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Abstract

In spoken word perception, voice specificity effects are well-documented: When people hear 

repeated words in some task, performance is generally better when repeated items are presented in 

their originally heard voices, relative to changed voices. A key theoretical question about voice 

specificity effects concerns their time-course: Some studies suggest that episodic traces exert their 

influence late in lexical processing (the time-course hypothesis; McLennan & Luce, 2005), 

whereas others suggest that episodic traces influence immediate, online processing. We report two 

eye-tracking studies investigating the time-course of voice-specific priming within and across 

cognitive tasks. In Experiment 1, participants performed modified lexical decision or semantic 

classification to words spoken by four speakers. The tasks required participants to click a red “×” 

or a blue “+” located randomly within separate visual half-fields, necessitating trial-by-trial visual 

search with consistent half-field response mapping. After a break, participants completed a second 

block with new and repeated items, half spoken in changed voices. Voice effects were robust very 

early, appearing in saccade initiation times. Experiment 2 replicated this pattern while changing 

tasks across blocks, ruling out a response priming account. In the General Discussion, we address 

the time-course hypothesis, focusing on the challenge it presents for empirical disconfirmation, 

and highlighting the broad importance of indexical effects, beyond studies of priming.

Spoken word recognition is a complex process, involving the appreciation of highly variable 

speech signals as discrete, meaningful units. Despite superficial variations, including 

differences in talker identity, amplitude, speaking rate, pitch, and other idiosyncratic details 

(all commonly referred to as indexical variations; Abercrombie 1967; Pisoni, 1993), speech 

recognition is typically robust. Listeners fluently recognize words and discourse, with no 

apparent hindrance from surface variation. But what happens to the idiosyncratic details that 

accompany spoken words? Are they stored in memory as integral components of those 

words, do they fade away, or are they stored as “separate,” non-phonetic information? The 

answers to such questions are central for evaluating theories of lexical representation and 

access. In fact, beyond spoken word perception, many theories in perception, memory and 

categorization rely critically on the general premise of “content addressable memory.” In 
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broad terms, there are two ways that perceptual stimuli may contact stored information in 

the brain. One is based on pointers, or addresses: When hearing a spoken word, seeing a 

face, etc., “address addressable” systems use that input to help locate the appropriate stored, 

abstract representation. In contrast, in content addressable memory (as in connectionist 

theories; Bechtel & Abrahamsen, 2002; Hinton & Anderson, 1981), information is retrieved 

“directly,” by using stimulus features as retrieval cues to activate stored knowledge. Thus, 

partial information can activate perception or recall of entire stimulus assemblies. A key 

advantage in content-addressable systems is noise tolerance: “Address addressable” systems 

function by resolving noise to isolate stable cues. Content-addressable systems can use 

“noise” (e.g., voice-specific features) to directly access prior memories.

There are certain behavioral domains that naturally encourage content-addressable accounts. 

For example, in face perception, we are able to simultaneously classify faces into categories 

such as “man” or “woman,” estimate ages, appreciate ethnic variations, etc. But we also 

fluently recognize friends and family, despite variations in appearances or contexts. 

Therefore, theories of face perception are often geared toward explaining how variable 

inputs activate specific stored knowledge (e.g., Lewis, 2004; Valentine, 1991), allowing us 

to recognize personal acquaintances. Other domains, however, encourage more abstract 

accounts. For example, reading is naturally characterized as a combinatorial process, 

wherein (in English) 26 letters are recombined into thousands of words. As such, theoretical 

accounts tend to treat reading as a constructive process, such that small units are rapidly 

combined to “unlock” stored knowledge. The foregoing contrast, between pointer systems 

and content-addressable memory, has long characterized a theoretical debate in speech 

perception. Indeed, the central theoretical question in speech perception is how listeners 

cope with multiple, overlapping cues to segment and word identity (e.g., Apfelbaum, 

Bullock-Rest, Rhone, Jongman & McMurray, 2014). The idiosyncratic signal changes 

introduced by different speakers can be viewed either as adding yet more noise and 

complexity to speech processing (e.g., Neary, 1997), or they can be viewed as beneficial 

information that constrains phonetic interpretations (e.g., McMurray & Jongman, 2011; 

Smits, 2001). The adjudication between these divergent views has long been one of main 

goals in theories of speech (and spoken word) perception.

By necessity, all theories of word perception posit some form of abstraction, suggesting that 

speech input activates sublexical units, codes that allow content-addressable access to 

lexical knowledge (Luce & Pisoni, 1998; Norris, 1994; Stevens, 2002). By most accounts, 

although indexical variations are clearly noticed (and used) by the listener, once those 

details have been exploited for speech decoding, they have no linguistic role and are likely 

forgotten (e.g., Lahiri & Marslen-Wilson, 1991; Marslen-Wilson & Warren, 1994). 

Abundant evidence (and common intuition) supports this view: After a conversation, people 

typically remember the messages that were shared, with relatively little memory for precise 

wording or sound patterns. By its very nature, language requires a person to fluently 

recombine small sets of speech units (e.g., segments, syllables, words) into new, meaningful 

strings – such behavior requires abstract representations at multiple levels (e.g., Chomsky, 

1995). At the same time, however, people learn the vocal habits of their friends, speech 

imitation is common, and perceptual learning occurs for accented or idiosyncratic speech.
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Intuitively, both linguistic and indexical information affect the experience of language. We 

hear messages, and we hear people. Clearly, the linguistic dimension is primary: It carries 

far more information (in bits per second), varies far more quickly over time, and constitutes 

the reason for speaking in the first place. The indexical dimension is inherently less 

important, and provides relatively little novel information from moment to moment in 

normal speech (although emotional tones may change relatively quickly). Nevertheless, 

despite their asymmetric psychological importance, both dimensions of speech are 

interwoven into the signal, and neither can be attended in the absence of the other. For this 

reason, some theories suggest that words and voices (broadly speaking) are encoded in 

memory as holistic exemplar representations, with the potential to facilitate later processing 

of perceptually similar words (e.g., Goldinger, 1996). Although such exemplar views are 

fairly extreme, other models propose that voice-specific information helps constrain 

immediate phonetic processing. For example, in the C-CuRE (Computing Cues Relative to 

Expectations) model, speech perception entails the simultaneous coding of multiple, 

overlapping spectral cues (Apfelbaum et al., 2014; McMurray & Jongman, 2011). Although 

some raw cues are reliable, C-CuRE optimizes processing by computing cue values in 

relative terms, such as appreciating that an F0 cue is high for one speaker, but low for 

another, and changing the evidence for voicing accordingly. Thus, voice-specific 

information is critically involved in “abstract” speech classification, from the earliest 

moments of perception. As the level of general principles, a theory such as C-CuRE offers 

an approach to content-addressable memory, and could (for example) be used to explain 

how a familiar melody can be recognized when played on a strange instrument.

Empirically, it is well-known that speaker variability across words creates processing 

“costs” for listeners. These are observed in perception1 in young adults (Mullennix, Pisoni, 

& Martin 1989; Magnuson & Nusbaum, 2007; Nusbaum & Morin, 1992), hearing-impaired 

adults (Kirk, Pisoni, & Miyamoto, 1997), elderly adults (Sommers, 1996) and preschool 

children (Ryalls & Pisoni, 1997). Similar costs are observed in word learning: Explicit 

memory is reduced for word lists presented in multiple voices (Goldinger, Pisoni, & Logan, 

1991; Martin, Mullennix, Pisoni, & Summers, 1989). The evidence suggests that attention is 

captured by abrupt speaker changes, perhaps because they force the listener to “recalibrate” 

their internal models for deriving the segmental content of words (Apfelbaum et al., 2014; 

Mullennix et al., 1989). At the same time, word-to-word speaker variations are also encoded 

into memory. Word perception typically improves with repeated presentations (the 

repetition effect; Jacoby & Brooks, 1984; Jacoby & Dallas, 1981; Jacoby & Hayman, 1987). 

When idiosyncratic surface details such as voice are preserved, this facilitation is enhanced 

(e.g., Church & Schacter, 1994; Schacter & Church, 1992).2

Across many studies, different-voice repetitions yield performance decrements, relative to 

same-speaker repetitions (Bradlow, Nygaard, & Pisoni, 1999; Craik & Kirsner, 1974; 

Fujimoto, 2003; Goh, 2005; Goldinger, 1996, 1998; Palmeri et al., 1993; Sheffert, 1998a; 

1Note, however, that young children (infants through preschool) benefit from high-talker-variability in word learning (Richtmeier, 
Gerken, Goffman, & Hogan, 2009; Rost & McMurray, 2009), and that adults learning a second language also benefit from high 
variability (Bradlow et al., 1996; Cloppers & Pisoni, 2004; Lively et al., 1993).
2As reviewed by Goldinger (1996), such specificity effects are quite common. Although we focus on voice-specific priming, similar 
effects arise in printed word perception (font-specific priming) and music perception (e.g., Creel & Tumlin, 2012).
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1998b; Yonan & Sommers, 2000). Such voice specificity effects arise in both perceptual and 

memorial tasks. For example, Goldinger (1996) found long-lasting voice effects in explicit 

and implicit memory. And, by measuring perceptual similarity (using MDS) among the 

voices, Goldinger found that priming was highly specific: As the similarity between the 

study and test voices increased, so did recognition accuracy (see also Goh, 2005).

Beyond “off-line” memory measures, voice effects are occasionally (but not always) 

observed in perceptual RTs (e.g., Meehan & Pilotti, 1996), suggesting that episodic traces of 

encoded words affect the online perception of test words. For example, Goldinger (1998) 

found that shadowing RTs were shorter for same-voice (SV) word repetitions, relative to 

different-voice (DV) repetitions. Moreover, while shadowing, participants spontaneously 

imitated words they had previously encountered, even if the last encounter was several days 

earlier (Goldinger & Azuma, 2004), a finding that suggests great fidelity in voice-specific 

memory for prior tokens. These results were modeled with MINERVA 2 (Hintzman, 1986, 

1988), an exemplar model in which each encountered word creates a new memory trace. 

The model successfully predicted both shadowing RTs and degrees of imitation, and was 

sensitive to word frequency and recency, as were participants. Episodic (or exemplar) 

theories of word perception have proliferated (e.g., Johnson, 2006; Pierrehumbert, 2001; 

Walsh, Möbius, Wade, & Schütze, 2010) because – like exemplar models of perceptual 

classification – they are able to explain “abstract” behavior while retaining sensitivity to 

specific experiences. The same dual benefits arise in relative coding models, such as C-

CuRE (McMurray & Jongman, 2011), which derive abstract codes by using specific, voice-

level cues. (Although C-CuRE has not been tested as a model for specificity effects, it 

appears to be relatively straightforward extension.) Although assumptions differ across 

models, they generally all assume that segmental, semantic, and indexical information are 

encoded together. Presenting that same stimulus complex later will (potentially) activate its 

prior memory trace, affecting performance (although, as noted by Orfanidou, Davis, Ford & 

Marslen-Wilson, 2011, the locus of such effects may be response-based, rather than 

perceptual).

The Time-Course Hypothesis

Based on voice specificity effects, many theories of word perception now assume that both 

abstract and episodic information can affect processing. A theoretically critical question, 

however, regards the time-course of specificity effects in the flow of lexical processing. The 

question is whether episodic memory traces affect early perceptual stages, or whether 

abstract representations truly “drive” perceptual processing. (In this context, it is important 

to note that all models of word perception – whether episodic or abstract – can easily 

incorporate structures such as phonemes, which could theoretically dominate early 

processing; e.g., Wade et al., 2010.) McLennan, Luce, and colleagues suggest that voice 

specificity effects arise late in processing, after abstract sublexical and lexical units have 

already been perceptually resolved, or nearly resolved (Luce & Lyons, 1998; Krestar & 

McLennan, 2013; McLennan & Luce, 2005), a prediction called the time-course hypothesis. 

Conversely, others have suggested that episodes influence the earliest moments of 

perception (e.g., Creel, Aslin, & Tanenhaus, 2008; Goldinger, 1998).
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To examine the time-course hypothesis, McLennan and Luce (2005) manipulated the 

relative ease of differentiation in a lexical decision task (by manipulating the phonotactic 

probabilities of the nonwords), and response delays in a shadowing task. They predicted that 

difficult lexical decisions and delayed shadowing would yield stronger specificity effects, 

owing to extended processing times. Indeed, when lexical decisions were difficult, voice 

specificity effects emerged. When the task was easier, only word repetition (priming) effects 

were observed. Additionally, voice effects only emerged in delayed shadowing RTs. This is 

opposite from the pattern observed by Goldinger (1998), although for several 

methodological reasons, it is difficult to compare across studies, which involved different 

experimental tasks, and included different numbers of words and voices. Further, one 

indexical variation used by McLennan and Luce (2005) was a manipulation of speaking rate, 

which may interact with voice-specific priming (see General Discussion). Given these 

methodological differences, the studies cannot be directly compared, making it difficult to 

appreciate the time-course of voice specificity effects.

A strength of the time-course hypothesis is its basis in a well-defined speech processing 

model, adaptive resonance theory (ART, Grossberg, 1980; 1999; 2003). According to ART 

(specifically, variants called ARTPHONE and ARTWORD; Grossberg, Boardman & 

Cohen, 1997; Grossberg & Myers, 2000), conscious speech perception is an emergent 

property of resonant feed-forward/feedback loops, acting upon speech units of all grain 

sizes. In brief, processing in ART spreads upward, as smaller perceptual units activate larger 

units, with feedback loops between levels. Initially, feature input activates items in working 

memory, which then activate list chunks from long-term memory. List chunks reflect prior 

learning, and correspond to any number of feature combinations (e.g., phonemes, syllables, 

words). Once list chunks are activated, items continue to feed activation upward via synaptic 

connections, and input-consistent chunks return activation in a self-perpetuating feedback 

loop (a resonance). This resonance binds sensory input into a coherent gestalt, allowing 

attention to be directed to the percept and an episodic memory trace to be formed (for 

reviews of ART, as it pertains to speech perception, see Goldinger & Azuma, 2003; 

Grossberg, 2003).

Of particular relevance, according to ART, high-frequency items in memory establish 

resonance quickly and efficiently when activated, relative to lower-frequency items. 

McLennan and Luce (2005) cited this ART principle to predict late-arriving specificity 

effects. By their account, frequently encountered items (e.g., phonemes, biphones, syllables, 

common words) are functionally abstract, whereas combinations of those items and 

indexical features are not. By definition, abstract features are far more common than any 

idiosyncratic variations (e.g., you hear the word “waffle” more often than you hear “waffle” 

in any particular voice). Therefore, sublexical and lexical information will achieve 

resonance sooner than voice-specific information. If voice specificity effects arise, it should 

be when performance is relatively slow, consistent with McLennan and Luce’s (2005) 

findings.

Although ART predicts that high-frequency elements will resonate more quickly than rare 

elements, voice specificity effects typically arise after recent presentation. (This is true for 

specificity effects that arise in reading, music perception, category learning, and other 
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domains.) In many models, frequency and recency are nearly isomorphic, and repetition 

effects often overpower frequency effects (e.g., Scarborough, Cortese, & Scarborough, 

1977). Indeed, low-frequency words elicit more repetition priming, relative to high-

frequency words, and also larger voice specificity effects (Goldinger, 1998). In order for 

ART to explain priming, word perception must create memory traces, capable of enhancing 

resonance upon repetition. Thus, it is not entirely clear whether ART actually predicts the 

time-course hypothesis for recently encountered tokens: The recency of the whole stimulus 

(voice included) may overpower the frequency of its component parts, depending upon 

parameter settings in the model. As it happens, the empirical literature is somewhat mixed as 

well: McLennan (2007, p. 68) noted that “few studies offer support for the involvement of 

episodic representations during the immediate on-line perception of spoken language (e.g., 

by reporting reaction times).” Shortly thereafter, Creel, Aslin, and Tanenhaus (2008) 

observed early voice-specificity effects using the visual world paradigm.

Eye movements are an excellent medium for examining the time course of lexical access, 

and many studies show a tight correspondence between speech processing and eye 

movements. For example, Allopenna, Magnuson, and Tanenhaus (1998) found that eye 

fixations reveal phonological competition during spoken word comprehension. Similarly, 

Dahan et al. (2001) observed word frequency effects within the first moments of perception; 

when high- and low-frequency cohort competitors compete with a target, eye movements are 

preferentially drawn to the high-frequency competitor (see also Dahan & Tanenhaus, 2004; 

Magnuson, Tanenhaus, Aslin, & Dahan, 2003, for related findings). Creel et al. (2008) 

observed voice specificity effects within a few hundred milliseconds of target word onset. In 

their first experiment, participants viewed four pictures on a computer screen, two of which 

were onset competitors (e.g., cows and couch). Competitors were repeated 20 times, and 

were either produced by the same speaker (e.g., female-cows and female-couch) or by 

different speakers (e.g., female-cows and male-couch). After repeated exposures, 

participants’ initial eye movements to the competitor object decreased in different-voice 

pairs, relative to same-voice pairs, suggesting that participants encoded the voices and 

words, facilitating later perception. This effect emerged early in processing, before word 

offset. In a second experiment, Creel et al. replicated this pattern for novel words, although 

with a slightly longer time-course.

The Present Study

Although the results from Creel et al. (2008) appear to contradict the time-course 

hypothesis, there are methodological factors that complicate interpretation. Perhaps most 

salient, the sheer number of word-voice repetitions used by Creel et al. may have “forced” 

their observed effect. In the visual world paradigm, icons are presented approximately 500 

ms prior to speech onset: Given such intense training, participants may have learned to 

anticipate voices for certain images, allowing eye-movements to be triggered by raw 

acoustic cues, such as pitch or timbre, irrespective of phonetic processing. (Goldinger, 1998, 

also observed stronger voice specificity effects when word-voice pairs had been encoded 

multiple times.) From a theoretical perspective, we must emphasize the “stakes” of the 

current question. According to numerous accounts, whether they are pure exemplar theories 

(e.g., Goldinger, 1998; Wade et al., 2010) or relative coding theories (e.g., Apfelbaum et al., 
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2014; McMurray & Jongman, 2011), the essential function of indexical information is to 

provide early constraints on speech processing. That is, voice information (whether activated 

from stored exemplars, or coded directly from the signal) shapes ongoing perception, 

leading to criterion shifts, faster processing, spontaneous imitation, etc. In contrast, the time-

course hypothesis makes the directly opposite claim, such that almost all speech processing 

is accomplished by activating stable codes in memory, and voice-specific information is 

only involved as a late-arriving constraint of last resort. The evidence in favor of this latter 

view comes from repeated findings that voice-specific priming effects occur mainly when 

people respond relatively slowly (e.g., in a lexical decision task). Given its theoretically 

incisive nature, the time-course hypothesis requires further study.

In the present study, we examined eye-movements to assess the time-course of voice 

specificity effects, while reducing the disparity between the studies by McLennan & Luce 

(2005) and Creel et al. (2008). We developed a novel two-alternative classification method, 

which we applied to both lexical decision and semantic classification. The method combines 

spoken word classification (such as word/nonword) with simple visual search (a schematic 

trial is shown in Figure 1). In each trial, the participant first gazed at a central fixation cross. 

Once gaze was maintained for two seconds, the cross vanished and two things happened 

simultaneously: A spoken word (or nonword) was played over headphones, and two target 

objects (a red “×” and a blue “+”) appeared on the screen. Depending upon condition, these 

symbols represented different response options, such as word versus nonword. The symbols 

appeared at random locations across trials, but were constrained to always appear in the 

same visual half-field (e.g., the red “×” would always appear on the left side of the screen), 

at least 8 degrees (in visual angle) from central fixation. In this manner, the task was similar 

to standard classification with responses mapped to left- and right-hand buttons. The 

participant’s task was to quickly make a decision (e.g., word/nonword), and indicate that 

decision by finding and mouse-clicking the corresponding symbol. The task was conducted 

in two blocks per experiment, a “study” block that introduced the word-voice pairings and a 

“test” block that intermixed same- and different-voice repetitions (along with new words, 

used to estimate priming).

One advantage of the current method is that it afforded analysis of voice specificity effects 

at multiple points in time, including saccade initiation, target location with the eyes, and the 

eventual mouse-click. Testing saccade initiation, in particular, allowed us to assess whether 

voice specificity affects early word perception. In keeping with the spirit of McLennan and 

Luce (2005), we used low- and high-frequency words, allowing a natural division of faster 

and slower trials. (For reasons we address in the General Discussion, we did not manipulate 

task difficulty by changing the nonwords.) Manipulating word frequency also incorporated a 

variable that we considered likely to “work,” allowing method validation, which was 

important given its novelty. (We also conducted two small-scale experiments, using 

keyboards as the response mechanism, reported in Appendix A. These experiments verify 

that our new procedure produces similar behavioral patterns, but with faster RTs for the 

time-to-initiate measure, as described below.) We report two experiments on the time-course 

and generality of voice-specificity effects: In Experiment 1, participants completed 

consecutive blocks of the same task (either lexical decision or semantic classification), 
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allowing assessment of within-task priming. Because such within-task priming may be 

response-based, rather than perceptual (Orfanidou et al., 2011), participants in Experiment 2 

completed both tasks (in counterbalanced order), allowing assessment of cross-task, 

perceptual priming.

Experiment 1

Experiment 1 assessed the time-course of voice specificity effects in two tasks, lexical 

decision (LD) and semantic classification (SC). To examine the time-course, we used three 

different moments in an eye-tracking task, the initial saccade off of central fixation 

(indicating a “word/nonword” decision), fixation of the target icon, and the final mouse-

click. There were several questions of interest: First was whether we could observe voice 

effects in the earliest measure, when participants first moved their eyes toward the left or 

right. Second was whether voice effects would become larger as the dependent measures 

were extended in time. Third was whether (at each tested interval) the observed voice effects 

would be related to overall RTs. The time-course hypothesis predicts that slower trials will 

show larger voice effects. If voice effects are mainly observed in the later-arriving 

dependent measures, or if they are positively correlated with RTs within measures, the time-

course hypothesis would appear to be supported.3 Alternatively, if episodic traces affect 

perception from its earliest moments, we should observe voice effects in the faster 

dependent measures, and they should not necessarily require slower processing.

Method

Participants—Ninety-three Arizona State University students participated for partial 

course credit; all were native English speakers with no known hearing deficits and normal, 

or corrected-to-normal, vision. Four participants were dropped for having excessive error 

rates (as described below), leaving 48 (31 female, mean age 19.6 years) participants 

randomly assigned to lexical decision (LD) and 41 (27 female, mean age 20.1 years) 

assigned to semantic classification (SC).

Stimuli—Four speakers (two male, two female) recorded a list of 220 words (110 high-

frequency, HF; 110 low-frequency, LF) and 80 nonwords (NW; see Table 1 for stimulus 

characteristics). Among the words, 140 were selected for use in the SC condition; 70 

represented items larger than a toaster, and 70 represented items smaller than a toaster (with 

35 HF and LF words within each set). The remaining 80 words (and nonwords) were used in 

the LD condition. For stimulus recording, words were spoken at a comfortable speaking 

rate, and nonword pronunciation was standardized by having the speakers shadow a 

recording of the experimenter pronouncing the items. The average word duration was 616 

ms, with no difference based on lexical variables. HF and LF words were 611 and 621 ms, 

respectively, t(219) = 0.43, ns. Nonwords were longer (708 ms), but were not compared to 

words in any analyses. Among the four speakers, there were small differences in average 

speaking rates per item: Collapsing across words and nonwords, the male speakers had 

3As noted, the time-course hypothesis predicts that voice effects should increase as RTs increase. Although this is a valid theoretical 
prediction, we demonstrate in the General Discussion that such an effect is mathematically inevitable, regardless of hypothesized 
perceptual mechanisms.
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average rates of 633 and 651 ms, respectively. The female speakers had average rates of 599 

and 618 ms, respectively. In all experiments, all recorded tokens were used equally often as 

“same” trials, and were used equally often on “switch” trials. Thus, differences in speaking 

rate were controlled and would not systematically affect RTs.

Procedure—Participants were tested individually in a quiet, dimly-lit room. The 

experiment was conducted using an EyeLink 1000 eye-tracker, with a table-mounted 

camera, recording at 1000 Hz. A chin-rest was used to maintain constant distance (55 cm) to 

the screen. Participants were first calibrated using a 9-dot calibration routine; all were 

successfully calibrated within two attempts. Following calibration, the task was explained 

and participants completed two practice trials, hearing a voice not used in the experiment 

proper. Each trial began with a central fixation cross: This was a + sign, in 18-point, 

enclosed in an invisible interest area. The interest area was 100 × 100 pixels (with screen 

resolution 1024 × 768), and was 3.3 × 3.1 degrees of visual angle. The participant had to 

maintain gaze in this interest area for 2000 ms before a trial would continue.

After the fixation cross disappeared, participants heard a spoken item over headphones (in 

one of four voices, randomly selected per trial). At the same time, two target symbols 

appeared in randomly selected locations on the left and right sides of the screen. Based on 

condition, participants quickly made a semantic classification or lexical decision by locating 

and clicking the appropriate response option (see Figure 1). To respond “word” (or “larger 

than a toaster”), participants located and clicked a blue ‘+.’ To respond “nonword” (or 

“smaller than a toaster”), participants located and clicked a red ‘×.’ These symbols were 

each shown in 22-point font, and were enclosed in interest areas that were 2.7 × 2.2 degrees 

of visual angle. These interest areas were used both to record target fixations and clicks. The 

response icons were moved randomly on each trial, but were constrained to always appear in 

the same visual half-field (e.g., the red ×, for a “word” response, would always appear on the 

right). This regularity allowed participants to begin executing lateral eye movements as the 

word unfolded in time (i.e., once they had sufficient information to make a decision), but 

they still had to find the response option on the screen. An invisible region surrounding 

fixation that ensured that no response icon appeared closer than 3.5 degrees from fixation; 

the average distance of the response icon from fixation was 6.5 degrees.

Following the practice trials, participants received clarifying instructions (as needed) before 

starting the experimental trials. In LD, participants completed 120 study trials; in SC, they 

completed 112 study trials. In either task, all four voices were used equally often. After the 

study trials and a 5-minute break, LD participants completed a test block of 160 trials (120 

were repeated from Block 1), and SC participants completed a test block of 142 trials (112 

repeated from Block 1). Response mapping was maintained from Block 1. Of the repeated 

trials in Block 2, half were same-voice (SV) repetitions, whereas 25% were spoken by a new 

speaker of the opposite sex of the original speaker (across-gender) and 25% were spoken by 

a new speaker of the same sex (within-gender). Ultimately, this gender manipulation did not 

contribute any findings of interest, so we report findings classified simply as SV and DV. 

Therefore, in the second block of each task, there were new items, used to calculate priming 

effects, comparing them to repeated items. Among the repeated items, half were SV trials 
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and half were DV trials, allowing calculation of voice effects. Results from the initial 

encoding block were not examined. The experiment took approximately 60 minutes.

Results

Throughout this article, we focus on RTs from correct classification trials. Because our key 

question regarded timing of initial saccades off central fixation, we only examined trials 

wherein the initial saccade was in the correct lateral direction. Four participants were 

removed for having an excessive bias (always toward rightward movement, in > 80% of 

trials), with two each in the LD and SC conditions. Among the remaining participants, 

94.7% of all trials were retained for RT analyses, and we do not consider accuracy further. 

(There were not enough errors to allow statistical analysis, with too many design cells with 

zero observations per participant. At a general level, however, no experiments showed any 

evidence of speed-accuracy trade-offs, with errors being higher in conditions with slower 

RTs.) Alpha was maintained at .05. Voice effects were tested as planned pairwise 

comparisons (separately for nonwords, high-frequency words and low-frequency words); 

these were treated as multiple comparisons with Bonferonni correction. All analyses were 

conducted both with participants and items as random factors. For clarity, the results are 

presented in sections, first corresponding to LD and SC. Within each of those conditions, we 

present analyses moving from the slowest dependent measure (mouse RTs) toward the 

fastest (saccade initiation).

Lexical Decision (LD)

Validation Measures: Given the nature of our questions and the novelty of our method, we 

first conducted several analyses to ensure the validity of the data. In particular, our goal was 

to assess voice specificity effects at three points in time, measured by time to initiate 

saccades (TTI), time to fixate the target (TTF), and time to click with the mouse (RT). 

Analytically, this involved separate ANOVAs for each dependent measure, which is 

conservative but cannot reveal whether the measures relate to each other: Does faster 

saccade initiation reliably predict faster target location or clicking? To ensure that the results 

were self-consistent, we first tested correlations within trials, finding high positive values for 

all measures: TTI was correlated with TTF (r = .78) and with RT (r = .63), and TTF was 

correlated with RT (r = .87; all p < .0001). These correlations verify that the results were 

orderly, and in particular that the TTI measure truly relates to overall performance. Similar 

results were obtained for semantic classification and in Experiment 2 (all r > .65), but are 

not reported.

Mouse RTs: The “slowest” index of processing was RT, operationalized by the time it took 

participants to click the response option. Table 2 shows all the LD results from Experiment 

1, with the upper section showing mouse RTs for HF words, LF words, and nonwords. Each 

is shown as a function of old/new status and repetition voice (for repeated items). Derived 

priming effects (relative to new words) and voice effects (DV minus SV) are shown for each 

measure; asterisks indicate reliable effects. Mouse RTs were first analyzed in a 3 (Item 

Type: HF/LF/NW)×3 (Voice: New, SV, DV) within-subjects, repeated-measures (RM) 

ANOVA. A parallel item-based ANOVA had the same factors, but Item Type was a 
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between-subjects variable. In each ANOVA, planned comparisons (with Bonferroni 

adjustments) we used to assess priming and voice effects.

There was a main effect of Item Type, FS(2, 46) = 55.1, p < .001, η2
p = .71; FI(2, 157) = 

38.9, p < .001, η2
p = .43: RTs were fastest to HF words, followed by LF words and 

nonwords, respectively. The main effect of Voice was also reliable, FS (2, 46) = 19.9, p < .

001, η2
p = .46; FI(2, 156) = 22.0, p < .001, η2

p = .39, with fastest RTs to same-voice 

repetitions, followed by different-voice repetitions, then new items. The interaction of Item 

Type × Voice was not reliable, FS (4, 44) = 2.2, p = .09; FI(4, 314) = 1.9, p = .13, showing 

that voice effects were similar for all item types. Nevertheless, because of their central role 

in the experiment, we still evaluated voice effects for each stimulus type. Considering first 

HF words, reliable priming was observed for SV repetitions (p = .009 by subjects, p < .001 

by items), but not for DV repetitions (pS and pI both > .35). The 40-ms voice effect was not 

reliable, (pS and pI both > .11). Among the LF words, reliable priming was again observed 

for the SV words, (pS < .001; pI < .001), and also for DV words (pS = .003; pI < .001). 

Despite the numerical trend, the 52-ms voice effect was not reliable, (pS = .09; pI =.12). 

Finally, among the nonwords, reliable priming was observed for SV items, (pS < .001; pI = .

006), and was marginal for DV items (pS = .05; pI < .002). The 19-ms voice effect was not 

reliable (pS and pI both > .39).

Time-to-fixate (TTF): The “intermediate” processing index was participants’ average times 

to fixate the correct response icon, operationalized by a 100-ms (or longer) fixation within 

an interest area surrounding either icon. As in the mouse RTs, these results (shown in the 

central rows of Table 2) were first analyzed in two 3×3 RM ANOVAs (by participants and 

items), including planned comparisons with Bonferroni-corrected alpha. We observed a 

main effect of Item Type, FS(2, 46) = 30.6, p < .001, η2
p = .51; FI(2, 157) = 27.0, p < .001, 

η2
p = .55. TTFs were fastest to HF words, followed in order by LF words and nonwords. 

The main effect of Voice was also reliable, FS(2, 46) = 16.7, p < .001, η2
p = .42; FI(2, 157) 

= 21.6, p < .001, η2
p = .45, with fastest TTFs to SV repetitions, followed by DV repetitions, 

then new items. The Item Type × Voice interaction was not reliable, FS (4, 44) = 1.6, p = .

43; FI(4, 314) = 1.5, p = .51, as voice effects were similar for all item types.

As with the mouse RTs, planned comparisons were used to evaluate priming and voice 

effects. For HF words, reliable priming was observed for SV repetitions, (pS < .001; pI < .

001), but not for DV repetitions, (pS and pI both > .61). The 41-ms voice effect was marginal 

(pS = .03; pI < .06). Among the LF words, reliable priming was again observed for the SV 

words (pS = .008; pI < .001), and also for DV words (pS = .002; pI = .003). The 41-ms voice 

effect was also reliable, (pS = .009; pI = .002). Finally, among the nonwords, reliable 

priming was observed for SV items (pS < .001; pI < .001), but was null for DV items (pS and 

pI both > .36). The 53-ms voice effect was reliable (pS = .003; pI < .001).

Time-to-initiate (TTI): In each trial, the earliest index of lexical decision was the latency to 

initiate saccadic eye movements (in the correct direction) off the fixation cross. As the word 

unfolded in time, participants could initiate a leftward or rightward saccade at any time. As 

in the prior RTs, these results (lower rows of Table 2) were first analyzed in two 3×3 RM 

ANOVAs (participants and items), followed by planned comparisons. We observed a main 
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effect of Item Type, FS(2, 46) = 35.3, p < .001, η2
p =. 43; FI(2, 157) = 38.4, p < .001, η2

p = .

41. TTIs were fastest to HF words, followed in order by LF words and nonwords. The Voice 

effect was also reliable, FS(2, 46) = 71.9, p < .001, η2
p =. 60; FI(2, 157) = 93.1, p < .001, η2

p 

= .58, with fastest RTs to SV repetitions, followed by DV repetitions, then new items. The 

Item Type × Voice interaction was not reliable, FS (4, 44) = 1.8, p = .13; FI(4, 314) = 0.9, p 

= .39, as voice effects were similar for all item types. Among the HF words, reliable priming 

was observed for SV repetitions (pS < .001; pI < .001), but not for DV repetitions (pS and pI 

both > .14). The 46-ms voice effect was reliable (pS < .001; pI < .001). Among the LF 

words, reliable priming was again observed for the SV words (pS < .001; pI < .001), and also 

for DV words (pS < .001; pI < .001). The 62-ms voice effect was also reliable (pS < .001; pI 

< .001). Finally, among the nonwords, reliable priming was observed for SV items (pS < .

001; pI < .001) and for DV items (pS < .001; pI < .001). The 60-ms voice effect was reliable 

(pS < .001; pI < .001).

Semantic Classification (SC)

Mouse RTs: The SC results are shown in Table 3; these were analyzed in the same manner 

as the LD data. The main effect of Frequency was not reliable, FS(1, 40) = 2.9, p = .09; FI(1, 

140) = 1.8, p = .25. Mean RTs to HF and LF words were 1671 and 1647 ms, respectively. 

The Voice effect was reliable, FS(2, 39) = 37.7, p < .001, η2
p = .66; FI(2, 139) = 49.0, p < .

001, η2
p = .71, with fastest RTs to SV repetitions, followed by DV repetitions, then new 

items. The Frequency × Voice interaction was also reliable, Fs(2, 39) = 4.9, p < .02, η2
p = .

18; FI(2, 139) = 6.6, p < .01, η2
p = .23. This interaction was driven by the new words, which 

showed a large (and backwards) frequency effect. In planned comparisons for the HF words, 

reliable priming was observed for SV repetitions (pS < .001; pI < .001) and for DV 

repetitions, (pS < .001; pI < .001). The 39-ms voice effect was also reliable (pS = .005; pI = .

003). Among the LF words, reliable priming was again observed for the SV (pS < .001; pI 

< .001) and the DV repetitions (pS < .001; pI < .001). The 36-ms voice effect was also 

reliable, although it was not a strong effect, and marginal by items (pS = .03; pI = .07).

Time-to-fixate (TTF): The TTF results (central rows of Table 3) were analyzed in the same 

manner as the Mouse RT data. In the overall ANOVA, there was a main effect of 

Frequency, FS(1, 40) = 5.6, p = .028, η2
p = .12; FI(1, 140) = 8.1, p < .01, η2

p = .35, with 

faster fixations to HF words (818 ms) than to LF words (852 ms). The Voice effect was also 

reliable, FS (2, 39) = 26.6, p < .001, η2
p = .40; FI(2, 139) = 23.9, p < .001, η2

p = .51, with 

fastest RTs to SV repetitions, followed by DV repetitions, then new items. The Frequency × 

Voice interaction was not reliable, FS(2, 39) = 0.6, p = .54; FI(2, 139) = 1.8, p = .28. In 

planned comparisons for HF words, reliable priming was observed for SV (pS < .001; pI < .

001) and DV repetitions (pS < .001; pI < .001). The 58-ms voice effect was also reliable (pS 

= .004; pI = .006). Among LF words, reliable priming was again observed for SV (pS < .001; 

pI < .001) and DV trials (pS < .001; pI < .001). The 70-ms voice effect was also reliable (pS 

= .007; pI < .001).

Time-to-initiate (TTI): The TTI results (lower rows of Table 3) were analyzed in the same 

manner as the foregoing data. In the overall ANOVA, there was no Frequency effect, FS (1, 

40) = 0.3, p = .57; FI(2, 139) = 0.4, p = .65, with equivalent initiation times to HF (517 ms) 
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and LF (522 ms) words. The Voice effect was reliable, FS(2, 39) = 83.4, p < .001, η2
p = .77; 

FI(2, 139) = 79.0, p < .001, η2
p = .61, with fastest RTs to SV repetitions, followed by DV 

repetitions, then new items. The Frequency × Voice interaction was not reliable, FS(2, 39) = 

1.7, p = .19; FI(2, 139) = 0.9, p = .58. In planned comparisons for HF words, reliable 

priming was observed for SV (pS < .001; pI < .001) and DV repetitions (pS < .001; pI < .

001). The 37-ms voice effect was also reliable (pS = .002; pI < .001). Among the LF words, 

reliable priming was again observed for SV (pS < .001; pI < .001) and DV trials (pS < .001; 

pI < .001). The 39-ms voice effect was also reliable (pS = .008; pI = .004).

Correlations: As noted earlier, a key prediction from the time-course hypothesis is that, as 

responses become slower, the strength of voice-specificity effects should increase. We tested 

this prediction for all dependent measures, in both LD and SC, analyzing words (excluding 

nonwords from LD), collapsed across participants. Before turning to the results, we must 

note two important points. First, although this prediction is inherent to the time-course 

hypothesis, prior studies (e.g., McLennan & Luce, 2005; Krestar & McLennan, 2013) have 

divided items into “easier” and “harder” groups and examined results categorically, rather 

than continuously. Our inclusion of these analyses is meant to illustrate a point that is 

elaborated in the General Discussion. Specifically, a challenge arises for the time-course 

hypothesis, as its central prediction (larger specificity effects given slower RTs) may reflect 

statistical properties of RTs, rather than any underlying psychological principle. Second, 

when examining Tables 2 and 3, it is clear that robust frequency effects were observed, and 

that priming effects (old versus new) were generally stronger for LF words, relative to HF 

words. (The sole exception to this pattern was mouse-click RTs in SC.) Nevertheless, voice-

specificity effects were nearly equivalent for LF and HF words, with an average difference 

of only 6.5 ms. Thus, although category-level data did not follow the time-course hypothesis 

prediction, it remained possible that the trial-level data would show such an effect.

To test whether voice-specificity effects were indeed larger for more challenging items, we 

calculated mean RTs for each repeated word, separately for those trials that were SV and 

DV repetitions.4 The average RT per word was computed (averaging SV and DV trials); 

voice effects were calculated as the difference score, DV minus SV. In every case, the 

correlations of mean RTs and voice effects were positive and reliable: In LD, the 

correlations for mouse RTs, TTF, and TTI were r = .19 (p < .05), r = .32 (p < .001) and r = .

37 (p < .001), respectively. In SC, these same correlations were r = .16 (p < .05), r = .19 (p 

< .05) and r = .30 (p < .001). Although the pattern cannot be appreciated by grouping words 

into LF and HF categories, there were reliable associations between item RTs and voice-

specificity effects.

Discussion

In Experiment 1, we created a modified 2AFC method, applied to both lexical decision and 

semantic classification. The method uses lateral eye-movements to provide an early measure 

of classification, with later measures of target location and selection. At a broad level, the 

4Because we used four voices, this approach still combined three different tokens per word into the “DV” category. Testing tokens 
separately did not substantially change the results reported here.
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results validated the method. By all three dependent measures, the results were orderly and 

expected: Word frequency, repetition priming, and voice specificity effects were observed at 

all time-points in both LD and SC (although voice effects were not reliable in mouse-click 

RTs in LD, there were consistent numerical trends).

With respect to the time-course hypothesis, Experiment 1 provided mixed evidence. Applied 

to the present method, the hypothesis most comfortably predicts that voice effects should be 

stronger in later-arriving measures of lexical processing, such as mouse-click RTs. 

Nevertheless, we observed robust voice effects in saccade initiation times; these were 

replicated in the later measures. Indeed, given repeated words in LD, people initiated 

saccades in the correct direction an average of 12 ms after word offset; this value was 68 ms 

in SC. (These results are reminiscent of those from Creel et al., 2008, who observed voice-

specific effects on eye-movements prior to word offset.) On the other hand, by all dependent 

measures, we also observed positive associations: As response times grew slower, voice-

specificity effects grew larger, as the time-course hypothesis would predict.

Taken together, the results from Experiment 1 show that voice-specificity effects can arise 

early in lexical processing, although those effects positively correlated with overall RTs to 

different words. A key question, however, is the degree to which the effects in Experiment 1 

may have reflected response priming, rather than perceptual priming. In SV trials, 

participants were required to make the same response (e.g., word-nonword) to the same 

recorded token. Strong repetition effects were observed, but cannot be clearly interpreted as 

perceptual effects (see Orfanidou et al., 2011). Instead, repetitions could serve as episodic 

memory probes, reactivating recent responses made to those same items. Although such an 

interpretation may be interesting in its own right, our present goal was to assess perceptual 

specificity effects. In Experiment 2, we crossed the study and test procedures from 

Experiment 1, such that half the participants completed LD first, followed by SC; the other 

half completed both tasks in the opposite order. The crossed procedure made it unlikely for 

priming to be response-driven, allowing greater focus on perceptual processes.

Experiment 2

The goal of Experiment 2 was to determine whether voice-specific priming would occur 

across changes in task. Participants again completed an initial blocks of trials, either LD or 

SC, then completed the complementary task in a second block.

Method

Participants—Fifty native English speakers (31 female, mean age 19.9 years), with no 

self-reported hearing deficits and normal, or corrected-to-normal, vision participated in 

exchange for partial course credit. Half the participants were randomly assigned to complete 

LD first, followed by SC; the other half completed tasks in the reverse order. Two 

participants were dropped from analysis for having excessive errors (as in Experiment 1, 

both showed consistent rightward bias > 85% of trials), leaving 48 in the final analysis.

Stimuli—The materials from Experiment 1 were used in Experiment 2.
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Procedure—The procedures were identical to Experiment 1, except all participants 

completed both tasks in counterbalanced order. Half of the participants first completed 160 

LD trials (80 words and 80 nonwords). After a short break, they completed 112 SC trials, 

including 80 words that had been presented in Block 1. The remaining participants first 

completed a block of 64 SC trials, followed by 160 LD trials in Block 2, with 64 words 

repeated from Block 1. In the second block of either condition, half the repeated words 

retained their original presentation voices, and half were changed to one of three other 

voices.

Results

After removing errors, 91% of trials were retained for RT analyses; we do not consider 

accuracy further. Because the LD and SC blocks were presented in counterbalanced order 

(to avoid task-order effects), all analyses were conducted on average Block 2 data, 

collapsing across tasks. (For interested readers, Appendix B shows results from the different 

task orders. Perhaps not surprisingly, SC had greater priming effects on LD, relative to the 

reverse. For purposes of drawing conclusions, we limit analyses to the full design.) The 

results (for words only) are shown in Table 4, which is arranged in similar fashion to Tables 

2 and 3. As in Experiment 1, we first conducted omnibus ANOVAs (by both participants 

and items), with planned comparisons for priming and voice effects.

Mouse RTs—The upper rows of Table 4 show mouse-click RTs for low- and high-

frequency words, each as a function of old/new status and voice (for repeated items). 

Derived priming and voice effects are shown, as before. Mouse RTs were first analyzed in a 

2 (Frequency: HF/LF) × 3 (Voice: New, Same, Different) RM ANOVA. There was no main 

effect of Frequency, FS(1, 47) = 0.61, p = .71; FI(1, 79) = 1.31, p = .60. The numerical trend 

was for a “backwards” frequency effect, with RTs 26 ms faster to LF words, relative to HF 

words. The Voice effect was reliable, FS (2, 46) = 36.8, p < .001, η2
p = .62; FI(2, 77) = 28.0, 

p < .001, η2
p = .39, with fastest RTs to SV repetitions, followed by DV repetitions, then new 

items. The Item Type × Voice interaction was not reliable, FS(1, 47) = 1.20, p = .49; FI(2, 

77) = 0.99, p = .58. Among the HF words, reliable priming was observed for SV (pS < .001; 

pI < .001) and DV repetitions (pS = .006; pI = .002). The 11-ms voice effect not reliable. 

Among the LF words, reliable priming was again observed for SV (pS < .001; pI < .001) and 

DV trials (pS = .03; pI = .009). The 74-ms voice effect was also reliable (pS = .008; pI = .

008).

Time-to-fixate (TTF)—The TTF results (central rows of Table 4) were analyzed in the 

same manner as the mouse RTs. The main effect of Frequency was again numerically 

backwards (by 11 ms) and unreliable. The main effect of Voice was reliable, FS (2, 46) = 

10.9, p < .001, η2
p = .32; FI(2, 77) = 15.5, p < .001, η2

p = .35, with fastest RTs to SV 

repetitions, followed by DV repetitions, then new items. The Frequency × Voice interaction 

was null. For HF words, reliable priming was observed for SV (pS = .005; pI = .001) and DV 

repetitions, (pS = .004; pI = .002). The 33-ms voice effect was not reliable (pS and pI both > .

12). Among the LF words, reliable priming was again observed for SV trials (pS = .003; pI 

< .001), but not for DV trials (pS and pI both > .09). The 44-ms voice effect was reliable (pS 

= .03; pI = .007).
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Time-to-initiate (TTI)—The TTI results (lower rows of Table 4) were analyzed in the 

same manner as the prior results. The main effect of Frequency was reliable, with a 45-ms 

effect in the expected direction, FS(1, 47) = 16.0, p < .001, η2
p = .36; FI(1, 79) = 21.8, p < .

001, η2
p = .43. The Voice effect was reliable, FS (2, 46) = 7.4, p < .01, η2

p = .24; FI(2, 77) = 

9.1, p < .01, η2
p = .30, with fastest RTs to SV repetitions, followed by DV repetitions, then 

new items. The Frequency × Voice interaction was null. Among the HF words, reliable 

priming was observed for SV repetitions (pS = .007; pI = .008), but not for DV repetitions 

(pS and pI both > .29). The 46-ms voice effect was reliable (pS = .02; pI = .006). Among the 

LF words, reliable priming was again observed for the SV (pS = .003; pI < .001) and DV 

trials (pS = .005; pI = .002). The 38-ms voice effect was reliable (pS = .009; pI = .004).

Correlations—As in Experiment 1, the group-level data shown in Table 4 show little 

support for the time-course hypothesis: The overall voice specificity effect was 22 ms larger 

for LF words, relative to HF words, but that difference mainly reflected the mouse RTs. At 

the level of individual trials, however, we again found positive correlations between overall 

RTs (averaging SV and DV repetitions) and voice effects (DV minus SV). Combining all 

words together, the observed correlations for mouse RTs, TTF, and TTI were r = .22 (p < .

05), r = .29 (p < .01) and r = .28 (p < .01), respectively. Thus, although the predicted pattern 

was not evident at the categorical level, there were reliable associations between item RTs 

and voice-specificity effects.

Discussion

Experiment 2 conceptually replicated Experiment 1, while reducing the likelihood for 

response priming. Notably, the response times shown in Table 4 were slower overall (by 

roughly 150 ms, on average) than those in Tables 2 and 3, suggesting that response priming 

likely did affect Experiment 1. Nevertheless, in both experiments, reliable priming occurred 

and voice-specificity effects showed the same general pattern: They were numerically 

evident in all dependent measures, and were robust in the earliest, TTI measure. Indeed, 

among HF words, voice effects were only reliable in the TTI data (they were evident for all 

measures among the LF words). Finally, as in Experiment 1, although we found little 

evidence for the time-course hypothesis (McLennan & Luce, 2005) at the broad level of LF 

versus HF words, we found reliable correlations of item RTs and voice effects. Thus, we 

have verified that specificity effects can arise early in perception: In Experiment 2, laterally 

correct eye-movements were initiated approximately 76 ms after the offsets of repeated 

words. There remained, however, some evidence consistent with the time-course hypothesis, 

which we consider further below.

General Discussion

The present study was motivated by a theoretical discrepancy in the literature, regarding the 

time-course of voice specificity effects in spoken word recognition. Although this sounds 

like a fairly nuanced topic, it has great theoretical gravity: Whereas episodic models (e.g., 

Goldinger, 1996; 1998) or relative-coding models (McMurray & Jongman, 2011) predict 

that indexical information mediates early perceptual processes, the time-course hypothesis 

(McLennan & Luce, 2005), derived from ART (Grossberg & Myers, 2000), predicts that 
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abstract sublexical elements will dominate early perception, with indexical effects only 

arising when processing is slow. Prior studies have lent support to both views, with evidence 

for early voice effects (e.g., Creel et al., 2008; Goldinger, 1998) but also evidence that such 

effects “arrive late” in processing (e.g., Krestar & McLennan, 2013; Luce & Lyons, 1998; 

McLennan & Luce, 2005). Reconciling these prior studies is challenging, however, as their 

methods differed in numerous regards. In this study, we examined the time-course 

hypothesis, using a method that allowed detection of early voice effects, while retaining a 

familiar 2AFC methodology.

The present method gave us several “moments” when voice-specific priming could be 

observed (time for the initial saccade, time to locate the object, and time to click). Although 

it was theoretically possible that voice effects would be absent in initial saccades, only 

arising in “later” measures, we did not consider this likely: In any given trial, the sequence 

of RTs were derived from a coherent underlying event, the recognition and classification of 

a spoken word. We thus considered saccade-initiation times as the critical dependent 

measure; the later-arriving measures served to validate that those eye-movements were 

meaningful.

In the visual world paradigm (e.g., Dahan et al., 2008; Magnuson et al., 2003), eye-

movements are linked to fixated objects, each with their own names, so the “meanings” of 

eye movements can be directly inferred. In our case, quick left or right saccades had several 

layers of validation: First, they were in the correct direction more than 90% of the time. 

Second, they produced effects of classic variables (word frequency and repetition). Third, 

initial saccades typically predicted equivalent psychological effects later in time, such as 

correct mouse clicks. We are therefore confident that initial saccades reflected meaningful 

perceptual processes, and their implications were clear: From the earliest moments of word 

perception, effects such as frequency are evident (Dahan et al., 2001). For repeated words, 

effects of indexical repetition were observed very early, often before the spoken word was 

complete. This was seen in Experiment 1, which could have involved response priming 

(Orfanidou et al., 2011), but was also seen in Experiment 2, wherein response priming was 

likely minimized. In the remainder of this article, we address three further points. These 

include the interpretive challenge posed by the time-course hypothesis, the status of voice-

specificity effects in the literature, and their implications for psycholinguistic theory.

The time-course hypothesis

In a series of articles, McLennan and colleagues have advanced the time-course hypothesis 

for voice-specificity effects in word perception. In summarizing their findings, McLennan 

and Luce (2005, p. 306) wrote, “… indexical variability affects participants’ perception of 

spoken words only when processing is relatively slow and effortful.” This theoretical 

hypothesis can be restated in two ways, being more or less restrictive. The more restrictive 

interpretation is that “voice-specific priming will not be observed when lexical processing is 

fluent.” This strong version has been implicitly adopted in various studies: In addition to 

McLennan and Luce (2005), other reports have been framed in terms of null voice-

specificity effects in “easy” conditions, with effects emerging only in “hard” conditions 

(e.g., Krestar & McLennan, 2013; McLennan & González, 2012; Vitevitch & Donoso, 
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2011). The present results, and other findings of early-arriving voice effects (e.g., Creel et 

al., 2008; Creel & Tumlin, 2011) seemingly refute the strong hypothesis: We presented 

relatively easy and hard words (based on frequency) for classification, and observed robust 

voice-specificity effects within 100 ms of word offset, equivalently for LF and HF words. In 

a recent article, Maibauer, Markis, Newell and McLennan (2014) also found early voice-

specificity effects when famous voices were used.

Given such results, a strong version of the time-course hypothesis appears untenable. And in 

a scientific sense, it is difficult to defend a theoretical position that “certain conditions will 

create null results, and others will create positive results,” because null results can arise for 

many unimportant reasons. The less restrictive version of the hypothesis focuses on the 

implied interaction, or the continuous relationship between variables: Voice-specificity 

effects are predicted to increase when lexical processing takes more time. This weaker 

version is more easily supported from an empirical standpoint, appears to have support in 

the prior literature, and is more scientifically tractable. Indeed, in the present data, although 

we observed early voice effects, we also consistently found significant, positive correlations 

between word RTs and derived voice effects. Such findings, however, beg a question: How 

convincing is the evidence for the time-course hypothesis? We suggest that the evidence is 

surprisingly weak, for three key reasons. First, prior studies supporting the time-course 

hypothesis are typically underpowered. Second, many prior studies have a critical design 

flaw (in our view), allowing an alternative account of their results. Third, we suggest that the 

key finding – larger voice effects with slower lexical processing – may be an inevitable 

outcome, given the nature of RT distributions. We briefly address the first and second 

points, then focus on the third.

Experimental power—The time-course hypothesis is well-motivated theoretically (from 

ART), and could be correct. Its prior empirical support, however, is not compelling. The 

study by McLennan and Luce (2005) was the first articulation of the time-course hypothesis, 

and produced its initial support. In their Experiment 2 (which bears the closest resemblance 

to the current study), people classified words and nonwords spoken in two voices (one male, 

one female) in two consecutive blocks: The first block exposed listeners to a set of words 

and voices; the second block had new and old words, with some old words presented in new 

voices. Reliable priming (studied versus new) was observed whether processing was easy 

(Experiment 2A) or hard (2B). However, no voice effect was observed in the easy condition 

(an 8-ms trend), but was observed in the hard condition (35 ms). This established the time-

course pattern and has been widely cited, but the experimental details are not compelling. In 

particular, the experiment only included 24 stimuli, with only 12 words constituting the 

critical trials. Four words were control items; the remaining eight were repeated from Block 

1, with four SV and four DV trials. Despite testing many participants (72 each in 

Experiments 2A and 2B), this provides a very limited data set, mathematically and 

linguistically. Mathematically, each participant only contributed eight relevant data points 

per experiment, divided into two distributions of four RTs each. Linguistically, the stimuli 

were also limited, with 12 monosyllabic words (bear, bee, book, bowl, car, cat, deer, fly, 

key, leg, nail, nut) featuring six phonological onsets. In our view, even though the results 

were reliable by participants and items, it is challenging to interpret such a narrow data set.
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The issue of limited sampling in one study is not necessarily cause for great concern. 

However, McLennan and González (2012) later used the same stimulus set and reported 

more statistical details, allowing us to estimate their power (to detect voice specificity 

effects) at .5, indicating a .5 probability of detecting a true effect, should it be present. (In 

the present study, the observed power ranged from .87 to .99 for all tests of voice-specific 

priming.) As noted by Francis (2012; 2013), low-power experiments are more likely to 

create both false-positive and false-negative outcomes. McLennan and González (2012) also 

included 72 participants per test, suggesting that the low power derived from using few 

items per condition. These same stimulus items were also used by Krestar and McLennan 

(2013), with similar subdivision into conditions.

In a different example, Vitevitch and Donosio (2011) examined the time-course hypothesis 

using a “change deafness” paradigm. In their first experiment, listeners made lexical 

decisions; these were made relatively easy or hard by manipulating the nonwords. Harder 

nonwords slowed “word” decisions by 82 ms. Halfway through the experiment, the voice 

producing items was changed, from one male speaker to another. Afterward, participants 

were asked whether they noticed (1) “anything unusual” and (2) a speaker change. Out of 22 

people in the “easy” condition, 14 (63%) detected the change in speaker, compared to 19 of 

22 (86%) people in the “hard” condition. Clearly there was a difference: Five more people 

detected the voice change when the task was more challenging. However, two-thirds of 

participants in the easy condition also noticed the change, and the statistical difference 

between conditions was small and low-power, with each person providing a single data 

point. In a second experiment, using a confidence-scale method, the observed power for a 

similar effect was approximately .5, which is again quite low.

An alternative explanation—As noted earlier, in the current experiments, we opted not 

to manipulate lexical decision difficulty by changing the nonword foils. This decision was 

partly motivated by a desire to maintain parallel structure between the LD and SC tasks. Our 

deeper motivation, however, was to avoid the typical approach taken in prior experiments 

(e.g., Krestar & McLennan, 2013; McLennan & González, 2012; McLennan & Luce, 2005; 

Vitevitch & Donoso, 2011). The standard approach (making nonwords more or less word-

like) invites an alternative explanation of the results. We focus on McLennan and Luce 

(2005) as a relevant example: As noted, listeners were assigned to groups for either easy or 

hard LD. Words were constant across conditions, while nonword foils were changed, 

allowing comparison of the same words under more or less fluent conditions. In the easy 

condition, the nonwords were very low-probability phonotactic sequences. For example, 

people had to discriminate BACON from THUSHTHUDGE. By contrast, in the hard 

condition, the nonwords differed from target words by one phoneme in final position, such 

as BACON versus BACOV. Another experiment was similar, but with monosyllables. By 

virtue of making nonwords more word-like in the hard condition, McLennan and Luce 

(2005, page 312, Table 4) increased “word” RTs by an average of 33 ms, and also observed 

voice-specific priming. This finding motivated the time-course hypothesis that slower 

lexical processing gave voice-specific features greater opportunity to affect the resonant 

dynamics of lexical access.
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Although the time-course account is consistent with the data, does it provide the most likely 

interpretation? Do 33 extra milliseconds of processing truly change lexical dynamics to such 

a degree that voice effects will emerge? We suggest a more parsimonious interpretation. 

Specifically, changing the nonword foils does not merely increase average RTs. It also 

dramatically changes how attention must be allocated to the bottom-up speech signal. Given 

unusual nonwords such as THUSHTHUDGE, people can likely perform lexical decision 

with minimal attention to the signal -- the words should essentially “pop out.” But in the 

hard condition, words and nonwords can only be discriminated by carefully listening for the 

final segment, and the listener cannot predict when that segment will arrive as the signal 

unfolds in time. Changing the nonword foils does not merely slow down processing; it 

forces participants to attend to fine-grained details in the speech signal. In previous studies, 

voice-specific priming is most robust when listeners focus on “surface” features of words, 

such as judging how clearly words are enunciated (Goldinger, 1996; Schacter & Church, 

1992).

According to the time-course hypothesis, the challenging lexical decision task slows down 

processing, and that extra processing time allows voice effects to emerge. We suggest that 

changing the nonwords changes the listener’s focus of attention, forcing careful bottom-up 

monitoring. This simultaneously creates episodic memory traces that more strongly 

represent superficial (e.g., voice) details of the signal. Note that this account is also entirely 

consistent with classic exemplar models (e.g., the attention hypothesis in Logan, 1988).

What is the correct null hypothesis?—Setting prior studies aside, the present 

experiments did produce a pattern predicted from the time-course hypothesis. In all 

measures, as mean RTs for repeated words increased, the magnitudes of voice effects also 

increased. This follows directly from the less restrictive version of the hypothesis, as noted 

above, and the present experiments had high observed power (always > .85). Nevertheless, a 

difficult question arises: What relationship between the variables should be expected, under 

the null hypothesis? RTs have a natural lower “boundary,” and are typically distributed in a 

roughly ex-Gaussian fashion (Balota & Spieler, 1999; Ratcliff & Rouder, 1998). As a result, 

creating faster RTs (for example, by repetition priming) is inherently nonlinear: Words that 

typically elicit fast RTs can only be slightly improved by priming, whereas words that 

typically elicit slow RTs can show large benefits. By extension to the current study, any 

effect (such as voice-specific priming) that is compared across relatively fast and slow items 

will typically have larger effects on the slower end of the spectrum. This has long been 

recognized as the problem of response time scaling: As a general rule, effects tend to 

increase when RTs increase.

To better understand the correct null hypothesis for these experiments, we conducted a 

series of simulations, beginning with simple scenarios, then moving toward more faithful 

representations of real RT experiments. In the first four simulations (see Figure 2), we 

generated 10,000 artificial RTs for “same-voice” and “different-voice” repetitions of words, 

using different distributional assumptions. For each, we then calculated RTs and “voice 

effects” (DV minus SV). The upper row of Figure 2 (panels A and B) shows the results from 

shifted, flat distributions, with no relation between the mean and variance: SV word RTs 

were generated as randomly selected values between 500 and 800 ms; DV words were 
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randomly selected values between 575 and 875 ms. Panel A shows the frequency 

distributions for observed RTs, and panel B shows no relationship between mean RT and 

voice effect. Of course, natural RT distributions are not flat, and their standard deviations 

typically increase (approximately linearly) with mean increases (Wagenmakers & Brown, 

2007). To better approximate natural RTs, we next simultaneously changed the means and 

standard deviations, and tested different underlying distributions.

In the second row of Figure 2 (panels C and D), we again selected from flat distributions, 

but SV words ranged from 500 to 800 ms, whereas DV words ranged from 550 to 950 ms. 

As shown in panel D, a positive relationship emerged between item RT and voice effects 

(across simulations, the correlation ranged from .25 to .31). In the third row (panels E and 

F), we sampled from Gaussian distributions: SV words had M = 500 and SD = 75; DV 

words had M = 600 and SD = 100, and the same relationship emerged. Finally, the bottom 

row of Figure 2 (panels G and H) show RTs sampled from Weibull distributions (SV mean 

= 850, DV mean = 1000, with a 100-ms increase in standard deviation). Weibull 

distributions have the same general shape as ex-Gaussian distributions and therefore 

resemble typical RTs (Balota & Spieler, 1999). As shown, the same relationship between 

item mean and voice effect was observed again.

We next conducted tests with more reasonable core assumptions. In the simulations shown 

in Figure 2, there was no relationship between the SV and DV values generated for each 

word; they were independent samples. Presumably, real words have some “intrinsic RT” 

that can be adjusted upward or downward by manipulations, such as repetition priming. To 

further test the observed relationship, we generated 10,000 normally-distributed RTs for SV 

words (M = 500, SD = 75) and created DV versions by adding normally distributed values 

(M = 50, SD = 100). In this manner, DV and SV values were tethered to each other, but 

were adjusted by random sampling, and could produce occasional “backwards” priming 

effects. Not surprisingly, the final SV and DV values were highly correlated (around r = .

75). What is more surprising is that item RTs were highly correlated with voice effects, with 

typical values around r = .55 (see Figure 3). When this simulation approach was repeated 

using Weibull distributions, the correlation was approximately r = .35. This relationship is 

not affected by “normalizing” transformations, such as log- or z-transforming the data. Not 

surprisingly, the relationship can be reduced by Vincentizing, such as replacing all scores 

above two standard deviations from the mean with the cutoff score.5 This has the effect of 

selectively suppressing the slowest RTs, which reduces the observed correlation.

Finally, to better simulate priming experiments, we created a distribution of word RTs (M = 

600, SD = 75), then generated “primed” versions by subtracting normally distributed values, 

assuming that SV trials produce more priming, with less variance. For example, one 

simulation had SV priming with M = 100 and SD = 50; DV priming was M = 50 and SD = 

5Note that these simulated data are not amenable to analyses that partition RT distributions into parameters such as mu, sigma, and tau 
(e.g., Balota & Spieler, 1999). Although such analyses would technically “work” on the data, their interpretation would not be clear. 
We intentionally created the SV and DV distributions with shifted mean values (mu), leaving sigma and tau as the parameters free to 
vary. Therefore, the results of any distributional analysis are predetermined. The observation of interest, however, is that even with a 
constant shift in mu, the typical distributional properties of RTs give rise to the RT scaling pattern, which is isomorphic to the time-
course hypothesis.
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100. As one would expect, over many trials the mean “voice effect” always approaches the 

selected value (e.g., 50), and the SV and DV trials are highly correlated (around r = .8), as 

one value was derived from the other. But of greater interest, the same relationship emerges: 

As item RTs increase, voice effects increase, with correlations ranging from .35–.45 across 

simulations, closely resembling the correlations observed in the present experiments.

These results are (at least initially) surprising, because there was no specified relationship 

between an item’s randomly chosen “base RT” and the adjustments enacted to simulate 

priming. Every instance of SV or DV priming was identically sampled, with means that 

perfectly match their expected values. In this case, mean RTs were 501 and 550 ms, 

respectively. The standard deviations, however, were 90 and 125 ms, and this asymmetry 

drives the observed relationship. For any given item, the DV trial is more likely to be “extra 

slow,” which simultaneously raises the mean RT and increases the voice effect. Given the 

well-known relationship between RT means and standard deviations (Wagenmakers & 

Brown, 2007), these simulations suggest that, irrespective of underlying lexical processes, 

voice effects will typically increase when processing is slower, as a function of RT 

sampling. This illustrates what Loftus (1978) termed “removable” interactions: Many 

interactions in psychological research are potentially spurious, arising from nonlinear 

underlying scales (see Faust, Balota, Spieler & Ferraro,1999; Wagenmakers, Krypotos, Criss 

& Iverson, 2012). As a relevant example, Hutchinson et al. (2008) found that semantic 

priming increased monotonically with the “base RTs” for different words. The theoretical 

motivation for the time-course hypothesis (McLennan & Luce, 2005) is well-conceived and 

could be entirely correct, but its supporting evidence is exactly what would be expected 

under the proper null hypothesis.

What is the status of voice-specificity effects?

There is a curious sociological phenomenon that arises with respect to exemplar theories in 

cognitive science, whether focused on perception, categorization, or memory. Specifically, 

common intuition verifies that every experienced moment is simultaneously abstract and 

specific: When conversing with a friend, your perception is inescapably categorical (your 

friend is a man, sitting at a table, wearing a blue shirt, etc.), revealing the abstraction that 

occurs constantly in cognition. At the same time, your perception is undeniably specific 

(your friend is Tony, who seems more tan than usual). It has long been understood that 

successful theories must simultaneously explain the generality and specificity of memory 

(see McClelland & Rumelhart, 1985; Underwood, 1969), and that abstract representations 

(e.g., prototypes) must derive from experiences with specific examples. It is also accepted 

that abstract representations are not all equivalent – some (e.g., high-frequency words) have 

“privileged” status, disparities that originate from differences in particular experiences. In 

these regards, abstract and specific representations are immutably interconnected. They are 

simultaneously experienced and mutually reinforcing: People “hear” physically absent 

pauses between words because linguistic knowledge imposes abstract structure on speech 

signals (Grossberg & Myers, 2000; McMurray & Jongman, 2011). Words are accessed more 

fluently when they are generally common, or when they are expected from a specific 

conversational partner. Episodic knowledge changes abstract processing.
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Despite their near-isomorphism, abstract and episodic representations are generally treated 

as “competing ideas,” rather than as complementary parts of a cognitive system that requires 

both stability and flexibility. It is self-evident that speech perception and production require 

abstract lexical and segmental representations. In modeling, abstract representations are 

tractable, and have ecological validity. Abstract representations dominate linguistic 

processing and memory: Messages are derived and retained in conversation, whereas 

superficial details are often forgotten. These facts often lead researchers to dismiss the role 

of indexical effects as extra-linguistic or superfluous (e.g., Bowers, 2000; González & 

McLennan, 2007; Mitterer & Ernestus, 2008; Pallier, Colome, & Sebastian-Galles, 2001). 

We consider this a missed opportunity. Although abstract representations may dominate 

linguistic processing, effects such as voice-specific priming help reveal how language, 

attention, and memory work together.

At this point, there have been numerous published articles examining indexical effects in 

language processing. Many are focused on voice-specific repetition priming, like the present 

study. Some examine explicit and implicit memory for clear and degraded words (e.g., 

Campeanu, Craik, & Alain, 2013; Church & Schacter, 1994; Geiselman & Bellezza, 1976; 

1977; Goh, 2005; Goldinger, 1996; Pilotti et al., 2000; Pilotti & Beyer, 2002; Pilotti, Meade, 

& Gallo, 2003; Schacter & Church, 1992; Sheffert, 1998a; 1998b), or continuous 

recognition memory for words and voices (e.g., Bradlow et al., 1999; Craik & Kirsner, 

1974; Palmeri et al., 1993, Sheffert & Fowler, 1995). Others are more focused on perception 

itself (e.g., Creel et al., 2008; Creel & Tumlin, 2011; Goldinger & Azuma, 2003; Luce & 

Lyons, 1998; Meehan & Pilotti, 1996). Studies such as these – experiments with studied and 

later repeated words – are most typically associated with “voice-specificity effects.” 

However, there are many effects of speaker variation beyond such paradigms.

Moment-to-moment indexical variations (in voice, speaking rate, emotional tone) are well-

known to command attention and broadly affect perception and memory across different 

populations of listeners (e.g., Kirk et al., 1997; Magnuson & Nusbaum, 2007; Martin et al., 

1989; Mullennix & Pisoni, 1990; Mullennix et al., 1989; Sommers, 1996). A growing 

literature on perceptual learning shows that familiarity with specific voices has wide-

ranging effects. These include helping infants isolate words in speech (Houston & Jusczyk, 

2000; 2003), improving word perception (Nygaard & Pisoni, 1998; Nygaard et al., 1994; 

Yonan & Sommers, 2000), improving lip-reading (Rosenblum et al., 2007), changing 

sublexical processing (Allen & Miller, 2004; Eisner & McQueen, 2005; Kraljic & Samuel, 

2005, 2007; Smith & Hawkins, 2012; Sumner, 2011; Sumner & Samuel, 2009; Theodore, 

Miller & DeSteno, 2009), and improving the ability to segregate overlapping voices 

(Johnsrude et al., 2013; Newman & Evers, 2007). Indexical variations in speech perception 

have wide-ranging effects on speech production, the phenomenon of phonetic convergence 

(or alignment; Goldinger, 1998; Goldinger & Azuma, 2004; Namy et al., 2004; Nielsen, 

2011; Pardo, 2006; Shockley et al., 2004; Smith & Hawkins, 2012). Studies have elucidated 

the cortical processes that bind lexical and indexical information into memory traces (e.g., 

Gagnepain et al., 2008).

Our purpose is not to review the large and diverse literature surrounding indexical 

processing in speech. We merely wish to emphasize that indexical effects are robust and 
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multifaceted: Testing whether they reliably emerge in one particular measure (e.g., lexical 

decision) is an important part of the scientific process, but we should not equate any single 

paradigm with “language processing,” writ large. Across domains, there is overwhelming 

evidence that indexical information matters in language perception, learning, memory, and 

production. Many authors appear motivated to protect abstraction-based theories from 

having to accommodate indexical processes, casting them as extra-linguistic, neurally 

segregated from the central business of linguistic processing (e.g., Mitterer & Ernestus, 

2008). We suggest that a deeper understanding of language will result from considering the 

entire spectrum of effects.

Returning specifically to the present study, McLennan and Luce (2005) derived the time-

course hypothesis from the claim in ART (Grossberg, 1980, 1999, 2003) that high-frequency 

units (such as segments in speech) typically achieve quick resonance and dominate 

perception. One clear strength of the hypothesis is its grounding in such a well-articulated 

theory. It is important to appreciate, however, that ART is a powerful theoretical framework, 

with great flexibility in predictions. Given certain assumptions, it easily predicts voice-

specificity effects, even at short time-scales. In ART, bottom-up and top-down features 

combine to achieve resonance, thereby creating perception and guiding attention. When 

experiments contain numerous voice changes, attention is repeatedly drawn to those changes 

(Goldinger et al., 1991; Magnuson & Nusbaum, 2007), increasing the likelihood of episodic 

encoding. And, if a recent memory trace is available that matches new input, ART predicts 

that it will drive the perceptual system toward faster resonance, relative to tokens without 

matching traces. As an adaptive model, ART easily makes this prediction without sacrificing 

internal consistency: It uses any available information to achieve stable internal 

representations of signals.

Copious evidence suggests that lexical memory includes both abstract and episodic 

representations. Consider perceptual learning in speech: Because the acoustic realization of 

any phoneme differs both within and across speakers, listeners must map varied spoken 

input onto intended phonemic categories (Apfelbaum et al., 2014), and they can quickly 

adjust phonemic categories across speakers (Dahan et al., 2008; Eisner & McQueen, 2005; 

Kraljic & Samuel, 2005, 2007; Norris, McQueen, & Cutler, 2003). Listeners use abstract, 

segmental knowledge to map input onto stable categories, and speaker-specific knowledge 

to guide the mapping.

Although the present study examined repetition priming, a similar convergence of abstract 

and episodic representations is observed in “higher” linguistic behavior. Altmann and 

Kamide (1999, 2009; Kamide, Altmann, & Haywood, 2003) used a visual world paradigm 

to examine anticipatory eye movements in sentence comprehension. In this paradigm, 

people make anticipatory saccades to depicted objects, almost in real-time with ongoing 

sentence processing. Recently, Kamide (2012) used this paradigm to test whether the 

interpretation of ambiguous clauses is speaker-specific. Participants viewed scenes depicting 

various objects (e.g., a man, a girl, a motorbike, a carousel) while hearing sentences with 

structurally ambiguous relative clauses (e.g., “The uncle of the girl who will ride the 

carousel/motorbike is from France”). Whereas one speaker consistently spoke sentences 

with who modifying the first noun phrase (such that the uncle rode the motorbike), another 
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consistently modified the second noun phrase. Upon hearing new sentences produced by 

those speakers, participants made anticipatory eye movements to whichever image was 

consistent with each speaker’s “attachment style.” Voice-specific memory helped resolve 

syntactic ambiguity in real-time, an example of abstract and specific representations 

working together in perception.

To accommodate the joint influences abstract and episodic representations on word 

perception, Goldinger (2007) cited the complementary learning systems (CLS) theory 

(McClelland, McNaughton, & O’Reilly, 1995; Norman & O’Reilly, 2003), which posits 

reciprocal hippocampal and cortical structures to support fast learning of specific instances 

and the slow appreciation of generalities. In CLS, the hippocampus is theorized to rapidly 

encode idiosyncratic events. In contrast, the neocortex receives input from the hippocampus 

(among other structures) and slowly derives stable prototypes. The system is hybrid; the 

hippocampal and cortical systems are interdependent. Upon word presentation (for 

example), the cortical system provides the categorical structure necessary for linguistic 

processing. Simultaneously, the hippocampus supports episodic encoding, leading to voice-

specific priming effects, perceptual learning, and the experience of memory. It is unclear 

whether such a model will fully explain the joint effects of abstract and episodic 

representations in speech, but it is abundantly clear that both forms of lexical memory 

matter. When a person encounters an old friend, the experience is both abstract and specific: 

All standard features (eyes, chin, etc.) are naturally appreciated as part of general face 

processing. At the same time, this particular person is an old friend, whose face triggers 

countless specific memories. From a theoretical perspective, our goal should be to develop 

accounts that elegantly combine cognitive stability and plasticity. Stability is critical for 

basic functions (e.g., reading, recognizing objects, etc.), but plasticity is the foundation for 

our own personal life stories.
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Appendix A

Results for “standard” lexical decision and semantic classification, using 

keyboard input

Description

In order to validate that our novel eye-tracking procedure faithfully approximates standard 

lexical decision and semantic classification tasks, we conducted two small-scale 

experiments. Both were identical to identical to Experiment 1, but used keyboard input (the 

‘f’ and ‘j’ keys), rather than the find-and-click methods of the main experiments. There were 

16 participants (mean age 19.4 years, 11 women) for lexical decision, and 21 participants 

(mean age 19.3 years, 12 women) for semantic classification.

Lexical Decision

The mean RTs for the second block of trials, along with calculated priming and voice effects 

are shown in Table A1. The results were analyzed in a 3×3 subject-based, RM ANOVA, 

with factors Stimulus Type (HF, LF, NW) and Repetition Type (New, SV, DV), with 

planned comparisons to evaluate priming and voice effects. There were reliable main effects 

of both Stimulus Type, F(2, 14) = 8.1, p < .01, η2
p = .19, and Repetition Type, F(2, 14) = 

5.9, p < .05, η2
p = .11, both in their expected directions. HF words (801 ms) were classified 

faster than LF words (821 ms), which were classified faster than Nonwords (884 ms). 

Although there were reliable simple effects for SV words, relative to new words, few 

planned comparisons were reliable. Voice effects were marginal for both HF words (23 ms, 

p = .08) and LF words (20 ms, p = .11), and reliable for Nonwords (29 ms, p = .04).

With respect to the question of interest, data collected with our novel eye-tracking method 

appear generally similar to data collected using the standard, keyboard method. TTI results 

(see Table 2) were 164 ms faster than keyboard RTs, but with comparable frequency effects 

(39 vs. 21 ms, respectively). Both priming effects and voice effects were stronger in the TTI 

data, relative to the keyboard data (by 47 and 33 ms, respectively). TTF results were 124 ms 

slower than keyboard RTs, again with comparable frequency effects (41 vs. 21 ms, 

respectively). Both priming and voice effects were slightly larger in the TTF results than the 

keyboard results (by 23 and 19 ms, respectively). Given the different sample sizes and 

response modes, we do not consider these differences further: The main point is that our 

novel procedure produces lexical decision results that are broadly similar to the more 

standard paradigm.
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Table A1

RTs (in ms) to new and repeated items (with resultant priming measures) in lexical decision, 

as a function of stimulus type and voice. “Priming” denotes differences, relative to new 

words, and “Voice Effects” compare SV versus DV priming.

HF Words Priming LF Words Priming NW Priming

New: 819 843 890

SV: 780 39* 801 42* 866 23, ns

DV: 803 16, ns 819 22, ns 895 −5, ns

Voice Effect: 23, ns 20, ns 29*

*
p < .05

Semantic Classification

The mean RTs for the second block of trials, along with calculated priming and voice effects 

are shown in Table A2. The results were analyzed in a 2×3 RM ANOVA, with factors 

Frequency (HF, LF) and Repetition Type (New, SV, DV), with planned comparisons to 

evaluate priming and voice effects. There were main effects of Frequency, F(1, 20) = 20.7, p 

< .001, η2
p =. 34, and Repetition Type, F(2, 19) = 11.2, p < .01, η2

p =. 18, both in their 

expected directions. HF words (824 ms) were classified faster than LF words (861 ms). 

Priming was robust for both SV and DV words. The voice effects were marginal for HF 

words (19 ms, p = .10) and reliable for LF words (30 ms, p = .02).

As with the lexical decision data, the results were broadly consistent with those from the 

eye-tracking procedure, but with stronger priming and voice effects in the eye-tracking 

results. TTI results (see Table 3) were 110 ms faster than keyboard RTs, with slightly 

stronger priming (by 32 ms) and voice effects (by 15 ms). TTF results were 192 ms slower 

than keyboard RTs, but both priming and voice effects were again stronger, relative to the 

keyboard RTs (by 44 and 37 ms, respectively).

Table A2

RTs (in ms) to new and repeated items (with resultant priming measures) in semantic 

classification, as a function of stimulus type and voice. “Priming” denotes differences, 

relative to new words, and “Voice Effects” compare SV versus DV priming.

HF Words Priming LF Words Priming

New: 860 905

SV: 796 64* 820 85**

DV: 815 45* 859 46*

Voice Effect: 19, ns 39*

*
p < .05,

**
p < .01
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Appendix B

Separate results for each direction of priming in Experiment 2

In the main text, the results of Experiment 2 are shown in Table 4, which shows mean RTs 

for all participants’ second block of trials, collapsed across task order. To allow full 

appreciation for the results, Table B1 shows results for participants who performed SC 

followed by LD, and Table B2 shows results for participants who performed LD followed 

by SC.

Table B1

Lexical decision RTs to new and repeated items (with resultant priming measures) as a 

function of stimulus type and voice, Experiment 2. Task order was SC followed by LD.

HF Words Priming Voice Effect LF Words Priming Voice Effect

Mouse-Click RTs

New Item 1635 (59) 1660 (48)

Same Voice 1516 (52) 119*** 1529 (50) 131***

Different Voice 1536 (52) 99*** 20, ns 1602 (40) 58* 73*

Time-to-Fixate

New Item 901 (48) 939 (35)

Same Voice 808 (39) 93** 840 (40) 99***

Different Voice 840 (32) 61* 32* 891 (30) 48** 51*

Time-to-Initiate

New Item 669 (33) 720 (48)

Same Voice 600 (38) 69*** 637 (41) 83**

Different Voice 635 (22) 34* 35* 671 (35) 49* 34*

Notes: Standard errors shown in parentheses. "Priming" denotes the contrast of repeated items versus new words. "Voice 
Effect" denotes the comparison of same- and diffferent-voice repetitions.
*
p < .05;

**
p < .01;

***
p < .001

For the LD data, results for the separate dependent measures (mouse RTs, TTF, and TTI) 

were analyzed in 2×3 RM ANOVAs (based on participants), with factors Frequency (HF, 

LF) and Repetition Type (New, SV, DV), and planned comparisons to evaluate priming and 

voice effects. Nonword results were not analyzed, as they could not receive priming from 

the preceding SC block. We report only key effects of interest here, avoiding full treatment 

of all interactions. There were reliable main effects of Frequency in the TTI and TTF 

measures (both F(1, 23) > 10.5, p < .01), but it was not reliable for the mouse RTs. Main 

effects of Repetition Type were reliable for all three measures (all F(1, 23) > 12.0, p < .01). 

As shown in Table B1, priming effects were reliable in every observation, and voice effects 

were reliable in every case except mouse RTs for HF words.

Papesh et al. Page 33

J Exp Psychol Gen. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table B2

Semantic classification RTs to new and repeated items (with resultant priming measures) as 

a functionof stimulus type and voice, Experiment 2. Task order was LD followed by SC.

HF Words Priming Voice Effect LF Words Priming Voice Effect

Mouse-Click RTs

New Item 2094 (78) 2036 (77)

Same Voice 2033 (70) 57* 1922 (66) 114**

Different Voice 2041 (67) 49* 8, ns 1990 (61) 46* 68**

Time-to-Fixate

New Item 1151 (51) 1060 (44)

Same Voice 1064 (46) 87** 1017 (38) 43*

Different Voice 1099 (52) 52* 35, ns 1044 (36) 16, ns 27, ns

Time-to-Initiate

New Item 903 (41) 977 (42)

Same Voice 870 (35) 33* 909 (36) 68**

Different Voice 925 (39) −22, ns 55** 952 (40) 25, ns 43*

Notes: Standard errors shown in parentheses. "Priming" denotes the contrast of repeated items versus new words. "Voice 
Effect" denotes the comparison of same- and diffferent-voice repetitions.
*
p < .05;

**
p < .01;

***
p < .001

For the SC data, results for the separate dependent measures were also analyzed in 2×3 RM 

ANOVAs (based on participants), with factors Frequency (HF, LF) and Repetition Type 

(New, SV, DV), with planned comparisons to evaluate priming and voice effects. There was 

a reliable main effect of Frequency in the Mouse RTs, F(1, 23) = 15.5, p < .01, η2
p =. 17, 

but it was “backwards,” with faster RTs to low-frequency words. The Frequency effect was 

marginal, in the usual direction, for the TTF results, F(1, 23) = 2.9, p = .07, and it was 

reliable for the TTI results, F(1, 23) = 19.0, p < .001, η2
p =. 31. Main effects of Repetition 

Type were reliable for several measures (LF and HF mouse RTs, HF TTF, and LF TTI 

measures; all F(1, 23) > 6.5, p < .05). As shown in Table B2, priming effects were generally 

robust (with several exceptions). Voice effects were only reliable in three cases (see Table 

B2), mainly in the TTI results.

In examining the results separately, the key question of interest is whether voice effects were 

strongly modulated by task order. To assess this, we conducted combined, mixed-model 

2×2×3 ANOVAs (one for each dependent measure). Task Order (LD-SC, SC-LD) was the 

between-subjects factor, with Frequency (HF, LF) and Repetition Type (New, SV, DV) as 

within-subject factors. We focus only on novel findings related to Task Order. For all three 

dependent measures (mouse RTs, TTF, and TTI), there were large main effects of Task 

Order (all F(2, 46) > 59.0, p < .001), reflecting slower performance in SC, relative to LD. 

For both Mouse RTs and TTF, there were reliable interactions of Task Order × Frequency 

(both F(2, 46) > 11.5, p < .01), reflecting “backward” frequency effects in the LD-SC task 

order. No such pattern was observed for TTI. No reliable interactions were observed 
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between Task Order × Repetition Type (all F < 1.0). Similarly, no reliable interactions were 

observed for Task Order × Frequency X Repetition Type (again, all F < 1.0). Overall, there 

was no evidence that Task Order affected priming or voice effects.
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Figure 1. 
Schematic trial outline. Each trial began with a gaze-contingent 2000-ms fixation cross, 

followed by the onset of a spoken word for either lexical decision (LD) or semantic 

classification (SC). ‘Word’ (‘larger than a toaster’) decisions were made by locating and 

clicking a blue ‘+’; ‘nonword’ (‘smaller than a toaster’) decisions were made by clicking a 

red ‘×’. Response options were randomly located within the same visual half-field 

throughout the experiment, but changed locations in every trial. The dashed box in the 

center did not appear in the procedure, but is shown to illustrate a buffer zone where 

response icons could not appear.
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Figure 2. 
Simulated sampling of “same-voice” and “different-voice” RTs, showing the relationship 

that emerges between item RT and voice effects. Panels A, C, E, and G show RT frequency 

distributions for hypothetical SV and DV words, sampled from flat distributions with equal 

variance, flat distributions with unequal variance, Gaussian distributions with unequal 

variance, and Weibull distributions with unequal variance (respectively). Panels B, D, F, and 

H show the associations that emerge between mean item RTs (SV+DV/2) and the size of 

voice effects (DV-SV).
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Figure 3. 
Simulated sampling of “same-voice” and “different-voice” RTs, with the extra assumption 

that both versions of each word are loosely related to each other. The upper panel shows RT 

frequency distributions for hypothetical SV and DV words: SV words were sampled from a 

Gaussian distribution, and DV versions were created by sampling normally-distributed 

changes to those base RTs. The lower panel shows the association that emerges between 

mean item RTs (SV+DV/2) and the size of voice effects (DV-SV).
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