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Abstract

Multivariate pattern analysis can be used to decode the orientation of a viewed grating from fMRI 

signals in early visual areas. Although some studies have reported identifying multiple sources of 

the orientation information that make decoding possible, a recent study argued that orientation 

decoding is only possible because of a single source: a coarse-scale retinotopically organized 

preference for radial orientations. Here we aim to resolve these discrepant findings. We show that 

there were subtle, but critical, experimental design choices that led to the erroneous conclusion 

that a radial bias is the only source of orientation information in fMRI signals. In particular, we 

show that the reliance on a fast temporal-encoding paradigm for spatial mapping can be 

problematic, as effects of space and time become conflated and lead to distorted estimates of a 

voxel’s orientation or retinotopic preference. When we implement minor changes to the temporal 

paradigm or to the visual stimulus itself, by slowing the periodic rotation of the stimulus or by 

smoothing its contrast-energy profile, we find significant evidence of orientation information that 

does not originate from radial bias. In an additional block-paradigm experiment where space and 

time were not conflated, we apply a formal model comparison approach and find that many voxels 

exhibit more complex tuning properties than predicted by radial bias alone or in combination with 

other known coarse-scale biases. Our findings support the conclusion that radial bias is not 

necessary for orientation decoding. In addition, our study highlights potential limitations of using 

temporal phase-encoded fMRI designs for characterizing voxel tuning properties.
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Introduction

Orientation-selective neurons in the primary visual cortex (V1) are clustered at 

submillimeter scales to form cortical columns and pinwheel-like structures (Bartfeld and 
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Grinvald, 1992; Blasdel, 1992; Ohki et al., 2006). Although orientation selectivity is 

predominantly organized at a fine spatial scale, Kamitani and Tong (2005) discovered that 

the orientation of a viewed grating can be accurately decoded from fMRI activity patterns in 

the human visual cortex. They hypothesized that orientation decoding was possible at 

standard fMRI resolutions due to local anisotropies in the distribution of orientation-

selective columns, as this would lead to subtle imbalances in orientation preference at spatial 

scales exceeding the width of individual columns. Subsequent high-resolution fMRI studies 

have demonstrated the presence of orientation-selective signals in V1 at millimeter and 

submillimeter scales (Moon et al., 2007; Swisher et al., 2010; Yacoub et al., 2008). 

However, differential responses to orientation can also be found at much coarser spatial 

scales. For example, some studies have reported stronger overall V1 responses for cardinal 

than for oblique orientations (Furmanski and Engel, 2000), while others suggest that 

disproportionately more voxels prefer cardinal over oblique orientations (Sun et al., 2013). 

A retinotopically organized bias in favor of radial orientations (relative to the fovea) has also 

been found in human V1 (Sasaki et al., 2006). This radial bias appears quite prominent, and 

may originate from a bias evident in the elongated dendritic fields of retinal ganglion cells 

(Schall et al., 1986). Recent studies have revealed stronger responses for radial than 

tangential orientations in the human lateral geniculate nucleus (Ling et al., 2015), consistent 

with the possibility of a retinal contribution to the radial bias effects observed in V1.

In several recent studies, researchers have attempted to determine the extent to which fMRI 

decoding of stimulus orientation depends on fine-scale or coarse-scale biases (Alink et al., 

2013; Kriegeskorte et al., 2010; Mannion et al., 2010; Op de Beeck, 2010; Swisher et al., 

2010). This is an important question as it pertains not only to the functional organization of 

feature selectivity in the visual cortex, but also has direct relevance to understanding the 

types of information that can be detected in multivariate fMRI activity patterns (Swisher et 

al., 2010; Gardner, 2010; Shmuel et al., 2010; Tong and Pratte, 2012) and at the scale of 

individual voxels (Brouwer and Heeger, 2009; Kay et al., 2008; Kriegeskorte et al., 2010; 

Naselaris et al., 2011; Serences et al., 2009).

A recent study by Freeman et al. (2011) addressed this issue by using a temporal phase-

encoding approach to measure V1 responses to periodic rotations of an oriented grating, and 

comparing these orientation preference maps with those evoked by a retinotopic radial-

mapping stimulus (Fig. 1A, B). Orientation was accurately decoded from the original 

activity patterns obtained at standard fMRI resolutions, but after analytic removal of the 

radial bias component, orientation decoding fell to chance levels. From these results, 

Freeman et al. concluded that radial bias was the only source of orientation information in 

the fMRI signal, and thus necessary for orientation decoding. Curiously however, other 

fMRI studies have demonstrated the presence of other sources of orientation information in 

the visual cortex, distinct from radial bias (Alink et al., 2013; Freeman et al., 2013; Mannion 

et al., 2009; Swisher et al., 2010). Thus, conflicting results have emerged in the literature, 

and it has remained unclear as to why radial bias appears to be necessary for orientation 

decoding in some studies but not others.

In the present study, our goal was to reconcile these disparate findings regarding whether 

radial bias might be necessary for orientation decoding. Our first step was to replicate the 
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stimulus conditions, experimental parameters, and analytical procedure of Freeman et al. 

(2011), as their study was the first to report that orientation decoding depends entirely on 

radial bias. Across a series of experiments, we find that subtle but critical choices in 

experimental design led to erroneous conclusions in the Freeman et al. study. They relied on 

a temporal-encoding approach to characterize the orientation and polar-angle retinotopic 

preferences of individual voxels. Such an approach provides a fast, efficient method for 

spatial mapping (Engel, 2012), but has the potential to conflate effects of space and time. 

Moreover, different types of visual stimuli can evoke different spatiotemporal profiles of 

activity in the cortex, such that information about a stimulus may be conveyed not only at 

the fundamental frequency of the paradigm but also in the form of higher order temporal 

harmonics. Such considerations proved important when comparing the accuracy of decoding 

performance across orientation and polar-angle conditions.

In Experiment 1, we replicate the experimental results of Freeman et al., but show that the 

polar-angle retinotopy stimulus evokes higher-order harmonic responses, such that residual 

information persists about the retinotopy stimulus following removal of the fundamental 

component. In comparison, decoding of orientation is driven largely by the fundamental 

component. As a consequence, Freeman et al.’s approach of comparing decoding 

performance for orientation and polar angle, following the removal of the fundamental 

component, leads to an invalid procedure for estimating chance-level orientation decoding. 

In Experiments 2 and 3, we implemented minor changes to the spatiotemporal paradigm, by 

slowing the rotation of the stimulus or by smoothing the contrast-energy profile of the 

retinotopy stimulus to avoid evoking harmonic responses. These modest manipulations were 

sufficient to produce failures to replicate the original study, and suggest that orientation 

information persists following the removal of radial bias. In Experiment 4, orientations were 

presented using a blocked paradigm that avoided the possibility of conflating effects of 

space and time. Results from this experiment show that the orientation-tuning profiles for 

many individual voxels are more complex than would be predicted by radial bias alone. 

Based on these findings, we conclude that radial bias is not necessary for orientation 

decoding.

Materials and Methods

Participants

Eight healthy adult volunteers (aged 21–32, four females) with normal or corrected-to-

normal vision participated in one or more of the experiments. These included four 

participants in Experiment 1, four in Experiment 2, three in Experiment 3, and four in 

Experiment 4. Three of the participants were authors. All participants gave written informed 

consent, and the study was approved by the Vanderbilt University Institutional Review 

Board.

MRI Acquisition

All MRI data were collected with a Philips 3T Intera Achieva scanner using an eight-

channel head coil. Individual Experiments 1–4, and the retinotopic mapping of visual areas, 

were each performed in a separate MRI scanning session of 2.5 hrs in duration. Functional 
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acquisitions were standard gradient-echo echoplanar T2*-weighted images, consisting of 22 

slices aligned perpendicular to the calcarine sulcus (TR 1500 ms; TE 35 ms; flip angle 80°; 

FOV = 192 × 192 mm, slice thickness 3 mm with no gap; in-plane resolution 3 × 3 mm). 

This slice prescription covered the entire occipital lobe and parts of posterior parietal and 

temporal cortices with no SENSE acceleration. During a separate retinotopic mapping 

session, a high-resolution 3D anatomical T1-weighted image was acquired (FOV=256 × 

256; resolution=1 × 1 × 1 mm) and this image was used to construct an inflated 

representation of the cortical surface. A custom bite-bar apparatus was used to minimize 

head motion.

MRI Preprocessing

Functional MRI data for each participant were simultaneously motion-corrected and aligned 

to the mean of one run using FSL’s MCFLIRT motion-correction algorithm (Jenkinson et 

al., 2002). The data were then high-pass filtered (cutoff, 90 s) in the temporal domain, and 

converted to percent signal change units by dividing the time series of each voxel by its 

mean intensity over each run.

Regions of Interest

In a session separate from the main experiment, standard retinotopic mapping procedures 

were used to delineate visual area V1 (DeYoe et al., 1996; Engel et al., 1997; Sereno et al., 

1995) in the left and right hemispheres. These cortical visual areas were defined on the 

inflated surface, which was reconstructed using Freesurfer (Dale et al., 1999). The 

preprocessed experimental data were transformed to this surface using Freesurfer’s 

boundary-based registration (Greve and Fischl, 2009). Coherence values from the 

experimental polar-angle mapping runs were projected onto the flattened surface, and a 

region of interest was constructed by identifying voxels within V1 that responded to the 

experimental polar-wedge stimulus. The resulting ROI for each subject included between 

224 and 335 voxels.

Task

During all runs in Experiments 1–3, participants performed an identification task on letters 

presented rapidly at fixation (5 letters/second, letter size 0.33° within a .5° fixation circle) by 

pressing a button to report whenever a ‘J’ or ‘K’ was presented. This task was used to 

encourage participants to maintain stable fixation and a steady level of alertness throughout 

the experiment. In Experiment 4, participants were required to maintain fixation while a 

randomly chosen stimulus orientation was presented on each 16-s block.

Polar-Angle Mapping

Each scanning session for Experiments 1–3 included 7–10 runs of polar-angle mapping. In 

Experiments 1 and 3, we used the same polar-angle mapping stimulus as Freeman et al. (Fig. 

1A), which consisted of full-contrast counter-phase flickering (8 hz) checkerboard wedges 

that occupied 45° of polar angle and spanned an eccentricity from 4.5° to 9.5°. The inner 

and outer boundaries of the wedges included a 1° linear contrast ramp to mitigate aliasing 

artifacts at the edges. For Experiment 2, we applied a smooth contrast ramp to the 
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checkerboard pattern along the polar-angle dimension (Fig. 1C), using a raised cosine 

function (5th power).

In Experiments 1 and 2, the wedges rotated counterclockwise in 11.25° steps every 1.5 s, 

completing a cycle every 24 s. For both the double-wedge retinotopy stimulus and the 

orientation grating, 1 cycle of periodic stimulation refers to 180° of stimulus rotation. The 

wedge cycled through each of the 16 polar-angle positions 11 times in each run. In 

Experiment 3, the wedges rotated more slowly, completing a cycle in 72 s. To achieve this 

slower rotation, the wedges occupied each of the 16 positions for 4.5 seconds, completing 

4.25 cycles per run.

To determine the polar-angle preference of each voxel, the data were averaged over the 

polar-angle mapping runs, and the Fourier transform was applied to the resulting mean time 

course for each voxel. The relative amplitude of the fundamental frequency indicates the 

strength of a given voxel’s response to periodic stimulation, and the temporal phase of that 

response provides an estimate of the polar-angle preference of that voxel.

Orientation Mapping

Each scanning session for Experiments 1–3 also included 14–15 runs of orientation 

mapping. For Experiments 1–3, we used the same visual stimulus for orientation mapping as 

Freeman et al. (Fig. 1B). A full-contrast sine-wave grating with a spatial frequency of 0.5 

cpd was presented in an annular window that matched the eccentricity range of the polar-

angle mapping stimulus. Stimulus eccentricity ranged from 4.5° to 9.5°, with a linear 

contrast ramp applied to the inner and outer 1° boundaries of the grating.

In each experiment, the grating rotated with the same temporal profile as the polar-angle 

wedges. In Experiments 1 and 2, the grating rotated by 11.25° every 1.5 s, so each cycle of 

stimulation required 24 s. In Experiment 3, the grating rotated at a slower rate of 11.25° 

every 4.5 s, so the period of stimulation was 72 s.

In Experiment 4, square-wave oriented gratings were presented in a blocked design. Each 

participant completed between 16 and 19 experimental runs, in addition to two localizer runs 

used to identify voxels in visual cortex with retinotopic preferences corresponding to the 

stimulus location. Each experimental run included 16 stimulus blocks with a duration 16s 

each. In each block, a grating was flashed on and off (250 ms on followed by 250 ms off) 

with a random spatial phase on each presentation. The orientation for each block was chosen 

pseudo-randomly, such that orientations within each run were sampled evenly from the 

orientation space. The stimulus consisted of a full-contrast square-wave grating that spanned 

from 1.5° to 10° in eccentricity, with a spatial frequency of 1.5 cpd, consistent with the 

stimulus parameters used by Kamitani & Tong (2005). No task was performed during this 

experiment; participants were instructed to maintain fixation on a central bull’s eye.

Decoding Orientation

The goal of the orientation decoding analyses in Experiments 1–3 was to measure the 

amount of orientation information present in a group of voxels, both prior to and following 

the analytic removal of radial bias. After fMRI preprocessing, we removed data 
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corresponding to the first two rotations (Experiments 1 and 2) or the first quarter rotation 

(Exp. 3). This procedure removed transient responses resulting from the onset of the 

stimulus, and equated the number of functional acquisitions across the three experiments 

(144 functional volumes per run). Within each run, the data were then averaged over TRs 

corresponding to the same orientation, providing 16 responses for each voxel in each run 

corresponding to the 16 orientations for each voxel in the V1 ROI. To match the procedure 

of Freeman et al., we used a Naive Bayes classifier to identify which of the 16 orientations 

produced each activity pattern in a leave-one-run-out cross-validation scheme. The extent to 

which classification accuracy is above chance baseline (6.25% or 1/16) provides a measure 

of how much orientation information is present in a sample of voxels.

Removing Radial Bias From Orientation

The purpose of this analysis is to determine whether orientation decoding is driven entirely 

by the radial bias, or whether reliable orientation information remains available following 

the analytic removal of radial bias. Our first goal was to attempt to replicate Freeman et al.’s 

findings by adopting their procedures. We calculated the mean time series of every voxel 

across all polar-angle runs, and applied the Fourier transform to determine the preferred 

phase of each voxel (denoted ϕi for the ith voxel). Since the orientation mapping experiment 

followed the same temporal paradigm as the polar-angle mapping experiment, a voxel’s 

predicted radial bias in the orientation experiment should follow a cosine function with 

stimulus rotation frequency f cycles per run, and a preferred phase ϕi corresponding to that 

of the polar-angle mapping experiment. For every orientation-mapping run, we fitted the 

time series of each voxel using its predicted radial bias component by allowing the 

amplitude of the cosine function with phase ϕi to vary as a free parameter (βi),

The residuals of this regression analysis provide orientation-mapping data with the radial 

bias component removed. Orientation decoding was applied to this residual time series 

across all voxels in the ROI (i.e., fMRI activity patterns with radial bias removed), to assess 

whether any orientation information remained following this analytic procedure to remove 

radial bias.

Retinotopy Baseline

The critical question is whether V1 activity patterns with radial bias removed still contain 

reliable orientation information that can support decoding. If decoding of these residual 

activity patterns leads to chance-level performance (1/16 orientations, or 6.25% correct), 

then all orientation information in the original activity patterns must have arisen from radial 

bias. However, if decoding performance is greater than chance, this positive result could be 

due to either 1) the presence of orientation information that is truly distinct from radial bias, 

or 2) an inability to completely remove all of the radial bias information from the original 

orientation signal. Note that complete removal of radial bias is impossible unless one has 

knowledge of the true radial bias of every voxel in the ROI. Instead, estimates of a voxel’s 

true radial bias will be subject to some degree of estimation error, and the degree to which 
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these estimates are imprecise will determine the amount of radial bias information that 

remains in the residual activity patterns.

To account for the possible presence of residual radial bias information, Freeman et al. 

devised a retinotopy baseline measure that specifies the level of decoding accuracy that 

would be expected if radial bias were the only source of orientation information in the 

orientation-mapping experiment, but the removal of the radial bias were imperfect. To 

construct this baseline, the level of decoding accuracy was first equated across polar-angle 

and orientation mapping experiments by adding independent Gaussian noise to every voxel 

for the polar-angle data. The level of noise was adjusted until performance levels were 

matched. Next, the polar-angle phase preference of each V1 voxel was used to regress out 

the radial bias component from the polar-angle fMRI data with noise added. Decoding of 

polar-angle retinotopic position from the residuals of this regression provides the retinotopy 

baseline – how much retinotopy information is left over after the analytical removal of 

retinotopy. This procedure of adding noise, regression and decoding was repeated 500 times 

for each participant, providing samples from the distribution that would arise under the 

hypothesis that no orientation information remains after removal of the radial bias.

The next step is to determine whether classification performance of orientation with radial 

bias removed is significantly higher than the retinotopy baseline. To do so, for each 

participant we simulated 500 accuracy scores from a binomial distribution with probability 

and size equal to the observed classification accuracy of the orientation-minus-radial-bias 

signal. A p-value is computed as the proportion of these simulations in which simulated 

orientation decoding was larger than the simulated retinotopy baseline. In addition to 

reporting these p-values for each subject, we combine them across subjects to compute a 

group-level p-value using Fisher’s method (Fisher, 1925).

Removing Harmonics

In Freeman et al.’s original analysis, the radial bias component was removed from the time 

series of every voxel by projecting out a cosine function with a phase corresponding to the 

polar-angle preference. However, as Fig. 3B of their paper indicates, voxel responses to the 

retinotopy wedge did not strictly follow a cosine function, as can be seen in the Fourier 

domain based on the elevated amplitudes observed in the second and third harmonics of the 

retinotopy signal. We replicate this finding in Experiment 1, and show that the presence of 

these harmonics poses a problem for calculating an appropriate retinotopy baseline, as these 

higher-order harmonics contain information to support decoding of polar-angle position 

even after the removal of the fundamental component. One way to address this problem is to 

construct the retinotopy baseline by removing these harmonic signals in addition to the 

fundamental cosine component. We used a multiple regression analysis to do so:

The first component represents the predicted signal at the fundamental frequency of the 

rotating stimulus (f) as in the original analysis. The additional components represent the 

second harmonic (2f) and the third harmonic (3f, with phases estimated from the retinotopy 
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runs in the same manner as for the phase of the fundamental signal. The residuals from this 

regression serve as input for the harmonics-removed classification analysis of Experiment 1.

Tuning Curve Complexity

In Experiment 4, oriented gratings were presented in a blocked design, and our goal was to 

characterize how individual voxels responded to different orientations. If fMRI responses to 

orientation are solely determined by radial bias, then the orientation tuning curves for each 

voxel should reveal simple, unimodal response functions indicating a peak preference for a 

single orientation. Alternatively, more complex sources of orientation information, such as 

local anisotropies in the distribution of orientation columns or a combination of many 

disparate sources, should lead to the occurrence of more complex tuning curves. To 

characterize the complexity of voxel tuning curves, a series of models were fitted to each 

voxel, including an intercept model predicting no orientation tuning (M0), a cosine function 

of orientation predicting a unimodal tuning curve (M1), the sum of this cosine and a cosine 

with two cycles allowing for a bi-modal response function (M2), and the sum of these and a 

cosine with three cycles allowing for a tri-modal response function (M3). These cosine-

based models were also compared with a von Mises tuning curve (VM). The von Mises 

allows for a unimodal response function, and has a free parameter that allows for tighter 

tuning bandwidths than the single cosine model.

Three approaches were used to determine which of these models provided the most accurate 

account of the orientation tuning curve data. First, a formal model-comparison approach was 

used to determine which model provided the best account of each voxel’s orientation tuning 

response profile. For each voxel, the merit of each model was characterized with the Akaike 

information criterion (AIC, Akaike, 1974). This statistic takes into account both how well 

each model fits the data and each model’s complexity, where overly flexible models are 

penalized for being able to capture any data pattern. By comparing the AIC values for each 

model within each voxel, we characterized how many voxels were best accounted for by 

each model for each participant.

Cross validation provides another common approach to determining how well a model fits 

data, while also ensuring that the model is not overly complex such that it is merely fitting 

noise. We adopted this approach by fitting each model to each voxel using data from all but 

one run, and then used the fitted model to predict the BOLD responses on the left-out run. 

This cross-validation procedure was performed in a leave-one-run-out approach, performed 

iteratively until every run was tested. The resulting variance accounted for by each model 

(as measured by R2) is taken as a measure of model accuracy. Whereas AIC aims to 

determine which model provides the best account of the data as defined by information 

theory, this cross-validation approach determines which model provides for the most 

powerful prediction performance. Although these approaches differ substantively in their 

goals, we find that the conclusions are largely in agreement across methods.

In addition to assessing how well each model could predict the responses of individual 

voxels, we constructed forward-encoding models to determine how well each model could 

be used to predict the viewed orientation from voxel response patterns (Brouwer and 

Heeger, 2009; Kay et al., 2008). Each model was fitted to each voxel’s response on all but 
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one run, and the fitted models were used to predict the viewed orientations on the left-out 

run given the voxel activity patterns. The error in these predictions was measured as root 

mean squared error (RMSE) to quantify the accuracy of cross-validation performance. This 

is a multivariate approach as it pools information across voxels in order to produce predicted 

orientations, and as such is similar to orientation decoding (Kamitani and Tong, 2005). 

Because this approach relies on a cross-validation procedure, it will favor the simplest 

model that can accurately capture stable patterns in orientation responses.

Results

Experiment 1: Replication of Freeman et al. Study

In Experiment 1, we adopted the temporal phase-encoding approach used by Freeman et al. 

to characterize the retinotopic polar-angle preference and orientation preference of 

individual V1 voxels. Following their stimulus parameters and analytical procedures, we 

replicated the main patterns of results reported in their study.

Figure 2A shows classification performance from Experiment 1. The leftmost bar shows 

orientation classification from the original fMRI activity patterns. The middle bar shows 

orientation classification performance after analytic removal of radial bias, by regressing out 

the predicted cosine component. Removal of the radial bias component clearly lowers 

orientation classification performance, suggesting that at least some of the orientation 

information in these activity patterns can be attributed to radial bias. Residual decoding 

performance (mean accuracy, 26%) is significantly greater than chance-level performance 

(6.25%, indicated by the dashed line). However, as Freeman et al. noted, effective removal 

of radial bias depends on the accuracy with which one can estimate the true polar-angle 

preference of individual voxels. Thus, any noise or errors in these estimates would lead to 

incomplete removal of radial bias information, such that residual activity patterns could 

support above-chance decoding.

Freeman et al. devised a retinotopy baseline to specify how accurate orientation decoding 

should be if it were entirely due to radial bias, allowing for imperfect removal of radial bias 

via the regression procedure. Their baseline measure uses independent Gaussian noise to 

lower a participant’s retinotopy decoding performance to match orientation decoding 

performance, and then applies a bootstrapping procedure to determine the range of 

accuracies with which polar-angle can be decoded from the fMRI retinotopy experiment 

with radial biased removed. We computed this retinotopy baseline (third bar in Fig. 2A), and 

found that orientation classification performance was not significantly higher than the 

retinotopy baseline for any of the four subjects individually (p = .82, .73, .86 and .20), nor at 

the group level (p=.81). These data provide a compelling replication of the Freeman et al. 

result, which was interpreted to imply that removal of the radial bias effectively removes all 

orientation information from the fMRI activity patterns.

Experiment 1: Retinotopy information in harmonic components

A critical assumption underlying Freeman et al.’s analysis procedure is that all of the 

retinotopy information, and all of the radial bias orientation information conveyed by a 
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voxel’s response, occur at the fundamental frequency of the stimulus paradigm. There are 

two ways in which this assumption might be violated. First, the retinotopy signal may exist 

only at the fundamental frequency, but the radial bias orientation signal contains information 

at other frequencies. If this were the case, then the regression procedure would fail to 

completely remove the radial bias signal from the orientation data, and orientation decoding 

would be above the retinotopy baseline even if the signal were driven by radial bias alone. 

However, this error did not occur because no difference was observed between orientation 

classification and the retinotopy baseline. The second possibility is that the radial bias 

orientation signal exists only at the fundamental frequency, but that the retinotopy signal 

contains information at other frequencies. Because the retinotopy baseline is a measure of 

residual retinotopy information after removing the fundamental component, the baseline in 

this case would include retinotopy information that is not present in the radial bias 

orientation signal. Consequently, the baseline would be too high, potentially resulting in no 

difference between orientation decoding and the retinotopy baseline, even if the orientation 

signal contained more than radial bias.

To investigate whether the retinotopy signal contains more information than the orientation 

signal at frequencies other than the fundamental, Figure 1 shows the power spectrums of the 

BOLD responses to the rotating wedge (Fig. 1D) and the rotating grating (Fig. 1E). In 

addition to power at the fundamental frequency of the rotating wedge (labeled f1), there is 

also substantial power at frequencies corresponding to the 2nd, 3rd and 4th harmonics of this 

signal.

To better understand the source of these harmonics, the bottom row of Figure 1 shows the 

corresponding BOLD responses, obtained by phase-locking each voxel to it’s retinotopic 

phase preference and averaging over voxels for a participant. Clearly, the response to the 

retinotopic wedge stimulus (Fig. 1G) does not follow a cosine function (shown as the line), 

but rather has a sharper tuning bandwidth (see also Dumoulin and Wandell, 2008). 

Alternatively, the BOLD response to the oriented grating (Fig. 2H) is described quite well 

by a cosine function.

Overall, the orientation signal nearly follows a cosine function, whereas the retinotopy 

signal does not. As a result, removing retinotopy by regressing out a cosine leaves more 

residual retinotopy information in the retinotopy time course than in the orientation time 

course. Consequently, the original retinotopy baseline is not a good benchmark for 

comparison with orientation decoding – Performance is too high due to residual information 

that is not present in the orientation signal. To better equate the signals we can simply 

regress out these harmonic components in addition to removing the fundamental (see 

Methods). Figure 2B shows the results (Harmonics Removed condition). As can be seen, 

removing these additional components from the retinotopy signal lowers the retinotopy 

baseline, demonstrating that these harmonics carry information in the retinotopy time course 

that can be removed via projection. Critically, a comparison of this harmonics-removed 

retinotopy baseline to classification performance for the orientation-minus-radial-bias 

activity pattern reveals significantly higher orientation decoding performance for three of the 

four individual subjects (all p<.001) and a marginally significant effect in the fourth subject 
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(p=.10). Combining these results across subjects using Fisher’s method also indicates a 

significant difference across the two conditions at the group level (p<.001).

This significantly higher orientation decoding implies that there is orientation information 

that cannot be accounted for by radial bias when the proper baseline is used for comparison. 

Although we view this harmonics-removed baseline as more appropriate than removing only 

the fundamental component, our goal in Experiment 2 was to take an empirical approach, 

rather than an analytical approach, to construct a more appropriate baseline.

Experiment 2: Smooth Retinotopy Wedge

In Experiment 1, we showed that BOLD responses to the rotating retinotopy wedge carry 

harmonic information that is not present in the orientation signal. The stronger harmonic 

responses evoked by the retinotopy wedge stimulus (Fig. 1A) may be due to the hard leading 

and trailing edges of the stimulus along the polar-angle dimension, such that the contrast 

modulation of the stimulus display follows a square-wave pattern (i.e., at a given time a 

particular part of space is either background/zero-contrast or full-contrast stimulus). In 

comparison, the oriented sine-wave grating has no such edge (Fig. 1B), but rather, 

transitions smoothly through the orientation domain as the grating rotates. If the sharp 

contrast edge in the retinotopy stimulus is indeed responsible for the higher-order harmonics 

observed in the retinotopy signal, then we should be able to mitigate these harmonic 

responses by modifying the stimulus itself.

In Experiment 2, we attempted to better equate the temporal profile of BOLD responses 

evoked by the retinotopy and orientation stimuli. To do so, we employed a smoothed 

retinotopy wedge (Fig. 1C), which varied smoothly in stimulus contrast from 0% to 100% 

along the polar-angle dimension, following a raised cosine function. If the fMRI orientation 

signal arises entirely from radial bias as claimed by Freeman et al., then the decoding of 

orientation with radial bias removed should be no better than retinotopy baseline 

performance, and this should hold true even if one uses an appropriately modified retinotopy 

wedge that minimizes higher-order harmonic responses. Here, we evaluated this prediction.

Figure 2C shows the results of orientation decoding with radial bias included, orientation 

decoding with radial bias removed, and the retinotopy baseline decoding from Experiment 2. 

Note that the retinotopy baseline was constructed as in the original Freeman et al. analysis, 

removing only the fundamental frequency. Consequently, this experiment and analysis is 

identical to the original Freeman et al. study and our replication, with the exception of the 

smoothed contrast-ramp used for the retinotopy stimulus. This simple change in the 

retinotopy stimulus was sufficient to produce a failure to replicate Freeman et al.’s results: 

Orientation decoding after removing radial bias was significantly higher than the retinotopy 

baseline for each of the three participants (p = .03, .004 and .012) and at the group level (p 

< .001).

Figure 1F shows the power spectrum of the BOLD response to the smoothed wedge and 

Figure 1I shows the average phase-locked response for 1 cycle. As can be seen, smoothing 

the edges of the retinotopy stimulus leads to a reduction in power of the harmonic 

components relative to those of the hard-edged wedge. Moreover, qualitatively the average 
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response looks more similar to the average response to the orientation stimulus. This 

analysis supports the supposition that the smoothed-wedge retinotopy stimulus provides for 

a more appropriate retinotopy baseline for comparison with orientation decoding. Taken 

together, the results of Experiments 1 and 2 suggest that there must be more orientation 

information in patterns of V1 BOLD responses than the radial bias.

Experiment 3: Stimulus Rotation Speed

A pure radial bias account makes a strong prediction about how a voxel should respond to 

various orientations – It should respond maximally to the orientation corresponding to it’s 

preferred radial axis, and its response should fall off as the orientation deviates from this 

radial preference. Figure 3A shows an example orientation-tuning curve for such a unimodal 

response function. Alternatively, other sources of voxel orientation information, such as 

from uneven sampling of orientation columns, would be expected to lead to more complex 

orientation tuning curves such as that shown in Figure 3D.

We considered how the hypothetical orientation tuning curves in the left panels of Figure 3 

would respond in the phase-encoded design used by Freeman et al. In this design, the grating 

stimulus rotates through the orientation space in a 24-second period. To simulate how the 

true tuning curves in the left panels of Figure 3 would respond in this design, we convolved 

the tuning curves with a canonical hemodynamic response function (HRF, a double gamma 

function, shown as dashed lines) for a single 24-second rotation. Figure 3B shows the 

resulting hemodynamic time course for the radial-bias-like signal, and Figure 3E shows the 

time course for the more complex tuning curve. Whereas convolving the simple, unimodal 

curve with the HRF does little to change the shape of the function (other than a shift in 

time), its effect on the more complex tuning curve is to filter out the more complex 

information. This selective loss of complex information is a necessary consequence of the 

fact that this experimental design, like all phase-encoded designs, confounds orientation and 

time. Because the HRF acts as a low-pass filter in the time domain, removing higher-

frequency information, this filtering effect will also occur in the orientation domain in the 

phase-encoded design. Consequently, this experimental design could disproportionately 

filter out orientation signals that deviate from simple, unimodal responses like the radial 

bias.

The potential loss of information due to temporal filtering can be lessened experimentally by 

simply slowing down the rotation speed of the grating. By doing so, each rotation through 

the 180° orientation domain becomes slower relative to the HRF, such that only very sharp 

or abrupt changes in the orientation tuning curve will be dampened by the HRF. For 

example, Figures 3C and 3F show the same hypothetical tuning curves convolved with the 

same HRF as before, but now with a 72-second rotation speed. Although the more complex 

response is still affected more than the unimodal response, much of the original information 

is preserved.

In Experiment 3 we replicated Freeman et al. in stimulus and analysis, but used a slower 72-

second rotation period for both the oriented grating and the retinotopy wedge. The results 

are shown in Figure 2D. Orientation decoding performance is now significantly higher than 

the retinotopy baseline for three of the four participants (p = .014, .002, .008 and .30), and at 
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the group level (p<.001). Note that this experiment utilized the original hard-edged 

retinotopy wedge, and the original retinotopy baseline. Consequently, this failure to replicate 

the original Freeman et al. result is due solely to the slower rotation speed, such that 

lowering this speed is sufficient to observe positive evidence for orientation information that 

is not driven by the radial bias. Slowing the rotation speed certainly had other effects, such 

as lowering overall decoding performance (likely because the signal of interest now lies 

more within the low-frequency fMRI noise). However, the design of the original paradigm 

renders such baseline effects immaterial, as they are effectively accounted for by the 

retinotopy baseline procedure.

Experiment 4: Estimating Orientation Tuning Curves

Whereas a pure radial bias account predicts a simple unimodal orientation-tuning curve for 

each voxel, evidence of more complex orientation tuning profiles would reject such an 

account. One approach to evaluate tuning complexity is to simply measure the tuning curves 

of individual voxels and to assess their complexity. The phase-encoding designs used in the 

previous experiments are ill suited for measuring how a voxel responds to different 

orientations, as the observed BOLD signal results from the convolution of the underlying 

orientation tuning curve and a hemodynamic response function. Without precise knowledge 

of this HRF for each voxel, however, the original response function remains elusive. 

Moreover, the use of a fast temporal-encoding paradigm could lead to a loss of information 

regarding the precise shape of the orientation-tuning profile across fine-scale variations in 

orientation space, even if the true HRF were known (cf. Fig. 3).

In Experiment 4, we avoid this problem by presenting oriented gratings in a blocked design. 

On each 16-second block a grating with random orientation was shown, and the average 

BOLD response of a voxel to each of these stimuli provides data for characterizing its 

orientation-tuning curve. Figure 4 shows examples of how individual voxels responded to 

the oriented gratings, with every data point indicating the response amplitude of that voxel 

to a single 16-s block of a particular orientation. The top row shows voxels that appear to 

have a simple, unimodal response profile. The next two rows, however, show voxels with 

preferences that appear to violate the simple unimodal response profile predicted by radial 

bias alone. The responses of individual voxels to single presentations of oriented gratings 

are noisy, but nonetheless appear to exhibit reliable tuning profiles that may be more 

complex than a simple unimodal curve.

By fitting various models to the voxel responses and assessing how well each model 

accounts for the data, we can determine how to best characterize each voxel’s orientation 

tuning profile. In order to quantify the complexity of tuning for voxels in V1 for each 

participant, we fitted a series of models to each voxel’s response. These models varied in 

complexity from having no orientation tuning to models that allowed for fairly complex 

tuning profiles (see Methods). These models included no orientation tuning (M0), tuning that 

followed a unimodal cosine function (M1) or a unimodal Von Mises function (VM) allowing 

for variable tuning widths, and tuning that allowed for bi-modality (M2) and for tri-modality 

(M3). Whereas the simple cosine and von Mises tuning curves are concordant with the 
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hypothesis that orientation information arises from a coarse-scale orientation signal such as 

radial bias, the more complex tuning curves cannot be readily explained by such an account.

To determine which model provides the best account of the orientation-tuning curves for a 

voxel’s responses to the gratings, it is necessary to consider both how well each model 

accounts for the data and how flexible each model is. Our goal was to provide a thorough 

comparison of the models, so we adopted three different approaches to assess model fit 

while taking model complexity into account (see Methods).

First, we used the AIC model comparison statistic to determine, for each voxel, which of 

these models provided the best account of the observed orientation responses. Figure 4 

shows examples of voxels that were best characterized by M1 (top), M2 (middle) and M3 

(bottom). Figure 5C shows the proportion of voxels in V1 for which each model provided 

the best fit. The simple models that predicted unimodal response profiles (M1 and VM) 

comprised about one third of the voxels in V1. With the exception of a small proportion of 

voxels that showed no orientation tuning (M0), the remaining two thirds of voxels were best 

accounted for by a more complex model, such as the two-component and three-component 

cosine models shown in middle and bottom rows of Figure 4. These results imply that a 

majority of V1 voxels exhibit orientation tuning profiles that are more complex than simple 

unimodal functions.

In addition to conducting model comparison using AIC, we performed a straightforward 

cross-validation procedure to determine how well each model was able to capture the stable 

response patterns of individual voxels. Cross validation was performed by estimating the 

parameters of each model using all but one run, and measuring the goodness of fit 

(proportion variance explained, denoted by R2) between the model and the data for the left-

out test run. With this cross-validation approach, overly complex models should lead to 

over-fitting of the data and lower R2 values, on average, than simpler models with the 

appropriate number of parameters.

Figure 5A shows a scatterplot comparing goodness of fit values for the single-cosine model 

(abscissa) and the double-cosine model (ordinate). Data points indicate the cross-validated 

performance of every individual voxel; given that we were fitting the response amplitude of 

individual voxels to single-block presentations of orientation, relatively low R2 values were 

to be expected. Nevertheless, highly consistent effects emerge from this analysis. First, all 

data points lie above zero for the single-cosine model, indicating that these voxels within the 

V1 ROI exhibit some orientation information. Second, the majority of data points (95%) lie 

above the line of unity, indicating that for these voxels the double-cosine model provides a 

better characterization of the orientation tuning functions than the single-cosine model. Our 

cross-validation procedure ensures that this advantage of the more complex double-cosine 

model is robust and captures replicable patterns in the data.

In Figure 5B, the scatterplot compares the performance of the two-cosine model (abscissa) 

and the three-cosine model (ordinate). The cross-validation results suggest that about half 

(51%) of the voxels in V1 are accounted for better with the three-component than with the 

two-component model. An interesting trend is prevalent for both the one vs. two and two vs. 
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three component comparisons: voxels with lower overall cross-validation performance were 

better explained by the simpler model. In contrast, voxels with higher overall performance 

performed better in cross validation with the more complex model. These results imply that 

the ability to detect these more subtle components, or variations in orientation preference, 

depends upon the quality of fMRI data that one can obtain for responses to individual 

orientations.

Finally, we used each model in a forward-encoding approach (Brouwer and Heeger, 2009; 

Kay et al., 2008) to assess how well the models accounted for the multivariate response 

patterns in V1. For a given model (e.g., M1), the model was fitted to each voxel on a subset 

of the data, and these fitted models were used to predict the viewed orientations given voxel 

activity patterns from the left-out data. Figure 5D shows average decoding errors for each 

model. Overall, the best-performing model is M2, and the decoding error for M2 is 

significantly lower than for the simpler unimodal models M1 (t(3) = 3.56, p<.05) and VM 

(t(3) = 5.34, p<.05). This result is in line with the individual voxel analyses, suggesting that 

a simple unimodal model of voxel responses is not sufficiently complex to accurately 

capture all of the information in the data patterns. It should be noted that for this multivariate 

analysis, all voxels were forced to adopt the same model type. For this reason, the M3 model 

may have performed more poorly as some proportion of voxels would been better described 

by a simpler model (M1 or M2), counteracting the potential benefits of applying the M3 

model to the subset of voxels with more complex tuning properties.

The above analyses take model complexity into account, which is important to ensure that 

the conclusions are not biased toward overly simple or overly complex tuning curves. In 

addition, we conducted simulations to ensure that this goal was met, by assessing how well 

each approach could identify the true model that was used to generate a simulated dataset. 

First, each model was used as a data-generating model: orientation responses were generated 

from these models with randomly chosen tuning parameters (e.g., randomized cosine phase 

preference), and a level of additive Gaussian noise (adjusted to match the fMRI data) was 

added to the simulated responses. For each simulated data set, each of the models was fitted 

and compared using the AIC approach (Fig. 6A), the individual voxel cross-validation 

procedure (Fig. 6B), and model comparison using the forward-encoding approach (Fig. 6C). 

Our simulations revealed that each of these approaches could successfully differentiate the 

data-generating model to some extent, but with varying degrees of success. As expected, 

AIC provided the most accurate approach. AIC is specifically designed to identify the 

correct model, whereas cross-validation approaches are more general tools that aim to 

identify the model that produces the best cross-validation performance. Nevertheless, each 

approach has merits, and all three approaches converge on a common set of results: A large 

proportion of voxels in V1 have more complex orientation tuning curves than can be 

explained by a unimodal preference for radial orientations.

The analyses reported above focused on voxels in V1 that corresponded strongly to the 

retinotopic region of space occupied by the stimulus. As an addition to this ROI-based 

approach, Figure 7 shows the distribution of voxels throughout the early visual cortex that 

are best fit by simple and complex models, where the preferred model for each voxel was 

chosen using AIC. The models in this figure have been collapsed across voxels indicating a 
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unimodal preference (M1 or VM, red), and voxels with more complex tuning profiles (M2 or 

M3, yellow). Importantly, voxels with more complex tuning curves appear to be distributed 

throughout V1, and are also present in extrastriate visual areas V2 and V3.

Discussion

Our goal was to elucidate why previous studies have led to conflicting reports regarding 

whether or not radial bias is necessary for orientation decoding. Across experiments, we 

successfully replicated the well documented finding that one source of orientation 

information in the fMRI signal arises from a radial bias (Ling et al., 2015; Mannion et al., 

2010; Sasaki et al., 2006). We were also able to replicate the pattern of results initially 

reported by Freeman et al. (2011), finding that no orientation information appeared to 

remain in the residual fMRI signal after applying their analytic procedure to remove radial 

bias. However, we found that Freeman et al.’s procedure led to inflated estimates of chance-

level performance in the retinotopic mapping experiment, because of residual information 

present in the higher-order harmonics of the fMRI time series. When this harmonic 

information was properly removed, either mathematically (Exp. 1) or experimentally by 

smoothing the contrast profile of the retinotopy wedge (Exp. 2), we found that significant 

orientation information remained present in V1 following the removal of radial bias. In 

addition, we demonstrated that the rapid nature of the temporal phase-encoding design used 

by Freeman et al. dampened the ability to detect orientation signals that are independent of 

coarse-scale radial bias. We mitigated these temporal filtering artifacts in Experiment 3 by 

slowing the rotation period of the mapping stimuli, which again led to a failure to replicate. 

Finally in Experiment 4, we used a standard block design that avoided these potential 

limitations, and found that many voxels exhibit orientation preferences that are too complex 

to be explained by a radial bias alone. Taken together, these results provide compelling 

evidence to refute the claim that radial bias is necessary for orientation decoding.

Our study demonstrates the persistence of orientation information in fMRI signals from V1, 

independent of radial bias. Such orientation information could arise from both local 

variability in orientation preference at a fine spatial scale (Alink et al., 2013; Kamitani and 

Tong, 2005; Swisher et al., 2010; Yacoub et al., 2008) and from other types of coarse-scale 

bias (Freeman et al., 2013; Furmanski and Engel, 2000; Sun et al., 2013). Regarding other 

potential sources of coarse-scale bias, a recent study reported a biased preference for vertical 

orientations prevalent near the foveal representation of V1 (Freeman et al., 2013). Although 

such a bias may have contributed to our decoding results to some extent, our results in 

Experiment 4 indicate that such coarse biases are not the only sources. We found that voxels 

with more than one peak orientation preference are distributed throughout the visual cortex 

(Fig. 7), ruling out explanations such as a combination of radial bias and vertical bias around 

the foveal representation. Another coarse-scale bias has recently been suggested to arise 

from artifacts at the borders of an oriented grating, based on an analysis of simulated V1 

responses to orientation stimuli (Carlson, 2014). Although these simulation results suggest 

the possibility of such a bias contributing to orientation decoding, we find that significant 

orientation information is present throughout each visual area, rather than being isolated to 

either the foveal or the peripheral edges of the stimulus. Thus, these potential sources of 
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coarse-scale bias do not provide an adequate account of the complexity of voxel orientation-

tuning functions we observe throughout the visual cortex.

Since the initial finding that orientation signals can be decoded from the human visual 

cortex (Kamitani and Tong, 2005), there has been considerable interest in isolating the 

sources of this information. Recent proliferation of research in this area has uncovered the 

potential presence of multiple sources of information, though the extent to which each of 

these sources contributes to orientation decoding remains to be fully determined. The 

presence of orientation columns in non-human primates has been well-documented (Blasdel, 

1992; Hubel and Wiesel, 1974; Hubel et al., 1978), and it has been show that high-resolution 

fMRI is capability of isolating these columns in animals and humans (Moon et al., 2007; 

Yacoub et al., 2008). Consequently, we expect that a portion of the orientation-selective 

fMRI signal should reflect the relationship between the physiological BOLD responses 

measured at coarse scales and the weighted sum of preferred orientations at finer columnar 

scales.

Phase-encoded designs are the standard paradigm for traditional retinotopic mapping, and 

they provide a powerful method for identifying the peak tuning preference of individual 

voxels (Engel, 2012). However, our results highlight important caveats to consider when 

using phase-encoded designs for the more ambitious goal of characterizing the tuning 

properties of voxels beyond their peak preferences. We show that by virtue of confounding 

the stimulus variable (e.g., orientation) with time, phase-encoded designs are sensitive to 1) 

Temporal artifacts that may arise from either the nature of the stimulus or the shape of the 

HRF, and 2) Filtering effects that result from the low-pass characteristics of the HRF. The 

latter problem is especially troublesome when the goal of a study is to characterize the 

complexity of a voxel’s response to different stimulus values, as the HRF will act to 

selectively remove the complex signals while retaining the simple ones. Here, for example, 

the effect of this filtering can be to smooth orientation-tuning curves, effectively removing 

signals such as might result from more fine-scale sources, such as orientation columns, 

while retaining gross information like the radial bias. The use of a slower temporal paradigm 

can help alleviate the effects of low-pass filtering, but with the associated cost of obtaining 

fewer cycles of data that is more contaminated by physiological noise.

Temporal-encoding paradigms have also grown in popularity in recent studies that use 

population receptive field (PRF) mapping to characterize the retinotopic preferences of 

individual voxels (e.g., Dumoulin and Wandell, 2008; Lee et al., 2013; Thirion et al., 2006; 

Zuiderbaan et al., 2012). Presumably, retinotopic receptive fields are simpler than 

orientation tuning curves at the voxel level. Nevertheless, it is possible that the use of rapid 

temporal-encoded designs could potentially mask or blur some fine-scale aspects of PRF 

model estimates. As the quantitative methods for mapping such receptive fields are 

developed to allow for more complexity in their shape (e.g., Greene et al., 2014; Lee et al., 

2013), the way in which the experimental design acts to limit the data should also be 

considered.

In conclusion, our results suggest that there exist multiple sources of orientation information 

in the BOLD signal, even at standard fMRI resolutions. Characterizing these various sources 
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of information is important, and may provide future insights into human orientation 

processing. In many fMRI studies, however, the goal is simply to measure and quantify the 

amount of orientation information present in the BOLD signal, regardless of its sources. 

Examples include studies of how attention modulates visual information processing (Jehee 

et al., 2011; Scolari et al., 2012), how perceptual learning affects stimulus representations 

(Jehee et al., 2012; Shibata et al., 2011), how working memory relies on early sensory 

systems (Ester et al., 2009; Harrison and Tong, 2009; Pratte and Tong, 2014; Serences et al., 

2009), and those that examine the neural correlates of binocular rivalry and visual awareness 

(Haynes and Rees, 2005). In these and many other studies, multivariate pattern analysis 

techniques provide a powerful framework for quantifying the presence of information, by 

pooling all of the information available in the BOLD activity patterns across a broad range 

of spatial scales.
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Highlights

• Fast phase-encoding designs can distort fMRI measures of voxel tuning 

properties

• Such designs led to recent claims that fMRI orientation signals depend on radial 

bias

• With corrected designs, we find reliable orientation responses not due to radial 

bias
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Figure 1. 
Experimental stimuli and the resulting BOLD responses. Top row shows examples of the 

retinotopy wedge used in Experiments 1 and 3 (A), the oriented grating used in Experiments 

1–3 (B) and the smoothed retinotopy wedge used in Experiment 2 (C). The middle row 

shows power spectrums of the BOLD signal in response to the wedge stimulus (D), oriented 

grating (E) and smoothed wedge (F), averaged over participants. The bottom row shows the 

corresponding BOLD signals from a representative participant to the wedge (G), grating (H) 
and smoothed wedge stimuli (I). The responses of individual voxels in V1 were phase 

locked to their retinotopic phase preference and averaged. The line shows the best-fitting 

cosine function to the data in each panel.
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Figure 2. 
Decoding results from Experiments 1–3. The leftmost bar in each panel shows decoding 

performance for the original orientation data. The middle bar shows decoding performance 

after removal of the radial bias. The third bar shows the retinotopy baseline, which 

represents the amount of residual retinotopy information left over after removal of the 

retinotopy signal. If orientation decoding after removing the radial bias is higher than this 

retinotopy baseline, then there must be orientation information in the signal that is not due to 

radial bias. Error bars denote standard errors for orientation decoding with and without 

radial bias. For the retinotopy baseline, the error bars denote the .025 and .975 percentiles of 

the simulated distribution, averaged across participants.
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Figure 3. 
Predicted effects of the hemodynamic response function on fMRI orientation signals. A) 
Hypothetical tuning curve that resembles a radial-bias like signal. B) The result of 

convolving the tuning curve in (A) with a hemodynamic response function (dashed curves), 

in which the oriented grating rotates through time over a 24 second period as in Freeman et 

al. and our Experiments 1 and 2. C) The result of convolving the hypothetical curve in (A) 

with the same HRF, but with a slower rotation period of 72 seconds. D) A hypothetical 

tuning curve that has a more complex signal, such as might reflect uneven sampling from 

the cortical columnar structure. E) In the 24-second design, convolution with the HRF filters 

out the complex aspects of the signal. F) Slowing the rotation period to 72 seconds greatly 

mitigates the filtering effect.
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Figure 4. 
Examples of tuning curves for individual voxels. Each point depicts the BOLD response of 

an individual voxel to an individual block in Experiment 4. Lines denote the best-fitting 

single-cosine (blue), two-cosine (red), three-cosine (orange) and von Mises (magenta) 

models overlaid as lines. The von Mises curves have been shifted up slightly so that they are 

not obscured by other curves. Top, middle and bottom rows depict voxels that were fit best 

by the single, double and triple-cosine complexity, respectively, where fit was assessed 

using AIC.

Pratte et al. Page 25

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Experiment 4 modeling results. A) Cross-validation performance (R2) for model M2 plotted 

as a function of performance for model M1 for each V1 voxel. Colors indicate whether 

models M1 (red) or M2 (gray) exhibited higher cross-validation performance. Color intensity 

indicates density of overlapping points. B) Cross-validation performance for model M3 

plotted as a function of model M2. Colors indicate whether models M2 (red) or M3 (gray) 

exhibited higher cross-validation performance. C) Proportion of voxels in V1 for which each 

of the models provided the best fit, as measured with AIC (error bars denote standard errors 

across participants). D) Leave-one-run-out decoding accuracy (RMSE), using each model as 

a forward-encoding model. Note that model M0 cannot be used for decoding as it predicts no 

orientation tuning, and is therefore omitted.
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Figure 6. 
Results of simulation to evaluate the efficacy of identifying which model produced the 

simulated data, for model selection using AIC (A), cross-validation measuring proportion of 

variance explained (B), and cross-validated measures of orientation-decoding error (C).
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Figure 7. 
Winning model for each voxel as measured with AIC, projected onto the flattened surface 

representation of early visual cortex for each of the four participants. The models have been 

collapsed into groups that reflect a gross orientation preference like the radial bias (red; M1 

or VM) and those that have a more complex orientation-tuning curve (yellow; M2 or M3).
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