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Abstract

Regulatory T (Treg) cells respond to immune and inflammatory signals to mediate 

immunosuppression, but how functional integrity of Treg cells is maintained under activating 

environments remains elusive. Here we found that autophagy was active in Treg cells and 

supported their lineage stability and survival fitness. Treg cell-specific deletion of the essential 

autophagy gene Atg7 or Atg5 led to loss of Treg cells, increased tumor resistance, and 

development of inflammatory disorders. Atg7-deficient Treg cells had increased apoptosis and 

readily lost Foxp3 expression, especially after activation. Mechanistically, autophagy deficiency 

upregulated mTORC1 and c-Myc function and glycolytic metabolism that contributed to defective 

Treg function. Therefore, autophagy couples environmental signals and metabolic homeostasis to 

protect lineage and survival integrity of Treg cells in activating contexts.
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Introduction

Regulatory T (Treg) cells play an indispensable role in preventing autoimmune disease and 

establishing self-tolerance
1
. The activation states and functional capacities of Treg cells are 

dynamically programmed by environmental signals
2
. Treg cells emerge from the thymus as 

quiescent central Treg cells (cTreg; CD44loCD62Lhi)
3
. In response to environmental cues in 

the periphery, a fraction of Treg cells are continuously activated and converted into effector 

Treg cells (eTreg; CD44hiCD62Llo) under steady state
3,4. After an inflammatory challenge, 

Treg cells are further activated and potently upregulate their suppressive activity and 

contribute to the regulation of inflammatory responses induced by autoimmunity, tumor and 

other stimuli
5
. Thus, the activation states and functional capacities of Treg cells are 

dynamically programmed by environmental signals. As for cell-intrinsic pathways, 

continued expression of Foxp3 is required to reinforce Treg cell functional integrity
1
. While 

Foxp3 expression is stable in vivo
6
, Treg cells can lose Foxp3 expression and acquire effector 

function in certain inflammatory conditions
7–10

, suggesting that activating environments 

could destabilize Foxp3 expression. Aside from lineage stability, maintenance of the anti-

apoptotic program also contributes to the functional integrity of Treg cells in maintaining 

immune tolerance
11

.

Macroautophagy (herein referred to as autophagy) is an evolutionarily conserved self-

digestive process that targets intracellular substrates for lysosomal degradation and recycling 

in response to stress and other environmental signals
12–14

. Autophagy plays important and 

context-dependent roles in T cell-mediated immune responses. For example, autophagy is 

required for survival and TCR-induced proliferation of T cells
15

. In contrast, activated CD8+ 

cells deficient in autophagy exhibit normal proliferation and effector function, but with 

impaired memory cell formation
16

. Autophagy is induced after TCR and cytokine 

stimulation
15,17,18

, but virus-specific CD8+ T cells downregulate autophagy activity during 

clonal expansion, followed by induction of autophagy when they stop dividing
16

. These 

studies highlight dynamic and signal-dependent function and regulation of autophagy.

We report here that autophagy is actively regulated in Treg cells, and serves as a central 

signal-dependent controller of Treg cells by restraining excessive apoptotic and metabolic 

activities. We found that Treg cell-specific loss of the essential autophagy gene Atg7 or Atg5 
was sufficient to break self-tolerance while facilitating tumor clearance. Atg7-deficient Treg 

cells exhibited impaired lineage stability and increased apoptosis, thereby compromising 

their functional integrity. Although autophagy is known to promote energy balance
14,17,19

, 

we found that Treg cells deficient in autophagy showed increased mTORC1 activity, c-Myc 

expression and glycolytic metabolism, characteristic of anabolic upregulation
20

. Inhibition 

of mTORC1 or c-Myc in Atg7-deficient Treg cells partly restored Treg cell stability and 

metabolic homeostasis. Collectively, our studies establish a crucial role of autophagy in 

establishing Treg cell-mediated immune tolerance by coordinating immune signals and 

metabolic homeostasis to protect the functional integrity of Treg cells.
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RESULTS

Autophagy is functionally active in Treg cells

To investigate regulation of autophagy in Treg cells, we quantified autophagosomes in 

peripheral Treg cells and naïve CD4+ cells using transgenic mice expressing the green 

fluorescent protein (GFP) fused to LC3 (GFP-LC3), which labels autophagic membranes
21

. 

Treg cells had significantly more cells labeled with GFP-LC3+ puncta than did naïve CD4+ 

cells (Fig. 1a), suggesting increased autophagosomes in Treg cells. Lipidated LC3 (LC3-II) is 

another marker of autophagic membranes
12–14

; immunoblot analysis showed that Treg cells 

had higher amount of LC3-II than naïve CD4+ cells (Supplementary Fig. 1a). Treatment of 

cells with a lysosome inhibitor bafilomycin A1 (Baf1A), which blocks lysosome-mediated 

degradation of autophagosomes, increased the amount of LC3-II in both Treg cells and naïve 

CD4+ cells, but Treg cells still had higher amount of LC3-II than naïve CD4+ cells 

(Supplementary Fig. 1a). Therefore, Treg cells have higher autophagy activity than naïve 

CD4+ cells, indicating a possible role of autophagy in Treg cells.

To test this hypothesis, we crossed mice with loxP-flanked Atg7 alleles (Atg7fl/fl) with 

Foxp3YFP-Cre (Foxp3Cre) mice to delete the essential autophagy gene Atg7 in Treg cells 

(hereafter Foxp3CreAtg7fl/fl). Deletion of Atg7 abrogated autophagy in Treg cells, as 

indicated by the absence of LC3-II in immunoblot analysis (Supplementary Fig. 1a). To 

determine whether Treg cells require autophagy to suppress antitumor immune responses, we 

inoculated Foxp3CreAtg7fl/fl mice with MC38 colon adenocarcinoma cells. Tumor growth 

was severely inhibited in Foxp3CreAtg7fl/fl mice, suggesting that Atg7-deficient Treg cells 

failed to inhibit antitumor immune response (Fig. 1b). Consistent with this notion, 

Foxp3CreAtg7fl/fl mice had greatly increased percentage of tumor-infiltrating CD8+ cells 

(Supplementary Fig. 1b), and expression of interferon-γ (IFN-γ) in effector CD4+ and CD8+ 

T cells (Fig. 1c). However, Foxp3CreAtg7fl/fl mice had a profound loss of Treg cells in the 

tumor site (Fig. 1d). These results identify a crucial role of Atg7 in endowing Treg cells the 

ability to suppress antitumor immune responses.

Treg deletion of Atg7 or Atg5 alters immune homeostasis

The indispensable role of Atg7 in maintaining Treg cells in a pathological condition 

prompted us to determine the requirement of autophagy in Treg cells in maintaining self-

tolerance under homeostatic conditions. Foxp3CreAtg7fl/fl mice at 10–12 weeks of age 

developed lymphoid hyperplasia with increased cellularity of the spleen and peripheral 

lymph nodes (PLNs) (Fig. 1e, Supplementary Fig. 1c). Foxp3CreAtg7fl/fl mice contained a 

higher proportion of the effector or memory population (CD44hiCD62Llo) in the CD4+ and 

CD8+ compartments (Fig. 1f). Moreover, CD44hi cells from Foxp3CreAtg7fl/fl mice showed 

increased expression of IFN-γ and interleukin 17 (IL-17) (Fig. 1g), but not IL-4 

(Supplementary Fig. 1d). Therefore, T cells from Foxp3CreAtg7fl/fl mice were spontaneously 

activated in vivo. Moreover, severe systemic inflammatory disorders were observed in aged 

Foxp3CreAtg7fl/fl mice (19–23 weeks old) with infiltrations of lymphocytes and myeloid 

cells observed in various organs (Fig. 1h). Thus, Atg7 is essential for Treg cell-mediated 

immune homeostasis.
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As autoimmune disease is frequently associated with loss of Treg cells, we examined Treg 

cells in the lymphoid organs of Foxp3CreAtg7fl/fl mice. Treg cell percentages were 

significantly reduced in spleen, PLNs and mesenteric lymph nodes (MLNs), but not the 

thymus, although Treg cell numbers remained largely unaltered due to the increase of total T 

cells (Fig. 1i). A more severe reduction of Treg cells was observed in colon lamina propria, a 

representative site of Treg activation, even in very young Foxp3CreAtg7fl/fl mice 

(Supplementary Fig. 1e). We next investigated whether Treg cell reduction in 

Foxp3CreAtg7fl/fl mice was a cell-autonomous defect. We generated mixed bone marrow 

(BM) chimeras by reconstituting Rag1−/− mice with BM cells from CD45.1+ mice mixed 1:1 

with those from either Foxp3CreAtg7+/fl or Foxp3CreAtg7fl/fl CD45.2+ mice. Atg7-deficient 

Treg cells were underrepresented in the spleen, PLNs and MLNs, but not the thymus 

(Supplementary Fig. 1f), indicative of a cell-autonomous requirement of Atg7 in Treg cell 

maintenance.

To conclusively test the role of autophagy in Treg cells, we deleted another essential 

autophagy gene, Atg5, in Treg cells by crossing Atg5fl/fl mice with Foxp3YFP-Cre mice 

(Foxp3CreAtg5fl/fl). Foxp3CreAtg5fl/fl mice had disrupted immune homeostasis of CD4+ and 

CD8+ cells (Supplementary Fig. 1g), associated with increased IFN-γ expression 

(Supplementary Fig. 1h). Additionally, Foxp3CreAtg5fl/fl mice had reduced Treg cell 

percentage (Supplementary Fig. 1i). Therefore, these results establish autophagy as a central 

and intrinsic regulator of Treg cell maintenance and immune homeostasis.

Impaired survival and stability of Atg7-null Treg cells

To investigate the underlying basis for the reduced cellularity of Atg7-deficient Treg cells, 

we first examined Treg cell proliferation. Treg cells in Foxp3CreAtg7fl/fl mice actually 

contained a higher percentage of Ki67+ cells than those in Foxp3CreAtg7+/fl mice 

(Supplementary Fig. 2a), but Atg7-deficient Treg cells from the mixed BM chimeras had 

normal percentage of Ki67+ cells (Supplementary Fig. 2b). Moreover, Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl Treg cells showed comparable proliferation after in vitro stimulation or 

adoptive transfer into Rag1−/− mice (Supplementary Fig. 2c,d). Thus, Atg7 is dispensable for 

Treg cell proliferation, and the reduced Treg cellularity in the absence of Atg7 is unlikely to 

result from a proliferative defect.

Because peripheral Treg cell number is tightly regulated by apoptosis
11

, we next examined 

apoptosis of Treg cells. Treg cells in Foxp3CreAtg7fl/fl mice had greatly increased staining of 

active caspase-3 as compared to those in Foxp3CreAtg7+/fl mice (Fig. 2a), indicative of a 

higher rate of apoptosis. Additionally, upon in vitro stimulation, Atg7-deficient Treg cells 

were impaired in survival, as indicated by the increased staining with active caspase-3 and 7-

AAD (Fig. 2b), and upregulation of Bim, which initiates Treg apoptosis
11

 (Fig. 2c). Atg7-

deficient Treg cells from mixed BM chimeras also had increased active caspase-3 and Bim 

expression (Supplementary Fig. 2e,f), indicative of a cell-autonomous requirement of Atg7 

in Treg cell survival.

Aside from cell survival, lineage stability of Treg cells is crucial for their maintenance and 

function
7–10

. Although mean fluorescence intensity (MFI) of Foxp3 was comparable in 

Atg7-sufficient and deficient Treg cells (data not shown), Treg cells from Foxp3CreAtg7fl/fl 
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mice had significantly elevated expression of IFN-γ under steady state (Fig. 2d), and upon 

tumor inoculation (Supplementary Fig. 2g). To directly examine the role of autophagy in 

maintaining Foxp3 expression in activated Treg cells in vivo, we transferred Atg7-sufficient 

and deficient Treg cells into Rag1−/− mice and assessed Foxp3 expression at 7–10 days after 

transfer. While only a small proportion of Atg7-sufficient Treg cells lost Foxp3 expression 

following homeostatic proliferation, the majority of Atg7-deficient Treg cells were unable to 

maintain Foxp3 (Fig. 2e). Loss of Foxp3 expression in Atg7-deficient Treg cells was 

associated with acquisition of production of IFN-γ, and to a lesser extent, IL-17 (Fig. 2f). 

IFN-γ expression was also elevated in the residual Foxp3+ Treg cells deficient in Atg7 (Fig. 

2f). Moreover, in an in vitro system to measure stability of activated Treg cells
22,23

, Atg7-

deficient Treg cells had greatly reduced Foxp3 (Fig. 2g) and elevated IFN-γ expression 

(Supplementary Fig. 2h). Collectively, Treg cells lacking Atg7 show impaired Foxp3 

expression but aberrant acquisition of inflammatory cytokine expression in vivo and in vitro, 

indicating a central role of autophagy in maintaining the stability of Treg cells.

To explore the relationship between survival and stability defects of Atg7-deficient Treg 

cells, we crossed Foxp3CreAtg7fl/fl mice with mice expressing a Bcl2 transgene in 

lymphocytes (Bcl2-transgenic, Bcl2-TG)
24

. The excessive apoptosis of Foxp3CreAtg7fl/fl 

Treg cells was reduced in Foxp3CreAtg7fl/flBcl2-TG cells (Supplementary Fig. 2i). However, 

Foxp3CreAtg7fl/flBcl2-TG mice still had reduced Treg cell percentage and spontaneously 

activated conventional T cells (Supplementary Fig. 2j,k). Additionally, as compared with 

Treg cells from control Bcl2-TG mice, those from Foxp3CreAtg7fl/flBcl2-TG mice had 

elevated expression of IFN-γ (Supplementary Fig. 2l), and reduced Foxp3 expression after in 
vitro culture (Supplementary Fig. 2m). Therefore, survival and stability defects of Atg7-

deficient Treg cells represent two discrete effects induced by loss of autophagy.

Atg7 restricts TCR-dependent mTORC1 signaling

To explore the biochemical basis for Atg7 functions, we performed functional genomics 

studies and found that phosphatidylinositol-3-OH kinase (PI(3)K) p110δ signaling, which 

was crucial for mTORC1 activation, was enhanced in Foxp3CreAtg7fl/fl Treg cells (data not 

shown). Further, Foxp3CreAtg7fl/fl Treg cells had increased cell size and CD71 and CD98 

expression (Fig. 3a), all of which are dependent upon mTORC1 signaling
25

. Indeed, flow 

cytometry analysis showed that Treg cells from Foxp3CreAtg7fl/fl mice had increased S6 

phosphorylation, indicative of mTORC1 activation (Fig. 3a). After anti-CD3 and anti-CD28 

stimulation, Atg7-deficient cells exhibited a more pronounced upregulation of S6 and 

4EBP1phosphorylation, as compared with Atg7-sufficient Treg cells (Fig. 3b). Furthermore, 

Atg5-deficient Treg cells had increased cell size, CD71 and CD98 expression, and S6 

phosphorylation (Supplementary Fig. 3a). Therefore, autophagy is essential for restraining 

mTORC1 activity in Treg cells.

Signals from TCR, CD28 co-stimulation and IL-2 elicit mTORC1 activity
26

. To investigate 

the involvements of upstream inputs for mTORC1 regulation, we activated Treg cells with 

different stimuli and measured S6 phosphorylation. Anti-CD3 stimulation resulted in 

hyperactivation of S6 phosphorylation in Foxp3CreAtg7fl/fl Treg cells, and CD28 co-

stimulation further boosted S6 phosphorylation in both Foxp3CreAtg7+/fl and 
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Foxp3CreAtg7fl/fl Treg cells (Fig. 3c). The kinases PI(3)K, Akt and PDK1 are known to 

contribute to mTORC1 activation in response to TCR-CD28 stimulation
26

. To determine the 

molecular basis for TCR-CD28-induced aberrant mTORC1 activation in the absence of 

Atg7, we treated cells with inhibitors for PI(3)K (LY294002), Akt (AKTi-1/2), and PDK1 

(PDKi). Inhibition of PI(3)K and PDK1, but not Akt, blocked excessive S6 phosphorylation 

in Atg7-deficient Treg cells (Fig. 3d). Moreover, compared with control cells, Atg7-deficient 

Treg cells had moderately increased expression of the PI(3)K components p110δ and p85, 

and PDK1 (Supplementary Fig. 3b), while expression of Lck or phosphorylation of total 

tyrosine residues including Lck was unaltered (Supplementary Fig. 3b and data not shown). 

These results indicate that autophagy negatively regulates PI(3)K-PDK1 abundance and 

activation.

To determine the contribution of aberrant mTORC1 signaling to the defects in Atg7-

deficient Treg cells, we treated Foxp3CreAtg7fl/fl mice with rapamycin in vivo. Rapamycin 

treatment moderately reduced active capase-3 staining (Fig. 3e), but more importantly, 

greatly diminished IFN-γ production in Treg cells in Foxp3CreAtg7fl/fl mice (Fig. 3f). 

Moreover, following adoptive transfer of Atg7-sufficient and deficient Treg cells into 

Rag1−/− mice, treatment of recipients with rapamycin largely restored Foxp3 expression in 

donor-derived Atg7-deficient Treg cells (Fig. 3g). Rapamycin also rectified Foxp3 expression 

in Atg7-deficient Treg cells in the in vitro Treg cell stability assay (Fig. 3h). Therefore, 

autophagy maintains Treg cell stability, at least in part, by restraining mTORC1 signaling.

Atg7-mediated transcriptional programs rely on mTORC1

To explore autophagy-dependent transcriptional programs, we analyzed gene expression 

profiles of in vitro activated Treg cells. Compared to Foxp3CreAtg7+/fl cells, expression of 

360 and 398 probes were respectively upregulated and downregulated (by greater than 0.5 

log2 fold change) in Foxp3CreAtg7fl/fl Treg cells (Fig. 4a). To identify key networks regulated 

by autophagy in activated Treg cells, we did gene-set enrichment analysis (GSEA)
27

. 

Consistent with our finding that Atg7-deficient Treg cells had defective survival and stability, 

the caspase and cytokine pathways were enriched in these cells (Fig. 4b,c). Furthermore, T 

helper cell differentiation pathway was identified to be the most enriched canonical pathway 

in Atg7-deficient Treg cells by ingenuity pathway analysis (IPA) of the differentially 

expressed genes at the 0.5 log2 cut-offs (Supplementary Fig. 4a). Also, IPA of upstream 

regulation revealed the activation of PI(3)K in Atg7-deficient Treg cells, but suppression of 

Foxp3, Foxo3 and Bach2 – factors crucial for Treg cell generation and maintenance by 

repressing effector programs
1,28,29

 (Supplementary Fig. 4b). Therefore, these functional 

genomics analyses support a crucial role of Atg7 in restraining cytokine expression and 

effector programs in Treg cells.

To determine the contribution of aberrant mTORC1 to Atg7-mediated transcriptional 

programs, we compared gene expression profiles of in vitro activated Treg cells from 

Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice with or without rapamycin treatment. Atg7-

dependent targets (a total of 758 probes) were partitioned into five distinct clusters that 

differed in their responses to rapamycin (Fig. 4d). A salient feature was that the majority of 

Atg7 targets (493 out of 758 probes) fell into cluster 1, in which their expression was 
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rectified by rapamycin. Moreover, cluster 5 contained 13 probes whose expression was 

partially rectified by rapamycin, and cluster 2 contained 9 probes that showed the opposite 

direction of change in expression. Thus, ~68% (clusters 1, 2 and 5) of all Atg7 targets were 

rapamycin responsive as they had a diminished response after rapamycin treatment (Fig. 

4d,e). In contrast, only 217 probes in cluster 4 had equal magnitude of change (> 0.5 log2 

fold change) in both rapamycin-treated and non-treated Foxp3CreAtg7fl/fl Treg cells, thus 

representing rapamycin non-responsive genes. In addition, cluster 3 contained 26 probes that 

were differentially expressed in both types of comparisons, but to a greater extent in 

rapamycin-treated Foxp3CreAtg7fl/fl Treg cells compared with non-treated Foxp3CreAtg7fl/fl 

cells. Furthermore, rapamycin considerably rectified expression of genes associated with 

gene sets altered by Atg7 deficiency described above, namely caspase and cytokine 

pathways (Supplementary Fig. 4c,d). These results identify a crucial contribution of 

mTORC1 to autophagy-dependent transcriptional programs.

Atg7 restraints glycolytic metabolism in Treg cells

Differentiation of Treg cells is shaped by metabolic programs
30–32

, but how Treg stability is 

controlled by cellular metabolism remains unclear. The aberrant activation of mTORC1 in 

Atg7-deficient Treg cells prompted us to examine the involvement of metabolic programs. 

We measured mitochondrial oxygen consumption rate (OCR) and extracellular acidification 

rate (ECAR), which denote mitochondrial OXPHOS and glycolytic activities, respectively. 

After TCR-CD28 stimulation, Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl Treg cells had 

comparable OCR (Supplementary Fig. 5a), but ECAR was significantly elevated in 

Foxp3CreAtg7fl/fl Treg cells (Fig. 5a). The reduced OCR/ECAR ratio in Atg7-deficient Treg 

cells indicated a preferential use of glycolysis over OXPHOS by these cells (Fig. 5b). 

Moreover, rapamycin treatment reduced ECAR in Atg7-deficient Treg cells (Fig. 5c), 

indicating a crucial role of mTORC1 in Atg7-dependent metabolic homeostasis.

To examine the functional importance of cellular metabolism, we treated Atg7-deficient 

cells with dichloroacetate (DCA) in the Treg stability assay; DCA shifts glycolysis towards 

OXPHOS by targeting pyruvate dehydrogenase kinase
30

. DCA treatment elevated Foxp3 

expression in Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl Treg cells to a largely comparable level 

(Fig. 5d). Of note, methylation of Treg cell-specific demethylated region (TSDR, also known 

as CNS2) is associated with maintenance of Foxp3 expression and Treg cell stability
23,33

. 

TSDR methylation was comparable between Atg7-sufficient and deficient Treg cells, and 

DCA treatment had no effect (Supplementary Fig. 5b). Thus, autophagy-dependent 

metabolic regulation contributes to Foxp3 expression but in a process independent of TSDR 

methylation.

To determine molecular basis for the altered glycolysis, we examined expression of 

hexokinase 2 (HK2), a rate-limiting enzyme in glycolysis. HK2 expression was increased in 

Foxp3CreAtg7fl/fl Treg cells (Supplementary Fig. 5c), but was considerably reduced by 

rapamycin treatment (Supplementary Fig. 5d). In contrast, although the mTORC1-HIF1α 

pathway promotes glycolysis in TH17 cells and effector CD8+ T cells
32,34

, HIF1α 

expression was not altered in Atg7-deficient Treg cells (Supplementary Fig. 5e,f). Altogether, 

Atg7 negatively controls mTORC1-dependent glycolytic metabolism in Treg cells.

Wei et al. Page 7

Nat Immunol. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c-Myc links mTORC1 to glycolysis of Treg cells

Aside from HIF1α, c-Myc is another crucial regulator of T cell glycolysis
35

. c-Myc pathway 

was enriched in our IPA analysis of Atg7-deficient Treg cells (data not shown). Compared 

with Treg cells from Foxp3CreAtg7+/fl mice, those from Foxp3CreAtg7fl/fl Treg mice had 

increased c-Myc expression following anti-CD3-CD28 stimulation (Fig. 6a,b). To determine 

if upregulation of c-Myc in Atg7-deficient Treg cells depends upon mTORC1, we treated 

Foxp3CreAtg7fl/fl mice with rapamycin and examined c-Myc expression in Treg cells. 

Rapamycin treatment considerably reduced c-Myc expression in Atg7-deficient Treg cells 

(Fig. 6c). Moreover, dysregulated expression of c-Myc-associated genes in Atg7-deficient 

Treg cells was rectified upon rapamycin treatment (Fig. 6d). To further explore the role of 

mTORC1 in mediating c-Myc expression in Atg7-deficient Treg cells, we crossed 

Cd4CreAtg7fl/fl mice with Rptorfl/fl mice to abolish Raptor, the essential component of 

mTORC1, in Atg7-deficient T cells. Raptor deletion strongly reduced c-Myc expression in 

Atg7-deficient Treg cells (Supplementary Fig. 6a). These results indicate that Atg7 regulates 

c-Myc expression in Treg cells in an mTORC1-dependent manner.

The Myc locus is enriched with binding sites for bromodomain-containing proteins that 

recognize acetylated lysine residues of histones
36

, and two bromodomain inhibitors, JQ-1 

and i-BET-762, effectively inhibit c-Myc expression and function
36,37

 (data not shown). To 

determine the contribution of aberrant c-Myc expression to increased glycolysis in 

Foxp3CreAtg7fl/fl Treg cells, we treated cells with JQ-1 and measured ECAR. JQ-1 treatment 

reduced ECAR in Atg7-deficient Treg cells (Fig. 6e). In the in vitro Treg stability assay, JQ-1 

or i-BET-762 restored Foxp3 expression in Atg7-deficient Treg cells (Fig. 6f and 

Supplementary Fig. 6b). Therefore, Atg7 maintains Treg cell stability by targeting mTORC1-

c-Myc pathway.

Activated Treg cells are sensitive to Atg7 deficiency

Under steady state, Treg cells are spontaneously and continuously activated in response to 

self-antigens and environmental cues
3,4. To explore the role of autophagy in Treg cells with 

different activation states, we crossed Foxp3CreAtg7fl/fl mice with mice transgenic for GFP 

driven by the recombination-activating gene 2 (Rag2) promoter to label recent thymic 

emigrates (RTEs) with GFP
38

. In these mice, GFP+ peripheral T cells represent RTEs that 

have left the thymus within 2–3 weeks and show naïve phenotypes, while GFP− cells are 

mature peripheral T cells that have experienced peripheral environment cues
3,38

. Treg cells in 

Rag2GFPFoxp3CreAtg7fl/fl mice were diminished in the GFP− compartment, but not in the 

GFP+ compartment, as compared with the counterparts in Rag2GFPFoxp3CreAtg7+/fl mice 

(Fig. 7a). Additionally, the increased apoptosis of Atg7-deficient Treg cells, as determined by 

active caspase-3 staining, was observed only in the GFP− compartment (Fig. 7b). These 

results identify a preferential requirement of autophagy in maintaining the cellularity and 

survival of activated Treg cells.

Published reports highlight that the activated eTreg cells differentiate from the quiescent 

cTreg population in response to environmental cues
3,4. Autophagy activity was upregulated 

in eTreg cells, as revealed by the significantly more GFP-LC3+ puncta in eTreg than cTreg 

cells (Fig. 7c). In Foxp3CreAtg7fl/fl mice, the eTreg population was modestly 
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underrepresented in Treg cells (Fig. 7d), but such defect was more pronounced in a 

competitive environment created by the mixed BM chimeras (Fig. 7e), indicating a cell-

autonomous requirement of Atg7 in this process. Moreover, eTreg cells in Foxp3CreAtg7fl/fl 

mice showed a more pronounced upregulation of apoptosis compared with cTreg cells (Fig. 

7f). In line with this, eTreg cells had higher basal level of mTORC1 activity than cTreg cells 

as determined by S6 phosphorylation, and Atg7 deficiency augmented mTORC1 activity to 

a greater degree in eTreg cells (Fig. 7g). Thus, autophagy functions in both Treg subsets, but 

eTreg cells are more sensitive to autophagy deficiency, in agreement with their more 

activated state and elevated mTORC1 activity (Supplementary Fig. 7).

Discussion

A salient feature of the autoreactive Treg cells is the dynamic programming of their 

activation states in response to environmental and immune signals. How Treg cells maintain 

their survival fitness and lineage stability under the activating environments is poorly 

understood. Here we identify that autophagy is dynamically regulated in Treg cells, and 

deletion of Atg7 or Atg5 specifically in Treg cells results in increased apoptosis and impaired 

lineage stability. We further reveal an inhibitory effect of autophagy on mTORC1 that 

contributes to the survival and stability of Treg cells. Furthermore, aberrant mTORC1 

elevates c-Myc expression and glycolytic metabolism in autophagy-deficient Treg cells, and 

pharmacological blocking of excessive mTORC1, c-Myc or glycolytic activities restores, at 

least in part, the impaired stability of autophagy-deficient Treg cells. Our studies therefore 

establish autophagy as a crucial regulator of Treg functional integrity, and identify a key role 

of autophagy in restraining mTORC1 and c-Myc function and glycolytic metabolism.

Homeostatic stimuli and environmental cues drive the continuous activation and progressive 

functional maturation of Treg cells
2
. However, after activation in vivo and in vitro, a 

proportion of Treg cells lose Foxp3 expression and lineage stability
22,23

. One unanswered 

question is therefore how Treg cells retain their survival fitness and functional integrity in 

activating contexts. Our studies identify an important role of autophagy in this process. Treg 

cells exhibit higher autophagy activity than naïve T cells, and they further upregulate 

autophagy in the activated eTreg subset. The exact stimuli that induce autophagy in Treg cells 

remain to be identified. Autophagy deficiency has a more pronounced effect on the 

maintenance of activated Treg cells than resting Treg cells in the periphery under steady state, 

and at sites of inflammation including tumor microenvironment and colon lamina propria. 

Moreover, Atg7-deficient Treg cells readily lose Foxp3 expression after extensive 

proliferation in Rag1−/− mice, or after TCR stimulation in vitro. These results identify a 

previously unappreciated mechanism that functions preferentially in activated Treg cells to 

protect their survival fitness and lineage stability.

mTORC1 signaling is widely recognized as a negative regulator of autophagy. Specifically, 

in a nutrient-replete environment, activation of mTORC1 inhibits autophagy; 

downregulation of mTORC1 activity under nutrient deprivation facilitates the induction of 

autophagy
12–14

. However, prolonged starvation can result in the reactivation of mTORC1 in 

an autophagy-dependent manner by degradation of autolysosomal products
39

. Unexpectedly, 

we found that autophagy plays an important role in restricting mTORC1 activation in Treg 
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cells activated by TCR and other stimuli. Of note, mTORC1 is a crucial regulator in Treg 

cells, and either diminished or excessive mTORC1 disrupts Treg cell suppressive 

functions
40,41

. The in vivo rapamycin treatment experiment highlights the impacts of 

mTORC1 dysregulation on the stability and survival of Treg cells, and transcriptional 

programs controlled by Atg7. As for the biochemical mechanism by which autophagy 

regulates mTORC1 signaling, one possibility is that autophagy targets selective TCR 

signaling components or mTORC1 upstream regulators for degradation to modulate the 

strength of mTORC1 signaling. For example, a recent study indicates that autophagy shapes 

how TCR signals to NF-κB in effector T cells by selective degradation of Bcl-10, although 

the underlying mechanisms and functional outcomes are context-dependent
42

. In support of 

this notion, protein abundance of PI(3)K components and PDK1 are increased in the absence 

of autophagy, and pharmacological inhibition of PI(3)K or PDK1 blocks mTORC1 

hyperactivation in Atg7-deficient Treg cells. Future studies are warranted to reveal the 

detailed biochemical pathway by which autophagy modulates the activity of PI(3)K and 

PDK1 signaling.

T cell survival, proliferation and function require dynamic reprogramming of cellular 

metabolism
20

, and glycolytic capacity and reserve are severely impaired in the in vitro 
generated Treg cells compared with TH1 and TH17 cells

30
. How glycolytic activity is 

restrained in Treg cells remains poorly defined, and our results identify a crucial inhibitory 

effect of autophagy on Treg cell glycolysis. Importantly, pharmacological blocking of 

glycolytic metabolism or c-Myc function partly restores the defective stability of Atg7-

deficient Treg cells, thereby highlighting the functional contribution of dysregulated 

metabolism in this process. We and others have recently described a role of the phosphatase 

PTEN in the regulation of T cell glycolysis in Treg cells
43,44

. However, PTEN mainly 

restricts mTORC2 but not mTORC1 activity in Treg cells, and acts to control TH1 and TFH 

cell responses
43,44

. In contrast, Atg7-deficient Treg cells show dysregulated mTORC1-c-Myc 

signaling and are selectively defective in controlling TH1 cell response, without affecting 

TFH cell responses (our unpublished observation), suggesting that Treg cells employ discrete 

mechanisms to properly establish their metabolic programs. Interestingly, whereas our study 

indicates a negative role of glycolysis in the maintenance of Treg cell stability, a recent study 

identifies that induction of Treg cells from human conventional T cells is dependent on 

glycolysis
45

, thereby highlighting context-dependent functions of glycolysis in Treg cell 

biology.

In summary, our study has unveiled the interplay between autophagy and metabolic 

programming as a new mechanism to enforce Treg cell functional integrity in response to 

immune signals. We further establish that autophagy acts as a negative regulator of 

mTORC1 and c-Myc function and glycolytic metabolism to maintain metabolic balance in 

activated Treg cells. The identification of autophagy as a central signal-dependent quality 

control mechanism in Treg cells provides new opportunities for therapeutic intervention of 

autoimmune diseases and cancer. From this perspective, by strengthening tumor-associated 

immune responses, targeting Treg cell autophagy could act in synergy with strategies that 

block autophagy in tumor cells for added benefits in cancer therapy
13

.
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Online methods

Mice

Rag1−/− and Rag2GFP mice
38

 were purchased from the Jackson Laboratory. GFP-LC3, 

Atg7fl/fl and Atg5fl/fl mice were as described
21,46,47

. Foxp3YFP-Cre mice were a gift from A. 

Rudensky
48

. Foxp3CreAtg7fl/fl mice were used at 7–16 weeks old unless otherwise noted, 

with the age and gender-matched Foxp3CreAtg7+/fl mice as controls. For treatment with 

rapamycin, mice were injected intraperitoneally with rapamycin (4 mg per kg body weight) 

daily, and then analyzed five days later. BM chimeras were generated by transferring 5 × 106 

T cell-depleted BM cells into sublethally irradiated (5 Gy) Rag1−/− mice. All mice were kept 

in a specific pathogen-free facility in the Animal Resource Center at St. Jude Children’s 

Research Hospital. Animal protocols were approved by the Institutional Animal Care and 

Use Committee of St. Jude Children’s Research Hospital.

Flow cytometry

For analysis of surface markers, cells were stained in PBS containing 2% (wt/vol) BSA, with 

anti-CD4 (RM4-5), anti-CD8α (53-6.7), anti-TCRβ (H57-597), anti-CD44 (1M7), anti-

CD62L (MEL-14), anti-CD45.1 (A20), anti-CD45.2 (104), anti-CD71 (R17217), and anti-

CD98 (RL388; all from eBioscience). Intracellular Foxp3 (FJK-16s), Ki67 (SolA15), IFN-γ 

(XMG1.2), IL-4 (11B11), IL-17 (17B7; all from eBioscience), Bim (C34C5), c-Myc 

(D84C12), and p-S6 (D57.2.2E; all from Cell Signaling Technology) were analyzed by flow 

cytometry according to the manufacturer’s instructions. For intracellular cytokine staining, T 

cells were stimulated for 4 h with PMA plus ionomycin in the presence of monensin before 

intracellular staining according to the manufacturer’s instructions (eBioscience). Caspase-3 

activity was measured using active caspase-3 apoptosis kit (BD Biosciences). To monitor 

cell division, lymphocytes were labeled with CellTrace™ violet (Life Technologies). Flow 

cytometry data were acquired on LSRII or LSR Fortessa (BD Biosciences) and analyzed 

using Flowjo software (Tree Star).

Imaging and histology

Purified GFP-LC3 naïve CD4+ cells and Treg cells were rested in complete medium for 1 h 

at 37°C. Cells were harvested and fixed by 4% (vol/vol) neutral buffered paraformaldehyde 

solution. Images were acquired using a Zeiss Axio ObserverZ.1 microscope equipped with a 

CSU-22 spinning disk (Yokagawa), Delta Evole EMCCD camera (Photometrics), 100× 1.45 

NA oil objective and Slidebook imaging software (3i Intelligent Imaging Innovations). 

Images were subsequently processed using a Laplacian filter to detect GFP-LC3+ punctum 

objects having a minimum volume of 0.1 μm3. Frequency of cells with GFP-LC3+ puncta 

and number of GFP-LC3+ puncta per cell were determined for each sample. For histology 

analysis, tissues were fixed by 10% (vol/vol) neutral buffered formalin solution, embedded 

in paraffin, sectioned and stained with hematoxylin and eosin, and the clinical signs of 

autoimmune diseases were analyzed by an experienced pathologist (P. Vogel).
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Tumor model

MC38 colon adenocarcinoma cells were maintained in our laboratory and cultured in 

DMEM medium supplemented with 10% (vol/vol) FBS and 1% (vol/vol) penicillin-

streptomycin. Gender-matched Foxp3CreAtg7+/fl mice and Foxp3CreAtg7fl/fl mice were 

injected subcutaneously with 2 × 105 MC38 colon adenocarcinoma cells in the right flank. 

Tumors were measured regularly with digital calipers and tumor volumes were calculated by 

the formula: Length × Width × [(Length × Width) ^ 0.5] × π/6. To prepare tumor infiltrating 

lymphocytes (TILs), tumor was excised, minced and digested with 0.5 mg/ml Collagenase 

IV (Roche) + 200 U/ml DNase I (Sigma) for 1 h at 37°C. TILs were isolated by density-

gradient centrifugation over Percoll (Life Technologies).

Cell purification and culture

Unless otherwise noted, lymphocytes were isolated from spleen and PLNs, that included 

inguinal, auxiliary and cervical lymph nodes, and naïve CD4+ cells (CD4+Foxp3-

YFP−CD44loCD62Lhi), Treg cells (CD4+Foxp3-YFP+), cTreg cells (CD4+Foxp3-

YFP+CD44loCD62Lhi) and eTreg cells (CD4+Foxp3-YFP+CD44hiCD62Llo) were sorted on 

a MoFlow (Beckman-Coulter) or Reflection (i-Cyt). Sorted Treg cells were cultured in plates 

coated with anti-CD3 (145-2C11) and anti-CD28 (37.51; both from eBioscience) for 4 days 

in Click’s medium supplemented with β-mercaptoethanl, 10% (vol/vol) FBS, 1% (vol/vol) 

penicillin-streptomycin and 200 U/ml IL-2. In some experiments, rapamycin (50 nM), JQ-1 

(500 nM), i-BET-762 (500 nM) and DCA (10 mM) were added to the culture.

Adoptive transfer

For adoptive transfer, Treg cells from Foxp3CreAtg7+/fl mice and Foxp3CreAtg7fl/fl mice 

were transferred to the Rag1−/− mice. Seven to ten days after the transfer, recipients were 

euthanized for the analysis of Foxp3 and cytokine expression in transferred cells. For 

treatment with rapamycin, Rag1−/− mice were injected intraperitoneally with rapamycin (2 

mg per kg body weight) every other day from day 1, and then analyzed at day 10.

RNA and Immunoblot analysis

Real-time PCR analysis was performed with primers and probe sets from Applied 

Biosystems, as described
49

. Immunoblots were performed as described previously
24

, using 

the following antibodies: Lck (2752), HK2 (C64G5), p85 (19H8), PDK1 (3062), p-S6 (2F9), 

p-4EBP1 (236B4), c-Myc (D84C12; all from Cell Signaling Technology), LC3 

(NB100-2220; Novus), p110δ (EPR386; Abcam), HIF1α (10006421; Cayman) and β-actin 

(AC-15; Sigma).

Seahorse assays

Sorted Treg cells were stimulated with plate-bound anti-CD3 and anti-CD28 for 4 h in the 

presence of IL-2. In certain experiments, rapamycin (50 nM) and JQ-1 (500 nM) were added 

to the culture. After stimulation, cells were re-plated in XF media (non-buffered DMEM 

containing 5 mM glucose, 2 mM L-glutamine and 1 mM sodium pyruvate). XF-24 

Extracellular Flux Analyzer (Seahorse Bioscience) was used to measure OCR and ECAR in 
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response to 1 μM oligomycin, 2 μM fluoro-carbonyl cyanide phenylhydrazone (FCCP) and 1 

μM Rotenone.

Methylation analysis of Treg cell-specific demethylated region

CellTrace-labeled Treg cells were cultured with anti-CD3, anti-CD28, and IL-2 for 4 days in 

the presence of DMSO or DCA. Divided cells were sorted, and genomic DNA was prepared 

by a DNeasy Blood & Tissue kit (Qiagen). Bisulfite conversion of DNA was conducted with 

an EZ DNA Methylation-Direct kit (Zymo Research). Intron 1 of Foxp3 (corresponding to 

CNS2) was amplified with a primer set as described (forward, 5′-

TATTTTTTTGGGTTTTGGGATATTA-3′ and reverse, 5′-

AACCAACCAACTTCCTACACTATCTAT-3′)
44

. PCR products were ligated into pGEM-T 

Easay vectors (Promega) and sequenced (more than 29 sequences per sample).

Gene expression profiling and bioinformatic analysis

Treg cells from Foxp3CreAtg7+/fl mice (n=4), Foxp3CreAtg7fl/fl mice (n=4), rapamycin-

treated Foxp3CreAtg7+/fl mice (n=4) and rapamycin-treated Foxp3CreAtg7fl/fl mice (n=4) 

were stimulated with plate-bound anti-CD3 and anti-CD28 for 4 h. RNA samples from these 

cells were analyzed with the Mouse Gene 2.0 ST Signals array. Differentially expressed 

transcripts were identified by ANOVA (Partek Genomics Suite v6.5) and the Benjamini-

Hochberg method was used to estimate the false discovery rate (FDR) as described 

previously
25

. Lists of differentially expressed genes at the 0.5 log2 cut-offs were used for 

IPA canonical pathway and upstream signaling analyses. GSEA was performed as 

described
27

. The microarray data have been deposited into the GEO series database 

(GSE75218).

Statistical analysis

Prism 5 software (GraphPad) was used to analyze data by performing two-tail unpaired 

Student’s t-test. When multiple groups were compared, one-way ANOVA with the Tukey 

test was performed. P value of less than 0.05 was considered significant. All error bars 

represent the s.e.m.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Treg cells have active autophagy and require Atg7 for mediating tumor immune 
tolerance and self-tolerance
(a) Representative images (scale bars, 5 μm) (left) and quantification of percentages of cells 

with GFP-LC3+ puncta (right) in peripheral naïve CD4+ cells and Treg cells purified from 

GFP-LC3 mice (n=3 mice). (b–d) Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice (n=4 mice 

per genotype) were inoculated with MC38 colon adenocarcinoma cells, and tumor growth 

(b) was measured. Flow cytometry analyzing IFN-γ expression in Foxp3−CD4+ and CD8+ T 

cells (c, left), frequency of IFN-γ+ cells (c, right) and Foxp3 expression in CD4+ T cells (d) 

in tumor-infiltrating lymphocytes. Numbers in quadrants indicate percent cells in each 

throughout, and numbers adjacent to outlined areas indicate percent Foxp3+ cells (d). (e–g) 

Analysis of Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice (10–12 weeks old) under steady 

state. Total cellularity of spleen and PLNs (n=8 mice per genotype) (e). Flow cytometry 

analyzing the expression of CD62L and CD44 (f, left) and IFN-γ and IL-17 (g, left), and 

frequency of CD44hiCD62Llo cells (n=6 mice per genotype) (f, right) and IFN-γ+ or IL-17+ 

cells (n=6 mice per genotype) (g, right) in splenic Foxp3−CD4+ and CD8+ T cells. Numbers 

adjacent to outlined areas indicate percent IFN-γ+ or IL-17+ cells (g, left). (h) Hematoxylin 

and eosin staining of colon, esophagus, liver, lung, pancreas, prostate gland, salivary gland, 

and skin from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice (19–23 weeks old). 

Magnification and scale bars: ×40 and 100 μm (colon and skin), ×20 and 200 μm 
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(esophagus, liver, pancreas, prostate gland and salivary gland) and ×10 and 200 μm (lung). 

(i) Flow cytometry analyzing YFP-Foxp3 expression in CD4+ T cells (left), and frequency 

and number of YFP-Foxp3+ cells (right) in the thymus, spleen, PLNs and mesenteric lymph 

nodes (MLNs) of Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice (10–12 weeks old) (n=7 mice 

per genotype). Numbers adjacent to outlined areas indicate percent YFP-Foxp3+ cells (g, 

left). NS, not significant (P > 0.05); * P < 0.05 and **P < 0.001 (two-tail unpaired Student’s 

t-test in a-c,e–g,i). Data are representative of two (a–d,h) experiments, or pooled from five 

out of six (e), four out of six (f,g) or three out of six (i) experiments (mean ± s.e.m in a–c,e–
g,i).
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Figure 2. Atg7 contributes to Treg cell survival and lineage stability
(a) Flow cytometry analyzing active caspase-3 expression (left), and frequency of 

caspase-3+ cells (right) in Treg cells from the spleen of Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl mice (n=5 mice per genotype). Numbers adjacent to outlined areas 

indicate percent caspase-3+ cells (left). (b,c) Flow cytometry analyzing active caspase-3 

expression and 7-AAD staining (b) and Bim expression (c) in Treg cells (from 

Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice) stimulated with anti-CD3, anti-CD28, and 

IL-2 for overnight. Numbers above bracketed lines indicate percent caspase-3+ or 7-AAD+ 

cells (b), and numbers above graph indicate mean fluorescence intensity (MFI) of Bim (c). 

(d) Flow cytometry analyzing the expression of IFN-γ and IL-17 (left), and frequency of 

IFN-γ+ cells and IL-17+ cells (right) in splenic Treg cells from Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl mice (n=5 mice per genotype). Numbers in quadrants indicate percent 

cells in each throughout. (e,f) Treg cells (sorted from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl 

mice) were transferred into Rag1−/− mice. Flow cytometry analyzing CellTrace dilution (e, 

left) and the expression of Foxp3 (e, left) and IFN-γ and IL-17 (f, left), and frequency of 

Foxp3− cells (e, right) (n=3 mice for Atg7+/fl and n=4 mice for Atg7fl/fl) and IFN-γ+ cells 

and IL-17+ cells (f, right) (n=6 mice for Atg7+/fl and n=7 mice for Atg7fl/fl) in divided 

CellTrace-labeled donor cells (gated on CD4+TCRβ+). Numbers adjacent to outlined areas 

indicate percent CellTracelo cells (e, left), and numbers above bracketed lines indicate 

percent Foxp3− cells (e, left). (g) Flow cytometry analyzing YFP-Foxp3 expression in 

divided Treg cells (from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice) that were activated in 
vitro with anti-CD3, anti-CD28 and IL-2 for 96 h. Numbers above graphs indicate MFI of 

YFP-Foxp3. NS, not significant (P > 0.05); * P < 0.05 and ** P < 0.001 (two-tail unpaired 

Student’s t-test in a,d–f). Data are pooled from two out of five (a), four out of ten (d) or two 

out of two (f) experiments, or representative of three (b,c), ten (e) or five (g) experiments 

(mean ± s.e.m in a,d–f).
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Figure 3. Atg7 restrains TCR-dependent mTORC1 activity in Treg cells
(a) Flow cytometry analyzing cell size, and the expression of CD71, CD98 and p-S6 in 

Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl splenic Treg cells. Numbers above graphs indicate 

MFI of FSC-A, CD71, CD98 or p-S6. (b) Immunoblot analysis of p-S6 and p-4EBP1 in 

resting, and anti-CD3 and antiCD28-stimulated Treg cells from Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl mice. (c) Flow cytometry analyzing p-S6 expression in Foxp3CreAtg7+/fl 

and Foxp3CreAtg7fl/fl Treg cells stimulated with the indicated stimuli for 4 h. Numbers above 

graphs indicate MFI of p-S6. (d) Flow cytometry analyzing p-S6 expression in 

Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl Treg cells stimulated with anti-CD3 and anti-CD28 

for 4 h in the presence of DMSO, LY294002 (10 μM), AKTi-1/2 (1 μM) or PDKi (10 μM). 

Numbers above graphs indicate MFI of p-S6. (e,f) Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl 

mice received mock or rapamycin treatment. Treg cells were isolated and stimulated 

overnight with anti-CD3, anti-CD28, and IL-2 for analysis of caspase-3 activity (e) or 

stimulated for 4 h for analysis of IFN-γ and IL-17 expression (f). Numbers above bracketed 

lines indicate percent caspase-3+ cells (e), and numbers in quadrants indicate percent cells in 

each (f). (g) Foxp3CreAtg7+/fl or Foxp3CreAtg7fl/fl Treg cells were transferred into Rag1−/− 

mice, followed by mock (n=7 mice for Atg7+/fl and n=11 mice for Atg7fl/fl) or rapamycin 

(n=6 mice for Atg7+/fl and n=11 mice for Atg7fl/fl) treatment. Flow cytometry analyzing 

Foxp3 expression (left), and frequency of Foxp3− cells (right) in divided donor cells (gated 

on CD4+TCRβ+) in the PLNs of recipients. Numbers above bracketed lines indicate percent 

Foxp3− cells. (h) Flow cytometry analyzing YFP-Foxp3 expression in divided Treg cells 

from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice, following DMSO or rapamycin treatment 
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and activation with anti-CD3, anti-CD28, and IL-2 in vitro for 96 h. NS, not significant (P > 

0.05); * P < 0.05 (one-way ANOVA in g). Data are representative of three (a,b,d–f,h) or two 

(c) experiments, or pooled from three out of three (g) experiments (mean ± s.e.m in g).
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Figure 4. mTORC1 signaling is critical for Atg7-dependent transcriptional program
Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice were treated with or without rapamycin (n=4 

mice per group). Treg cells were sorted and activated with anti-CD3 and anti-CD28 for 4 h 

for gene expression profiling. (a) Scatterplot comparing global gene-expression profiles 

between Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl Treg cells. Transcripts with > 0.5 log2 fold 

increased (360 probes) or decreased (398 probes) expression in Foxp3CreAtg7fl/fl Treg cells 

are shown in red or blue respectively. (b,c) GSEA reveals that caspase (b) and cytokine 

pathways (c) are among the most extensively upregulated pathways in Foxp3CreAtg7fl/fl Treg 

cells as compared with Foxp3CreAtg7+/fl Treg cells. Heat maps of top hit genes in caspase (b) 

and cytokine (c) pathways. Differentially expressed genes were normalized by z-score. 

Expression levels are shown as green for low intensities, and red for high intensities. (d) 

Comparison of expression changes in rapamycin-treated Foxp3CreAtg7fl/fl versus 

Foxp3CreAtg7+/fl Treg cells with those in non-treated Foxp3CreAtg7fl/fl versus 

Foxp3CreAtg7+/fl Treg cells. The 758 Atg7 target genes (with > 0.5 log2 fold change) were 

partitioned into five main clusters, shown and colored by regions (R1–R5). Right, numbers 

indicate the number of probes within each region. (e) Heat maps of 515 rapamycin 

responsive genes that are differentially expressed in Foxp3CreAtg7fl/fl Treg cells (with > 0.5 

log2 fold change) and have diminished response after rapamycin treatment. Red color 

denotes upregulated genes in Foxp3CreAtg7fl/fl Treg cells, and blue color denotes 

downregulated genes in Foxp3CreAtg7fl/fl Treg cells. Data are from one experiment (a–e).
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Figure 5. Dysregulation of glycolytic metabolism in Atg7-deficient Treg cells contributes to 
impaired Treg cell stability
(a) Measurement of ECAR in Treg cells (from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice) 

stimulated with anti-CD3 and anti-CD28 for 4 h. (b) Ratio of OCR to ECAR of Treg cells 

(from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice) stimulated with anti-CD3 and anti-

CD28 for 4 h. (c) Measurement of ECAR in Treg cells (from Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl mice) stimulated with anti-CD3 and anti-CD28 for 4 h in the presence of 

DMSO or rapamycin. (d) Flow cytometry analyzing YFP-Foxp3 expression in divided Treg 

cells (from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice) that were activated in vitro with 

anti-CD3, anti-CD28, and IL-2 for 96 h in the presence of DMSO or DCA. Numbers above 

graphs indicate MFI of YFP-Foxp3. NS, not significant (P > 0.05); * P < 0.05 and ** P < 

0.001 (two-tail unpaired Student’s t-test in a,b and one-way ANOVA in c). Data are 

representative of two (a,b), three (c) or four (d) experiments (mean ± s.e.m in a–c).
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Figure 6. Autophagy protects Treg cell stability by restraining mTORC1-dependent c-Myc 
expression and function
(a) Flow cytometry analyzing c-Myc in Treg cells (from Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl mice) activated with anti-CD3 and anti-CD28 for 4 h. Numbers above 

graphs indicate MFI of c-Myc. (b) Immunoblot analysis of c-Myc in resting, and anti-CD3 

and anti-CD28 stimulated Treg cells from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice. (c,d) 

Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice received mock or rapamycin treatment. Treg 

cells were isolated and stimulated with anti-CD3 and anti-CD28 for 4 h for analysis of c-

Myc expression (c). Numbers above bracketed lines indicate percent c-Myc+ cells (c). Heat 

maps of Myc target gene expression in non-treated Foxp3CreAtg7fl/fl versus 

Foxp3CreAtg7+/fl Treg cells, and rapamycin-treated Foxp3CreAtg7fl/fl versus 

Foxp3CreAtg7+/fl Treg cells (d). Red color denotes upregulated genes in Foxp3CreAtg7fl/fl 

Treg cells, and blue color denotes downregulated genes in Foxp3CreAtg7fl/fl Treg cells (d). (e) 

Measurement of ECAR in Treg cells (from Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice) 

stimulated with anti-CD3 and anti-CD28 for 4 h in the presence of DMSO or JQ-1. (f) Flow 

cytometry analyzing YFP-Foxp3 expression in divided Treg cells (from Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl mice) that were activated in vitro with anti-CD3 and anti-CD28, and IL-2 

for 96 h in the presence of DMSO or JQ-1. Numbers above graphs indicate MFI of YFP-

Foxp3. NS, not significant (P > 0.05); * P < 0.05 and ** P < 0.001 (one-way ANOVA in e). 

Data are representative of four (a,f), three (b,c) or two (e) experiments, or from one (d) 

experiments (mean ± s.e.m in e).
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Figure 7. Autophagy is preferentially required for activated Treg cell maintenance
(a,b) Flow cytometry analyzing the expression of YFP-Foxp3 in GFP+ and GFP− CD4+ T 

cells (a) and active caspase-3 in GFP+ and GFP− Treg cells (b) in the spleen of 

Rag2GFPFoxp3CreAtg7+/fl and Rag2GFPFoxp3CreAtg7fl/fl mice. Numbers adjacent to 

outlined areas indicate percent YFP-Foxp3+ cells (a) and caspase-3+ cells (b). (c) 

Representative images (scale bars, 5 μm) (left) and quantification of the number of GFP-

LC3+ puncta per cell (right) in cTreg and eTreg cells purified from the spleen of GFP-LC3 

mice (n=5 mice). (d,e) Flow cytometry analyzing the proportion of CD44hiCD62Llo eTreg 

cells among total Treg cells in the spleen of Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl mice 

(n=6 mice per genotype) (d, left) and Foxp3CreAtg7+/fl and Foxp3CreAtg7fl/fl chimeras (n=4 

mice per group) (e, left), and frequency of CD44hiCD62Llo eTreg cells (d,e, right). Numbers 

adjacent to outlined areas indicate percent CD44hiCD62Llo eTreg cells (d,e, left). (f,g) Flow 

cytometry analyzing the expression of active caspase-3 (f) and p-S6 (g) in CD44loCD62Lhi 

cTreg cells and CD44hiCD62Llo eTreg cells in the spleen of Foxp3CreAtg7+/fl and 

Foxp3CreAtg7fl/fl mice. Numbers adjacent to outlined areas indicate percent caspase-3+ cells 

(f), and numbers above graphs indicate MFI of p-S6 (g). * P < 0.05 (two-tail unpaired 

Student’s t-test in c–e). Data are representative of five (a,f), three (b,g), or four (e) 

experiments, or pooled from two out of two (c) or five out of five (d) experiments (mean ± 

s.e.m in c–e).

Wei et al. Page 24

Nat Immunol. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	RESULTS
	Autophagy is functionally active in Treg cells
	Treg deletion of Atg7 or Atg5 alters immune homeostasis
	Impaired survival and stability of Atg7-null Treg cells
	Atg7 restricts TCR-dependent mTORC1 signaling
	Atg7-mediated transcriptional programs rely on mTORC1
	Atg7 restraints glycolytic metabolism in Treg cells
	c-Myc links mTORC1 to glycolysis of Treg cells
	Activated Treg cells are sensitive to Atg7 deficiency

	Discussion
	Online methods
	Mice
	Flow cytometry
	Imaging and histology
	Tumor model
	Cell purification and culture
	Adoptive transfer
	RNA and Immunoblot analysis
	Seahorse assays
	Methylation analysis of Treg cell-specific demethylated region
	Gene expression profiling and bioinformatic analysis
	Statistical analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

