π)}; then it can be shown that Eπ (Y) = 

C0(π), where 0 denotes the function g(x) ≡ 0 (Zhang et al., 2012a, 2012b; Zhao et al., 2012). 

However, for any fixed function g, πopt = arg maxπ Cg(π), because
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so that the arg max over π depends only on C0(π). One choice for g is g(x) = E{Y | X = x, A 

= π̃(x)} for some reference rule π̃ ; it turns out that this choice minimizes the variance of 

Lg(π) when π = π̃. Hereafter, we write E{Y | X, π(X)} as shorthand for E{Y | X = x, A = 

π(x)}|x=X. The following result is proved in the Supplementary Material.

Lemma 1—Assume that p(a | X) ∈ [ε, 1 − ε] with probability 1 for some ε > 0 and all a ∈ 

. Then, for any g : ℝp → ℝ and any rule π, var{Lg(π)} ≥ var{LE{Y | X, A=π(X)}(π)}.

Because our goal is to estimate πopt, it is natural to use a crude estimator of πopt as a 

reference rule. The reference rule is used to reduce variance and does not affect consistency. 

Thus, in practice, a simple, convenient estimator of πopt can be used as the reference rule. 

Hereafter, we write C(π) for CE{Y | X, πopt(X)}(π). Let m̂ (x) denote an estimator of E{Y | X = 

x, A = πopt(x)}; we obtain an estimator of m̂ by first constructing an estimator of E(Y | X = x, 

A = a), say Q̂(x, a), by regressing Y on X and A using a flexible model, and then defining m̂ 

(x) = maxa Q̂ (x, a). In our simulations, we estimated E(Y | X = x, A = a) using random 

forests (Breiman, 2001), although other methods are possible. For an arbitrary rule π, the 

plug-in estimator of C(π) is Ĉ (π) = En[{Y − m̂(X)}1π(X)=A/p{π(X) | X}], where En denotes 

the empirical expectation operator. We use Ĉ (π) as the basis for our purity measure. For any 

rectangle r, let πr,a,a′ denote the rule that assigns treatment a to all subjects in r and 

treatment a′ to all subjects in rc. For any rectangular region ℛ and rectangle r, define the 

purity of the partitioning of ℛ into ℛ ∩ r and ℛ ∩ rc as

(1)

The above purity measure estimates the performance of the best decision rule that assigns a 

single treatment to all subjects in ℛ ∩ r and a second treatment to all subjects in ℛ ∩ rc.

2·4. Purity measures for continuous treatments

In the continuous treatment setting we assume that  = (0, 1). For a ∈ , let p(a | x) denote 

the density of A given X = x. We assume that p(a | x) is known and that ε ≤ p(a | X) holds for 

all a ∈  with probability 1 for some fixed ε > 0. If this density is not known, it can be 

estimated, for example using mean-variance models (Carroll & Ruppert, 1988). The 

estimation of personalized treatment rules with continuous treatments has not been well 

studied. A major difficulty with regression-based methods is that one must first model Q(x, 

a) = E(Y | X = x, A = a) and then invert it to find πopt(x) = arg supa∈(0,1) Q(x, a). Correctly 

specifying a functional form for Q(x, a) that is interpretable yet sufficiently expressive and 

easily inverted within a continuous range of treatments is nontrivial when x is moderate- or 

high-dimensional. Our tree-based approach uses an estimator of m(x) = E{Y | X = x, A = 

πopt(x)} to reduce variance in the purity measure, but this need not be interpretable, nor does 

it require easy invertibility, so a flexible model for m(x) can be used. Furthermore, correct 

specification of the model for m(x) is not needed for consistency, because the optimal 

decision rule πopt is invariant with respect to g(x) in Cg(π).
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In order to define a purity measure, we require an estimator of the quality of an arbitrary rule 

π : ℝp → . The change of measure applied in the discrete treatment case is not meaningful 

for continuous treatments because E[Y 1A=π(X)/p{π(X) | X}] ≡ 0. Instead, we propose a 

smoothed version of the discrete purity measure (1) that replaces the nonsmooth indicator 

function with a kernel smoother νπ,h(a | x) = h−1κ([f (a) − f {π(x)}]/h) f′(a), where κ is a 

symmetric density function, h is the kernel bandwidth, and f is a one-to-one function 

mapping the treatment space (0, 1) to ℝ, with derivative f′. For example, one simple 

approximation to π is νπ,h(a | x) = (2h)−1 f′(a)1| f(a)−f{π(x)}|≤h. Thus, we approximate a rule π 

with a class of distributions over (0, 1) indexed by ℝp, so that νπ,h(a | x) has mass around 

π(x). Indeed, νπ,h(a | x) defines a distribution over treatments for each value of x ∈ ℝp and is 

therefore called a stochastic rule (Sutton &Barto, 1998). Using a stochastic rule to 

approximate a nonstochastic or deterministic rule effectively smooths over treatments. The 

precision of the approximation νπ,h(a | x) to π(x) depends on how peaked the function f′

(a)κ([f(a) − f{π(x)}]/h)/h is at π(x). However, we will show below that making the function 

too peaked will lead to unstable results due to inflated variance.

For any fixed function g : ℝp → ℝ, define Lg(νπ,h) = Lg(νπ,h, X, A, Y) = {Y − g(X)} × νπ,h(A 

| X)/p(A | X) and Cg(νπ,h) = E{Lg(νπ,h)}. Then C0(νπ,h) is the importance sampling 

representation of the expected outcome if all patients are assigned treatment according to the 

stochastic rule νπ,h. The plug-in estimator of Cg(νπ,h) is Ĉg(νπ,h) = En[{Y − g(X)}νπ,h(A | 

X)/p(A | X)]. The following lemma characterizes how the bias and variance of Ĉg(νπ,h) 

depend on the bandwidth h.

Lemma 2—Assume that p(a | X) ≥ ε with probability 1 for some ε > 0 and all a ∈ , and 

that κ(u) is symmetric about 0 and satisfies . Then, for any g : ℝp → ℝ and 

any rule π,

and var{Ĉg(νπ,h)} = O{1/(nh)}.

The mean squared error of Ĉg(νπ,h) is approximately

which is a function of the sample size, the bandwidth and the kernel function. This 

expression shows that a requirement for the mean squared error to decrease to zero as n 

increases is that h → 0 and nh → ∞. Under additional assumptions, we derive a plug-in 

estimator of the optimal bandwidth.
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The expectation E{νπ,h(A | X)/p(A | X) | X} is unity; hence, for an arbitrary function g, it 

follows from the same argument as in the discrete case that arg maxπ Cg(νπ,h) = arg maxπ 

C0(νπ,h). Similarly, for a fixed reference rule π̃ and kernel κ, the choice of g(x) = E{Y | X = 

x, A = π̃(x)} minimizes the variance of Lg(νπ,h) at π = π̃. Thus, as in the discrete case, we use 

a crude estimator of πopt as our reference rule. To derive a plug-in bandwidth estimator, we 

assume that

(2)

where h, ℓ and ψ are arbitrary functions from ℝp into ℝ, ∈ ℝp, and ε is an independent 

additive error with mean zero and variance . The form of the working model in (2) is a 

generalization of that used by Rich et al. (2014) for adaptively modelling warfarin dose 

response. Here g(x) = h(x) + πopt(x)ℓ(x) + πopt(x)2ψ(x)/2 and E{Y − g(X) | X, A = π(X)}2 = ε2. 

Under the assumed model we have (∂2/∂a2)E{Y − g(X) | X, A = a}|a=πopt(X) = ψ(X), which is 

independent of the optimal rule πopt. Furthermore, we choose f(u) = u − 1/2 so that f′(u) ≡ 1. 

We assume a uniform treatment randomization so that p(u | x) ≡ 1. Ignoring higher-order 

error terms, the bandwidth that minimizes the mean squared error is

from which we obtain the plug-in estimator

(3)

where σ̂
ε and ψ̂ are obtained by regressing Y on X and A using (2) with working models for 

h(x), ℓ(x) and ψ(x). In our simulations we used E(Y | X, A) = XTρ + XTβ(a − XTγ)2, which 

corresponds to h(X) = XTρ + (XTβ)(XTγ)2, ℓ(X) = 2XTβXTγ and ψ(X) = 2XTβ; the parameters 

indexing this model were estimated using nonlinear least squares with a ridge penalty added 

for stability.

Write C(νπ,h) for CE{Y | X,A=πopt(X)}(νπ,h). With m̂(x) denoting an estimator of E{Y | X = x, A 

= πopt(X)}, the plug-in estimator of C(νπ,h) is

we use this estimator as the basis for our purity measure. In our simulated experiments we 

take h = ĥ, which we recommend using in practice, although other choices are possible. 

Write νa′h(a | x) as shorthand for κ[{ f(a) − f(a′)}/h] f′ (a)/h. For any rectangular region ℛ 

and rectangle r, define the purity of partitioning ℛ into ℛ ∩ r and ℛ ∩ rc with respect to κ 

as
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This estimates the performance of the best stochastic decision which is concentrated about a 

single value for subjects in ℛ ∩ r and around a second value for subjects in ℛ ∩ rc. In 

practice, the supremum is taken over observed values a in the training data.

2·5. Recursive splitting

Having defined the purity measures, we can now describe how to select the split at each 

stage in the recursive splitting. Generally, it is preferable to choose the split that leads to the 

greatest increase in node purity, defined in terms of (ℛ, r) for discrete treatments and κ 

(ℛ, r) for continuous treatments. We use the discrete case as an illustrative example, and 

apply the same strategy to the continuous case by simply replacing (ℛ, r) with κ(ℛ, r).

To grow the tree at a parent node associated with rectangular region ℛ, say, we split on the 

rectangle r that maximizes the total purity of its two child nodes (ℛ, r). We then repeat the 

splitting process on each of the new nodes. Of course it is not possible to split the tree 

indefinitely, and so stopping measures based on tree complexity and node size are 

employed. For any rectangular region ℛ, define (ℛ) = (ℛ, ∅). Let μ ∈ ℕ denote a 

minimum node size, sometimes called a bucket size. We employ the following splitting 

rules.

Rule 1—If nEn1X∈ℛ < 2μ, do not split.

Rule 2—If nEn1X∈ℛ ≥2μ, compute r̂ = arg maxr { (ℛ, r) : min(nEn1X∈ℛ∩r, nEn1X∈ℛ∩rc)≥ 

μ}. If (ℛ, r̂) ≥ (ℛ) + λ, then split ℛ into ℛ ∩ r̂ and ℛ ∩ r̂c; otherwise do not split.

Here λ > 0 is a small positive constant representing a threshold for practical significance. 

Typically, μ and λ are dictated by problem-specific considerations and are not treated as 

tuning parameters. If the current data are representative of the whole subject population, i.e., 

if the data can be viewed as a random sample from the population from which future 

patients will be drawn, the splitting strategy outlined above ensures that the treatment 

recommended in a terminal node is the one maximizing the expected outcomes for subjects 

in the node. See the Supplementary Material for a more detailed description of the tree-

growing algorithm.

2·6. Pruning

Each split in the tree-growing algorithm increases, or at least cannot decrease, the purity 

measure. Therefore, unless either λ or μ is large, the above splitting strategy will produce a 

large tree and potentially overfit the data. A standard strategy employed when building 

decision trees is to first construct a large tree and then prune the tree back by merging 

sibling nodes together, choosing which nodes to merge by using some global measure of 

performance; this is generally regarded as a superior strategy to building a smaller tree by 

Laber and Zhao Page 8

Biometrika. Author manuscript; available in PMC 2016 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stopping the splitting early (Breiman et al., 1984). We adopt the following simple pruning 

strategy, which is applied to each pair of siblings until no further merging is possible.

Strategy 1—For siblings ℛ ⋃r and ℛ ⋃rc with common parent ℛ, if (ℛ, r) < (ℛ) + η 

then merge; otherwise do not merge.

Here η > 0 is a tuning parameter which we choose by using a ten-fold crossvalidation 

estimator of the marginal mean outcome. In particular, let π̂
η denote the estimated treatment 

rule using complexity parameter η, and let ĈCV(π̂
η) be the crossvalidation estimator of 

Eπ̂
η(Y). Define η̂ = arg maxη ĈCV(π̂

η). Then the final decision rule is π̂
η̂.

3. Experiments

3·1. Preliminaries

In this section we conduct a series of simulation experiments to examine the finite-sample 

performance of the minimum impurity decision assignments estimator. Here, performance is 

measured in terms of average marginal mean outcome obtained; that is, for an estimator π̂ of 

πopt, we compute E{Eπ̂
(Y)}, where the outer expectation is taken with respect to the data 

used to estimate π̂. The average marginal mean outcome obtained was estimated using 

Monte Carlo methods with a large test set of size 10 000 for the inner expectation and 1000 

training sets for the outer expectation. For discrete treatments we use a random forest 

(Breiman, 2001) to estimate m(x) = maxa Q(x, a) using the default settings of the R package 

randomForest; for continuous treatments we set m(x) to be identically zero.

To form a baseline for comparison, we also consider two regression-based estimators (Zhao 

et al., 2011; Schulte et al., 2014). Regression-based estimators first estimate Q(x, a) = E(Y | 

X = x, A = a) using a regression model, obtaining Q̂ (x, a), say, and then estimate the optimal 

decision rule as π̂ (X) = arg supa∈  Q̂ (x, a). In the discrete case we consider two estimators 

of Q(x, a): a parametric estimator that assumes a linear working model of the form QLM(x, 

a) = xTβ +Σ \{0} xTψa, which we estimate using least squares, and a nonparametric 

estimator that uses support vector regression with radial basis functions, which we denote by 

QSVR(x, a). The estimator QSVR uses as features x and all pairwise interactions between x 

and a; the method is tuned using five-fold crossvalidation with mean squared prediction 

error as the criterion. Diagnostic plots for the linear model using a draw of the data of size n 

= 250 in the p = 25 case are displayed in the Supplementary Material; these plots do not 

exhibit any major signs for concern, so an analyst might consider a linear decision rule to be 

adequate. In the continuous treatment case, regression-based estimators were constructed by 

first discretizing treatment into quartiles and then using the foregoing discrete treatment 

models.

3·2. Discrete treatments

We consider generative models in which treatments are binary and randomized to take the 

values±1with equal probability, the covariates X are uniformly distributed on the p-

dimensional unit cube [0, 1]p for p = 10, 25 and 50, and Y = u(X) + Ac(X) + Z where Z is an 

independent standard normal variate and u and c are functions from [0, 1]p to ℝ. The three 
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generative models that we consider all use , where kp and τp are 

chosen so that var{u(X)} = 5 and E{u(X)} = 10 − E{|c(X)|}. Thus, for all generative models 

the mean outcome under the optimal regime is E{m(X)} + E{|c(X)|} = 10. The forms of c we 

consider are:

(4)

(5)

(6)

Hence var{Ac(X)} = var{u(X)} = 5 in all settings. The optimal regime for (4) is to assign 

treatment a = 1 to all patients with x1 ≤ 0·6 and x2 ≤ 0·2, and assign treatment a = −1 

otherwise. Thus, under the optimal treatment rule 48% of patients would receive treatment a 

= 1. Similarly, the optimal regime for (5) is to assign treatment a = 1 to all patients with x1 ≤ 

0·3 and x2 ≥ 0·2, and assign treatment a = −1 otherwise. However, in contrast to (4), under 

the optimal treatment rule for (5) only 24% percent of patients would receive treatment a = 

1. The optional regime for (6) assigns treatment a = 1 to all subjects with x1 + x2 > 1 and a = 

−1 otherwise. Thus, the optimal treatment regime for (6) assigns treatment a = 1 to 50% of 

the subjects. The optimal regimes for both (4) and (5) are representable as decision trees, 

whereas that for (6) is not. The performance of minimum impurity decision assignments on 

(4) and (5) demonstrates the method’s ability to correctly identify underlying tree structure 

when it is actually present, whereas the performance on (6) measures the impact of a simple 

model misspecification.

The average performance of minimum impurity decision assignments and of the two 

regression-based methods is summarized in Table 1; we have also included the performance 

obtained under πopt and a rule that guesses randomly. The reported values are based on 1000 

Monte Carlo replications and a training set of size n = 250; simulations with larger sample 

sizes gave qualitatively similar results and are therefore omitted. The minimum impurity 

decision assignments estimator performs well across all settings, yielding the best 

performance for models (4) and (5), and it is competitive, despite being misspecified, in 

model (6). Most striking is that the performance of minimum impurity decision assignments 

remains stable as the number of noise variables increases; this could be due in part to the 

automatic variable-selection property of decision trees. In contrast, the performance of the 

regression-based methods deteriorates as p increases.

3·3. Continuous treatments

In the continuous treatment case, we consider generative models in which treatments are 

uniformly distributed on (0, 1), the covariates X are uniformly distributed on the p-

dimensional unit cube [0, 1]p, and Y = u(X) + c(X, A) + Z, where Z is an independent 

standard normal variate and u(x) and c(x, a) are, respectively, functions from [0, 1]p and [0, 

1]p × (0, 1) to ℝ. The three generative models that we consider use the same form for u(x) as 
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in the discrete case, with constants τp and κp chosen so that var{u(X)} = 5 and E{u(X)} = 10 

− E{supa
c(X, a)}. Let φ and Φ denote the density and cumulative distribution of a standard 

normal random variable, respectively. The three forms of c(x, a) we consider are:

(7)

(8)

(9)

Here (w)+ = max(0, w), and in each case the positive proportionality constant is chosen so 

that var{c(X, A)} = 5. The optimal regime for (7) treatment a = 0·25 when x1 ≥ 0·7, a = 0·5 

when x1 < 0·7 and x2 > 0·5, and a = 0·75 otherwise. The optimal regime for (8) assigns 

treatment a = 0·20 if x1 > 0·5 and x3 > 0·5, a = 0·40 if x1 > 0·5 and x3 ≤ 0·5, a = 0·60 if x1 ≤ 

0·5 and x2 > 0·25, and a = 0·80 otherwise. Thus, both (7) and (8) have an inherent tree 

structure. In contrast, the optimal regime for (9) is πopt(X) = (x1 + x2)/2 and so the tree-based 

decision rule is misspecified. We used the uniform kernel and the plug-in estimator (3) to 

choose the bandwidth for the minimum impurity decision assignment.

The average performances of minimum impurity decision assignment and the two 

regression-based methods are reported in Table 2. Minimum impurity decision assignment 

has the highest average performance of the methods compared. In addition, the estimator 

appears somewhat robust with respect to the addition of noise variables, as in the discrete 

treatment case. To give a sense of the rule estimated by minimum impurity decision 

assignment, Fig. 2 shows the average learned decision rules for (7) over 150 Monte Carlo 

replications as a function of the predictors x1 and x2 when p = 25 and n = 250. 

Corresponding figures for models (4)–(6), (8) and (9) are presented in the Supplementary 

Material, and show that the minimum impurity decision assignments estimator is roughly 

unbiased for the true underlying structure. The plug-in bandwidth estimator performed well 

despite violation of the assumptions used in its derivation. Additional simulations, omitted 

for brevity, indicated that the bandwidth σ̂
ε/n1/5 performed equally well.

4. Nefazodone study

In this section we apply the minimum impurity decision assignments method to data from a 

randomized trial comparing the drug nefazodone with cognitive behavioural therapy as 

treatments for chronic depression (Keller et al., 2000). Patients were randomized to receive, 

with equal probability, nefazodone, cognitive behavioural therapy, or both nefazodone and 

cognitive behavioural therapy. Cognitive behavioural therapy requires as often as twice-

weekly visits to a clinic, and thus imposes significant time and monetary burdens on patients 
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relative to treatment with nefazodone alone. An important question is whether cognitive 

behavioural therapy is necessary for all patients in the population of interest, either alone or 

as an augmentation to nefazodone, or if there is a subgroup of patients for which cognitive 

behavioural therapy is unnecessary. We perform a complete case analysis.

The data we use in this analysis comprise 215 subjects randomized to nefazodone, 212 

randomized to cognitive behavioural therapy, and 220 randomized to both. The primary 

outcome of the study was a score measured on the Hamilton Rating Scale for Depression, 

which we use as our response. To match our development, which assumes that higher values 

are better, we subtract each score on the rating scale from 50. We consider 22 potential 

covariates for tailoring treatment; these are listed in the Supplementary Material. Figure 3 

shows the decision rule estimated by minimum impurity decision assignment. The estimated 

decision rule assigns nefazodone and cognitive behavioural therapy to patients with a high 

mood disturbance, high sleep disturbance, or high baseline depression score. So the 

estimated decision rule recommends intensive treatment, i.e., nefazodone together with 

cognitive behavioural therapy, to patients presenting with more severe symptoms.

The marginal mean outcome of the learned decision rule, estimated using ten-fold 

crossvalidation, is 38·8, which turns out to be the marginal mean outcome of assigning all 

subjects to the more intensive nefazodone and cognitive behavioural therapy. A linear 

decision rule fit using ridge regression tuned with generalized crossvalidation assigns all 

subjects to combined nefazodone and cognitive behavioural therapy. Thus, the difference 

between the learned decision rule using minimum impurity decision assignments and 

assigning all patients to nefazodone and cognitive behavioural therapy is not significant. 

Hence, for reasons of cost and patient burden, one should prefer the rule learned by 

minimum impurity decision assignments, which assigns the drug alone to 18% of patients. 

Assigning all patients to nefazodone has an estimated marginal mean outcome of only 33·9, 

suggesting that the minimum impurity decision assignments estimator has effectively 

identified individuals in the population who are unlikely to benefit from augmenting 

nefazodone with cognitive behavioural therapy.

5. Discussion

Decision trees are a cornerstone of exploratory analysis and the canonical example of an 

interpretable predictive model. Trees are particularly suitable for treatment allocation rules 

because they are easily interpreted and vetted by intervention scientists. Furthermore, unlike 

other flexible decision rules (e.g., Zhao et al., 2009, 2012; Zhang et al., 2013), they do not 

require additional computation to determine a recommended treatment for a newly 

presenting patient; thus, they are easily deployed and disseminated.

An important extension of this work is the development of tree-based treatment rules for 

multi-stage treatment problems. There is growing interest in evidence-based sequential 

treatment rules for the treatment of chronic illness. It is increasingly appreciated that 

nonlinear models are required for sequential decision rules (Laber et al., 2014). One 

approach is to use flexible models based on machine learning techniques, but for the reasons 

mentioned above, this may lead to models which are not interpretable or easily 
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disseminated. We believe that the direct search framework (Zhang et al., 2013) is an avenue 

by which our work can be extended to the multi-stage setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A decision rule composed of rectangles r1 = {(1, 1, 1)} and r2 = {(2,−3,−1)} with 

rectangular regions  and .
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Fig. 2. 
Heatmaps of true and estimated optimal treatment rules: (a) average treatment assignment as 

a function of x1 and x2 over 25 learned decision rules for (7), with p = 25 and n = 250; (b) 

optimal treatment assignment as a function of x1 and x2 for (7); optimal treatment 

assignment for (7) depends exclusively on x1 and x2.
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Fig. 3. 
Learned decision rule for nafazodone study: patients with high mood disturbance (MOOD), 

poor sleep (SLEEPD2), or more severe depression symptoms (HAMD) are assigned 

nefazodone and cognitive behavioural therapy (Drug + CBT); others are assigned 

nefazodone only.
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