Skip to main content
. Author manuscript; available in PMC: 2016 Feb 16.
Published in final edited form as: Biometrika. 2015 Jul 15;102(3):501–514. doi: 10.1093/biomet/asv028

Table 1.

Marginal mean outcomes obtained from minimum impurity decision assignments, two regression-based methods, and random guessing. Data are generated from binary treatment examples with a sample size of n =250; reported values are based on 1000 Monte Carlo replications, using a test set of size 10 000

Model p MIDAs QLin SVR Random
(4) 10 9·86 9·31 9·39 7·76
(4) 25 9·87 9·20 9·17 7·76
(4) 50 9·88 9·03 8·80 7·76
(5) 10 9·77 9·55 9·53 7·76
(5) 25 9·76 9·44 9·36 7·76
(5) 50 9·77 9·21 8·94 7·76
(6) 10 9·15 9·74 9·60 7·76
(6) 25 9·14 9·51 9·35 7·76
(6) 50 9·15 9·32 8·99 7·76

MIDAs, minimum impurity decision assignments; QLin, Q-learning with a linear model; SVR, Q-learning with support vector regression; Random, random guessing.