(A) Dissimilarity structure of angular distances. We used MDS, which maps the multidimensional (32× 32) Mahalanobis distance matrix between target-relative angles into two dimensions. During relatively early stimulus processing (250–400 ms after stimulus onset), geometry is elliptical—that is, in addition to conditions separating along the target-relative axis (horizontal), conditions separate along a task-irrelevant axis (vertical). During later processing stages (B: 450–900 ms), the task-related axis accounts for most of the condition differences. Since MDS is rotation-invariant, the solution in B happens to have flipped axis 2, without affecting the geometrical relationship between points. (C) Mahalanobis distances (shuffle-corrected) between trials with equal target proximity, but different direction (i.e., clockwise vs. counter-clockwise deviations of the stimulus angle, with respect to the template angle). The figure shows the mean z-score (with respect to 250 random permutations of the trial labels) of pairwise distances between equal target proximities, averaged over the pairs ± 11.25º, ± 22.5º, and ± 33.75º. Shading indicates standard error of the mean. The black bar denotes significant time points (p<0.05, cluster-corrected). MDS, multi-dimensional scaling