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Abstract

Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation 

mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic 

transition. HSC-producing arterial hemogenic endothelium relies on the establishment of 

embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and 

during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid 

progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent 

hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial 

origin for these HSC-independent definitive progenitors is also accepted, the spatial location and 

temporal output of yolk sac hemogenic endothelium over developmental time remains undefined. 

We performed a spatiotemporal analysis of EMP emergence, and document the morphological 

steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal 

clusters of Kit+ cells initiates prior to the establishment of arborized arterial and venous 

vasculature in the yolk sac. Interestingly, Kit+ polygonal clusters are detected in both arterial and 

venous vessels after remodeling. To determine whether there are similar mechanisms regulating 

the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we 

investigated the role of embryonic blood flow and Wnt/β-catenin signaling during EMP 

emergence. In embryos lacking a functional circulation, rounded Kit+ EMPs still fully emerge 

from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a 

common mechanism regulating hematopoietic emergence from hemogenic endothelium. These 
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data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary 

embryonic hemogenic endothelium.
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Introduction

The first hematopoietic stem cells (HSCs) in vertebrates arise from cells with arterial 

endothelial identity. These hemogenic endothelial cells, distinguished by expression of the 

critical hematopoietic transcription factor Runx1, reside in the aorta, umbilical artery, and 

vitelline artery of the midgestation murine embryo[1–6]. Hemogenic endothelium in these 

locations produces hematopoietic cell clusters that appear to form from the protrusion and 

proliferation of single or small numbers of hemogenic endothelial cells into the vascular 

lumen. Seminal live imaging experiments have captured the initial stages of the endothelial-

to-hematopoietic transition in both zebrafish embryos and tissue sections of murine 

embryos[7–10], and fate-tracing experiments have established that hematopoietic cells arise 

from VE-Cadherin+ and Tie2+ populations[11, 12]. The spatiotemporal location of 

hemogenic endothelial cell clusters in the murine major arteries has been mapped[13, 14], 

and correlates with functional assays pinpointing HSC activity to the ventral aspect of the 

dorsal aorta[15]. Significantly, mapping HSC emergence to this specific embryonic location 

during a defined developmental time has facilitated the discovery of developmental 

regulators that influence the formation of hemogenic endothelium.

Signaling pathways regulating the specification of the aorta and hemogenic endothelium 

therein have been extensively studied. Functional arteries and veins must form prior to 

embryonic day (E)10 to allow blood flow and oxygenation of the growing murine 
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embryo[16, 17]. Thus, arterial specification precedes HSC emergence, and both require a 

well-defined signaling cascade. Hedgehog controls VEGF signaling, which regulates the 

Notch pathway, shown to be critical for both arterial specification[18] and Runx1 

expression[19, 20]. In addition, nitric oxide signaling, which is controlled by blood flow, 

also influences Runx1 expression[21, 22]. Canonical Wnt signaling also regulates vascular 

remodeling, by increasing expression of Notch pathway components[23, 24]. Not 

surprisingly, canonical Wnt signaling was recently shown to regulate HSC formation in the 

aorta[25, 26]. Epistasis studies in developing zebrafish have further delineated the interplay 

between Wnt/β-catenin signaling, blood flow, and Notch signaling during HSC 

specification[21]. Consequently, arterial specification and HSC emergence from hemogenic 

endothelium appear tightly intertwined.

Despite this focus on HSC emergence, hematopoiesis has multiple developmental origins. 

Prior to HSC formation, two transient waves of hematopoiesis emerge in the yolk sac[27]. 

The first wave gives rise to progenitors as early as murine embryonic day (E)7.5 that 

produce primitive erythroblasts, megakaryocytes and macrophages[27, 28]. By E8.25, a 

second wave of erythro-myeloid progenitors (EMPs) begins to emerge in the yolk sac, and 

colonizes the fetal liver prior to HSCs[29]. While EMPs are transient, they serve as a critical 

source of fetal hematopoiesis before HSCs expand and differentiate[30], generating the first 

circulating definitive erythrocytes by E11.5[31]. Thus, EMPs have been categorized as 

“definitive” based on the original criteria used to distinguish the two initial sources of 

circulating erythroid cells in the mammalian embryo[29, 32]. Recent evidence also indicates 

that EMPs are a source of tissue-resident myeloid cell populations that persist into 

adulthood[33, 34].

The mechanisms regulating EMP emergence in the yolk sac are less defined. Like HSCs, 

EMPs rely on Runx1 for formation, and express endothelial markers, suggesting an 

endothelial ancestry[3, 4, 35–37]. However, EMPs arise during the remodeling of an initial 

plexus of yolk sac endothelium into arborized networks of arteries and veins[27, 38]. In 

addition, the persistence of EMP colony-forming activity in the absence of blood flow also 

suggests that EMPs do not require blood flow for specification[39]. Despite these 

differences, there are reports of Kit+ or CD41+ cell clusters within the yolk sac at early 

stages[40–42]. However, hematopoietic progenitors in the yolk sac increase through at least 

E10.5[27], and the temporal kinetics and spatial location of EMP production within the 

remodeled yolk sac vasculature throughout this time remains undefined. Here, we provide 

further histological evidence that EMPs emerge from hemogenic endothelium, and define 

the window of EMP production in situ by analyzing the morphology and numbers of 

emerging progenitors over developmental time. We also mapped the spatial distribution of 

emerging EMPs as an initial step toward understanding their regulation. Finally, we provide 

data supporting a common role for Wnt signaling in promoting hematopoietic emergence 

from hemogenic endothelium.
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Materials and Methods

Mouse strains and tissue isolation

Outbred Swiss Webster mice (Taconic) were used for all experiments unless indicated. 

Runx1+/−[4], Ncx1+/− [43], and BAT-gal[44] mice were previously described. Cdh5-Cre 

(B6;129-Tg(Cdh5-cre)1Spe/J)[45] and Ctnnb1fl/fl mice (B6.129-Ctnnb1tm2Kem/KnwJ) [46] 

were purchased (Jackson Laboratory). Embryonic tissues and adult bone marrow were 

obtained as described[31, 47]. Mice were mated overnight, and the morning of plug 

detection was considered embryonic day (E)0.3[31]. For embryonic staging, somite pairs 

(sp) were enumerated when possible, and correlated with gestational age[48]. Embryonic 

tissues were dissociated at 37°C in 0.125% Collagenase (Stem Cell Technologies) in 

PB2[31] for 10 minutes, followed by trituration, a 1:1 dilution in PBS/1mM EDTA for 10 

minutes, a second trituration, and 35μM filtration (Falcon). The University of Rochester 

Committee on Animal Resources approved all animal experiments.

Flow Cytometry and Imaging Flow Cytometry

Cells were labeled and sorted or analyzed using flow cytometry as described[37]. For 

imaging flow cytometry, cells were treated with or without 100 ng/mL Wnt3a (R&D 

Systems) for 2 hours, labeled with surface antibodies, fixed with 2% formaldehyde 

(Polysciences) for 10 minutes, permeabilized with 0.2% Triton-X-100 (Sigma) for 5 

minutes, and stained with Alexa Fluor 488-anti-β-catenin (Cell Signaling Technology) for 1 

hour, followed by a 10 min wash and addition of 1 μg/mL DAPI (Molecular Probes). The 

data were collected with an ImageStreamX, and analyzed using IDEAS 6.1 software (Amnis, 

Millipore). β-catenin nuclear signal was determined as the intensity of β-catenin staining 

within the Morphology Mask of DAPI signal using the feature (Intensity_Morphology(M07, 

DAPI)_Ch02/β-catenin). Assessment of apoptosis using imaging flow cytometry was based 

on nuclear fragmentation and cytoplasmic vesiculation[49].

In vitro culture

Sorted cells were cultured for 3 days in myeloid maturation media[50]. For OP9 co-cultures, 

groups of 3 anterior or posterior halves of E8.5 yolk sacs were dissociated, cultured on OP9 

monolayers (ATCC) in 25cm2 flasks and assayed for hematopoietic potential[51]. Kit+ cells 

from adult marrow were used as controls. Yolk sac explants were cultured individually in 

StemSpan (Stem Cell Technologies) supplemented with 25 ng/mL Stem Cell Factor 

(Peprotech) with or without 100 ng/mL Wnt3a (R&D Systems). Methylcellulose colony-

forming assays (CFCs) and high-proliferative potential CFC assays (HPP-CFC) were 

performed as previously described[52, 53]. Cultured cells were cytospun and Wright-

Giemsa stained as described[54].

Whole-mount immunohistochemistry and X-Gal staining

Conceptuses were isolated in PB2 with intact yolk sacs, with one or two intentional tears to 

ensure efficient labeling and washing, rinsed in PBS, and fixed in 100% acetone at −20°C 

for 10 minutes, or 2% formaldehyde in PBS at 4°C for 1 hour. Staining was performed 

essentially as described[55] with primary antibodies for Kit and/or Flk1, CD31 or CD41 (all 
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from BD), VE-Cadherin (eBioscience), Runx1 (Abcam), Gp1bβ (Emfret), or Sox17 (R&D 

Systems), and species-specific secondary antibodies conjugated to Alexa Fluor 594, Alexa 

Fluor 647 (Life Technologies), and/or IRDye 800CW (LI-COR). If multiple rat primary 

antibodies were used, staining was performed sequentially. Specific labeling of each primary 

antibody was initially determined by comparison with no primary staining controls. Runx1 

antibody was also confirmed to give no signal in Runx1−/− yolk sacs. At least four 20 

minute washes were performed between antibody incubations. Yolk sacs were removed 

from the embryo proper after dehydration and flat-mounted on Bond-Rite slides (Richard-

Allan Scientific) with ProLong Gold Antifade media (Molecular Probes). Kit+ clusters were 

analyzed in n=5 E8.5, n=8 E9.0, n=15 E9.5, n=26 E10-E11, n=7 E11.5, and n=6 E12.5-

E13.5 wildtype yolk sacs (E12.5 and E13.5 not shown). For additional detection of β-

galactosidase activity, conceptuses were fixed in 2% formaldehyde in PBS at 4°C for 1 hour, 

immunolabeled as above, avoiding Alexa Fluor 647 due to spectral overlap with 

precipitate[56], and subsequently stained with 5-Bromo-4-chloro-3-indolyl β-D-

galactopyranoside (X-Gal) (Sigma) without further fixation[57].

Microscopy

Images were acquired with an ORCA-R2 digital camera (Hamamatsu) with an X-Cite series 

120 illuminator (EXFO), or a Ds-Fli1 digital camera (Nikon) with NIS-Elements AR 

software on an Eclipse 80i microscope (Nikon) with 4x (Numerical Aperture (NA) 0.13), 

10x (NA 0.3), 20x (NA 0.5), or 40x (NA 0.75) objectives. Hemoglobin autofluorescence at 

515–555nm was used to identify primitive erythroblasts. Live images of megakaryocyte and 

macrophage cultures were captured with a Ds-Fli1 digital camera (Nikon) on an Eclipse 

TE2000-S microscope (Nikon) with a 20x objective (NA 0.45). Confocal images were 

acquired on a TCS SP5 microscope (Leica) with a 40x objective (NA 1.25). Images were 

processed for uniform brightness and contrast using NIS-Elements AR and/or Adobe 

Photoshop. Whole yolk sac images were merged from several 4x or 10x images with Adobe 

Photoshop.

Gene expression analysis

RNA was isolated as described[31]. cDNA was synthesized with iScript reagents (Bio-Rad) 

according to the manufacturer’s instructions. Quantitative real-time PCR was performed on 

a CFX Connect (Bio-Rad) with Roche FastStart Universal SYBR Green mastermix (Roche) 

and analyzed as described[31]. Axin2 primer sequences were 5′-

GGCTGCGCTTTGATAAGGTC and 5′-TGTGAGCCTCCTCTCTTTTACAG.

Results

Emerging EMPs progress from an endothelial to hematopoietic immunophenotype

Definitive hematopoietic potential in the E8.5 yolk sac resides in the Kit+CD41+ population, 

and is associated with expression of endothelial markers[41, 58, 59]. Significant expression 

of the endothelial markers Flk1 and VE-Cadherin were detected on this population at E8.5 

(Fig. 1A). By E9.5, endothelial marker co-expression was reduced on the Kit+CD41+ 

fraction, while increases in the hematopoietic marker CD45 and the granulocyte-monocyte 

progenitor marker CD16/32 were observed in a majority of the population (Fig. 1A). This 
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shift in CD16/32 expression coincides with the reported shift of EMP colony-forming 

potential from both Kit+CD41+CD16/32+ and Kit+CD41+CD16/32neg fractions of the E8.5 

yolk sac, to reside almost exclusively in a now uniform Kit+CD41+CD16/32+ fraction by 

E9.5 [37]. Consistent with an immunophenotypic shift, and not the loss of Kit+CD16/32neg 

cells during this time, less than 1% of E8.5 Kit+ cells exhibited morphological 

characteristics indicative of apoptosis using imaging flow cytometry (data not shown). 

Importantly, CD16/32 cell surface expression was also upregulated on E8.5 

Kit+CD41+CD16/32neg cells cultured in vitro (Fig. 1B), indicating that the E8.5 

Kit+CD41+CD16/32neg fraction matures into Kit+CD41+CD16/32+ EMPs. Together, these 

data support the hypothesis that E8.5 EMPs undergo an endothelial-to-hematopoietic 

transition between E8.5 and E9.5.

Kit distinguishes Runx1-dependent EMPs from maturing hematopoietic lineages in the 
yolk sac

Previous studies have utilized CD41 or Kit to label emerging EMPs at E8.5 and E9.5[36, 

40–42]. However, primitive erythroblasts, macrophages, and megakaryocytes reside in the 

yolk sac with nascent EMPs, and these populations may also express these markers during 

their maturation[27, 28, 60]. To identify the most accurate phenotypic marker to exclusively 

label EMPs throughout their emergence, the hematopoietic potential associated with each 

marker was evaluated. This analysis revealed a population of CD41hiKitneg cells that express 

high levels of the megakaryocyte-specific marker Gp1bβ (Fig. 1C, black), and formed 

proplatelets in vitro (Fig. 1D, ii). Though the majority of the Kit+ fraction expresses 

CD16/32 and variable levels of CD45 (Fig. 1C, blue), there was also a population of 

CD16/32+Kitneg cells that were also CD45hi (Fig. 1C, green) and generated macrophages in 

culture (Fig. 1D, iii). As a control, the purified Kit+CD41+CD16/32+ EMP population (not 

shown) formed immature erythroblasts, megakaryocytes, macrophages, and granulocytes 

when cultured in vitro (Fig. 1D, i)[37]. These data indicate that CD41, and CD45 and 

CD16/32 are significantly expressed by differentiating megakaryocytes and macrophages, 

respectively, in the yolk sac.

Consistent with the required role for Runx1 in initiating the endothelial-to-hematopoietic 

transition[45], there was a lack of Kit+CD41+CD16/32+ EMPs in Runx1−/− yolk sacs, as 

very few Kit+ cells remained (Fig. 1C, blue). We also confirmed expression of Runx1, along 

with required transcriptional regulators Gata2, Fli1, and Tal1, in purified EMPs[61] (Fig. 

S1A). The CD16/32+Kitneg macrophage population was also significantly depleted in 

Runx1−/− yolk sacs, while the CD41+Kitneg megakaryocyte and Ter119+Kitneg erythroblast 

populations remained, albeit with decreased expression of Gp1bβ and Ter119[62] (Fig. 1C, 

and data not shown). The persistence of these populations in Runx1−/− yolk sacs is in 

accordance with the initial derivation of megakaryocytes and macrophages from primitive 

hematopoietic progenitors[27, 28, 60].

As expected from the flow cytometry analysis, there was significant overlap in expression of 

Gp1bβ with CD41+ cells at E9 by immunohistochemistry (Fig. 1E), suggesting 

megakaryocyte commitment in these cells. CD41 labeling was also not evident on all Kit+ 

cells (Fig. 1F), which is consistent with lower expression of CD41 on EMPs compared to 
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maturing megakaryocytes (Fig. 1C), and Kit expression prior to CD41 at the hemogenic 

endothelial stage in vitro[63, 64]. Given these findings, we considered Kit to be the earliest 

and most specific marker of definitive hematopoietic commitment. We also confirmed the 

absence of Kit+ cells in Runx1−/− yolk sacs by immunohistochemistry (Fig. S1B). Taken 

together, these data indicate that CD16/32, CD45, and CD41 do not exclusively label 

emerging EMPs. However, Kit unambigiously labels emerging hematopoietic progenitors in 

the yolk sac, just as was demonstrated for HSC clusters in the aorta[13].

Morphology of Kit+ EMPs is consistent with an endothelial-to-hematopoietic transition

To visualize the morphological changes of emerging EMPs in the yolk sac, 

immunohistochemistry was performed for Kit, Runx1, and endothelial markers CD31, VE-

Cadherin, and Flk1. At E8.5, a subset of CD31+ cells with endothelial morphology 

expressed Runx1 and Kit (Fig 2A, arrows). Other Runx1+CD31+Kit+ cells exhibited a more 

rounded morphology, indicating they are in the process of emerging, or have already 

emerged from the endothelial layer (Fig. 2A, arrowheads). KitloRunx1+ cells with 

endothelial morphology are present in rare numbers, suggesting this initial stage of the 

endothelial-to-hematopoietic transition is extremely transient (Fig. 2B). Moreover, the direct 

association of rare flattened KitloRunx1+ cells with Kit+ rounded hematopoietic cells is 

consistent with a morphologic transition of flattened Kitlo cells into Kit+ rounded cells.

In contrast to the rare Kitlo endothelium, Kit+ cells exhibited two distinctive morphologies. 

While some were rounded with hematopoietic morphology (Fig. 2B and 2C), other Kit+ 

cells demonstrated a polygonal morphology, and were present in clusters with angular cell-

cell boundaries resembling those found between true endothelial cells (Fig. 2C, open 

arrows). Some polygonal Kit+ clusters consisted of multiple layers of tightly associated 

polygonal cells reminiscent of murine HSC clusters observed protruding into the lumen of 

the major arteries[13]. Many Kit+ cells within, or associated with, polygonal Kit+ clusters 

appeared to be in the process of becoming rounded (Fig. 2C, closed arrows). Further 

assessment of clusters with confocal microscopy highlight this polygonal morphology, and 

reveal Kit signal in the same plane of focus as the Flk1+ endothelium (Fig. 2D), suggesting 

that the polygonal Kit+ cells are embedded in the vessel wall. Kit+ clusters with both 

polygonal and rounded morphology were observed from E8.5 through E11, which is 

consistent with a continuous, yet heterogeneous emergence of EMPs via an endothelial-to-

hematopoietic transition throughout this time frame (Fig. 2C). Interestingly, cluster sizes 

also appeared to get progressively larger over developmental time through E11 (Fig. 2C).

To quantify the temporal kinetics of EMP production, the frequency of emerging Kit+ 

clusters was assessed. Clusters of 10–49 cells were most numerous at E9.5 (20–23sp), and 

gradually declined over developmental time (Fig. 3A). There was also a trend toward an 

increase in the number of large clusters (≥50 cells) at E10.5-E11. After E11.5, only rare 

clusters were observed (data not shown), signifying the exhaustion of KitloRunx1+ 

hemogenic endothelial potential in the yolk sac. These observations of Kit+ clusters as late 

as E11.5 indicate that EMP emergence in the yolk sac temporally overlaps in part with HSC 

emergence in the major arteries[13]. Importantly, this exhaustion of EMP production at 

E11.5 does not signify a loss of EMPs, as flow cytometry analyses identified significant 
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numbers of Kit+ cells present in the yolk sac through E12, presumably in the bloodstream en 

route to the fetal liver[37]. This analysis also confirmed that the majority of Kit+ cells in the 

yolk sac through E12 are Kit+CD41+CD16/32+ EMPs (Fig. 3B). Together, these data 

indicate that EMPs are produced during a defined developmental window, but that they 

persist as a robust progenitor population in the embryo through at least E12.

Yolk sac hemogenic endothelium is not confined to arterial vasculature

To gain additional insight into the regulation of yolk sac hemogenic endothelial 

specification with respect to the total pool of endothelium, the spatial location of emerging 

EMPs was investigated over developmental time. At the onset of hemato-vascular 

development, a pool of CD31+ endothelium envelops primitive erythropoietic progenitors, 

forming “blood islands” that are restricted to the proximal region of the yolk sac[65]. By 

2sp, or early E8.25, CD31+ endothelium extends distally to form a vascular plexus 

throughout the yolk sac[55, 66]. Kit+ EMP clusters were preferentially located in the 

proximal region of the yolk sac vasculature, and were interspersed between the primitive 

erythroblasts (Fig. 4A, Fig. S2A–C). This preference for EMP clusters in the proximal yolk 

sac was preserved at E9 (Fig. 4B), although some clusters were observed in the distal half of 

the yolk sac closer to the vitelline vessels after vascular remodeling (Fig. 4C). These 

findings indicate that EMP emergence occurs along a proximal-distal gradient in the yolk 

sac.

At E8.5, Ephrinb2 expression indicates that arterial identity is specified in the posterior 

vasculature of the yolk sac prior to vascular remodeling[67]. Interestingly, we observed Kit+ 

clusters in both the anterior and posterior regions of the E8.5 yolk sac (Fig.4A, Fig. S2A–C). 

Consistent with a lack of anterior/posterior asymmetry of clusters at E8.5, Kit+ EMP clusters 

at E9 and E9.5 were detected in both the arterial and venous vasculature after remodeling of 

the yolk sac commenced[68] (Fig. 4B and 4C). We also confirmed the arterial identity of the 

vasculature branching from the vitelline artery with Sox17 labeling, and found evidence of 

rare Runx1+Sox17+ cells (Fig. S3)[24, 69]. Together, these results indicate that EMPs can 

emerge from arterial vasculature, but suggests they do not require arterial identity for 

specification.

We next tested the capacity of the venous and arterial regions of the yolk sac to generate 

definitive hematopoietic progenitors. E8.5 yolk sacs were bisected into anterior and 

posterior halves, dissociated, and co-cultured with OP9 stroma[51]. Cultures of both anterior 

and posterior yolk sacs produced definitive GR-1+ granulocytes (Fig. 4D), confirming the 

emergence of functional EMPs from both venous and arterial vasculature. Though EMPs 

constitute the majority of definitive hematopoietic potential in the yolk sac, it was recently 

established that there are also rare Kit+ lymphoid progenitors in the yolk sac[51, 70, 71], that 

are separate from Kit+CD41+CD16/32+ EMPs[37]. Since lymphoid potential has also been 

associated with the emergence of HSCs in arterial vasculature, we also tested for B-

lymphoid potential. Interestingly, a low frequency of B cells also emerged in both anterior 

and posterior regions of the yolk sac, suggesting that B-lymphoid potential in the yolk sac is 

not dependent on arterial identity (Fig. 4D). Taken together, these results suggest that 
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hematopoietic specification in the yolk sac, including primitive, EMP and B-lymphoid 

potential, is regulated by a proximal-distal gradient rather than arterial/venous identity.

EMPs emerge from unremodeled vasculature in the absence of circulation

Hemodynamic forces are required for both HSC emergence and angiogenesis, and in the 

yolk sac, shear forces capable of modulating endothelial behavior in vitro have been 

detected as early as E8.5[22, 72, 73]. Therefore, to address whether EMP emergence in situ 

was also altered in the absence of blood flow, the location and morphology of Kit+ clusters 

was analyzed in the yolk sac of circulation-deficient Ncx1−/− embryos. While previous 

analyses demonstrated presence of definitive hematopoietic colony-forming activity in 

Ncx1−/− yolk sacs, these studies were performed on enzymatically dissociated yolk sacs, and 

therefore could not assess whether fully rounded EMPs were able to emerge from the 

endothelial layer in the absence of flow[39, 74]. Interestingly, in contrast to the reliance of 

aortic hemogenic endothelium on blood flow, normal EMP cluster morphology and location 

was observed in Ncx1−/− yolk sacs, including the presence of Kit+ rounded EMPs (Fig. 5A–

B), and Runx1+ hemogenic endothelium (Fig. 5C).

EMPs emerge in larger and smaller vessels after vascular remodeling of the yolk sac

HSC-producing hemogenic endothelium is located exclusively in the largest arterial vessels 

of the embryo, including the portion of the vitelline artery closer to the embryo proper than 

to the yolk sac[75]. We therefore asked whether the presence of hemogenic endothelium 

was preferentially associated with large vessels of the yolk sac after vascular remodeling. 

Despite the independence of EMPs from arterial identity and blood flow, flattened Kitlo cells 

and polygonal Kit+ cells were identified not only in smaller vessels, but also in larger 

vessels of the yolk sac vascular plexus after remodeling at E9.5-E10 (Fig. 5D–F). These 

findings further highlight the heterogeneity in the distribution of hemogenic endothelium 

within the remodeling vasculature of the yolk sac.

Canonical Wnt signaling regulates EMP emergence

Since β-catenin is an important regulator of HSC-producing hemogenic endothelium in both 

mouse and zebrafish[25, 26, 76], we next asked whether Wnt signaling regulates EMP 

specification. Treatment of intact yolk sacs with the canonical ligand Wnt3a for 48 hours 

increased the total pool of definitive hematopoietic progenitors, as well as the highly 

proliferative HPP-CFC (Fig. 6A). This increase in EMPs was not likely due to self-renewal, 

as treatment of isolated EMPs with Wnt3a in vitro did not lead to an increase in CFC 

numbers (Fig. 6B). These findings suggest that Wnt3a regulates EMP formation at or prior 

to the hemogenic endothelial precursor stage. Consistent with this hypothesis, Wnt3a 

treatment increased β-catenin staining in the nuclear area of E9.5 Kit+AA4.1/VE-Cadherin+ 

hemogenic endothelium assayed by imaging flow cytometry (Fig. 6C). Additionally, 

treatment of the E9.5 AA4.1/VE-Cadherin+CD16/32neg fraction with Wnt3a increased 

expression of the β-catenin target gene Axin2 (Fig. 6D). Together, these data suggest that 

hemogenic endothelial cells in the yolk sac are responsive to canonical Wnt signaling.

To investigate endogenous β-catenin activity, we analyzed the yolk sacs of β-catenin 

reporter (BAT-gal) mice. Immunohistochemical analysis of X-Gal stained yolk sacs revealed 
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β-galactosidase (β-gal) activity in endothelial cells (Fig. S4A)[24, 77, 78], and a rare subset 

of β-gal+Runx1+VE-Cadherin+ cells, suggesting that some Wnt-responsive endothelial cells 

are hemogenic (Fig. 6E). Consistent with a transient role for Wnt signaling during 

hematopoietic specification [25, 76], the majority of Runx1+ cells were negative for β-

galactosidase activity (Fig. 6E, Fig. S4), and assessment at E9.5 demonstrated a marked 

reduction in Wnt/β-catenin activity (not shown).

To address the function of Wnt signaling in EMP emergence in vivo, β-catenin was ablated 

in a hemato-endothelial specific manner in Cdh5-Cre; ctnnb1fl/fl embryos (β-catenincKO)[45, 

46]. Significantly, hematopoietic progenitor numbers in E9.5-E10.5 β-catenincKO yolk sacs 

were reduced compared with littermates lacking Cdh5-Cre (Fig. 6F). Together, these data 

support the concept that β-catenin intrinsically promotes the emergence of definitive 

hematopoietic potential in yolk sac hemogenic endothelium.

Overall, our findings suggest that EMPs are produced from a broad temporal wave of 

hemogenic endothelium that is responsive to Wnt/β-catenin signaling during a specific 

developmental window (Fig. 7A). This wave of hemogenic endothelium in the yolk sac 

generates Kit+ EMP clusters that continue to emerge as late as E11.5, temporally 

overlapping with HSC emergence (Fig. 7A, orange; Fig. 7B). Large numbers of circulating 

EMPs are present in the E11.5-E12 mouse conceptus[37], which seed the fetal liver and 

ultimately perform their hematopoietic function (Fig. 7A, red curve).

Discussion

Definitive hematopoiesis in vertebrates is initiated via an endothelial-to-hematopoietic 

transition that occurs at precise developmental times in distinct embryonic vasculatures. 

Interestingly, this process gives rise to HSCs and progenitors with fundamentally distinct 

self-renewal capabilities and lineage potential. Regulation of this process has primarily been 

studied in the aorta, where HSCs are derived from arterial hemogenic endothelium in a 

blood flow and β-catenin-dependent manner. However, the spatiotemporal localization and 

regulation of hemogenic endothelium in the yolk sac remain unclear. Deciphering the origin 

and regulation of the multiple waves of embryonic hematopoiesis in vivo are necessary steps 

to better direct hematopoietic lineage and self-renewal potential in vitro, as it remains 

difficult to distinguish the identity of definitive hematopoietic cells derived from the in vitro 

differentiation of embryonic stem cell and induced pluripotent stem cell cultures. Here we 

provide further histological evidence that EMPs, like HSCs, arise from hemogenic 

endothelium, and reveal important mechanistic differences governing their emergence.

The expression of endothelial markers, combined with the dependence of definitive 

hematopoietic progenitors on Runx1, has implicated that EMPs also emerge through an 

endothelial-to-hematopoietic transition. We have determined that emerging Kit+CD41+ 

EMPs shift from an endothelial to hematopoietic immunophenotype when cultured in vitro. 

The paucity of other hematopoietic markers on nascent EMPs, and the lack of specificity of 

CD41, CD16/32, and CD45 for EMPs, indicates that Kit serves as the best marker to 

distinguish emerging EMPs from maturing megakaryocytes and macrophages in the yolk 

sac. Consistent with this specificity of Kit expression for EMPs, we confirmed the complete 
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lack of all Kit+ cells and immunophenotypic EMPs in Runx1−/− yolk sacs. While it remains 

possible that a small subset of Kit+ cells detected in our studies are rare lympho-myeloid 

progenitors[71], the robust numbers of Kit+ cell clusters observed (Fig. 3A) support the 

conclusion that EMPs are derived from hemogenic endothelium.

The endothelial-to-hematopoietic transition in the yolk sac likely initiates with a 

KitloRunx1+ hemogenic endothelial population (Fig. 2A–B, Fig. 5F). The relative rarity of 

these cells suggests that this KitloRunx1+ endothelial stage is especially transient, and that 

the subsequent morphogenesis of polygonal Kit+ clusters is a rate-limiting step for 

hematopoietic emergence. The persistence of these putative hemogenic endothelial cells at 

E10 is temporally consistent with previous studies suggesting an EMP requirement for 

Runx1 through E10.5[79]. In addition, the presence and abundance of cells within the 

polygonal Kit+ clusters by E9.5 also strongly suggests they are still emerging from 

vasculature close to or in their observed location. Although circulation initiates at E8.25, 

almost all EMP activity remains in the yolk sac through E9.5[66], indicating that EMP 

clusters remain associated with the endothelial wall and are physically unable to circulate 

until later stages.

Primitive hematopoiesis initiates by E7.5 and produces hundreds of primitive erythroid 

progenitors in the blood island region of the yolk sac by E8.5, a time when the first few 

EMPs are detected[27, 28]. The dissimilarities in lineage potential and Runx1 requirement 

of primitive and definitive hematopoiesis raised the possibility that hemogenic endothelium 

might emerge spatially distinct from primitive hematopoiesis. However, we observed 

clusters of Kit+ cells specifically dispersed within the blood islands, consistent with nascent 

derivation of both primitive and EMP-definitive hematopoiesis from common precursors. In 

vitro studies have revealed a population of hemangioblasts, which harbor primitive and 

definitive hematopoietic potential in addition to endothelial and smooth muscle potential, 

that emerge in the primitive streak during gastrulation[80]. Our findings that hemogenic 

endothelial clusters are initially localized in the proximal region of the yolk sac is consistent 

with, but does not prove, a common source of primitive and definitive hematopoietic 

potential[63, 80–82]. At later stages, we detected hemogenic endothelium in the distal yolk 

sac. Whether this relatively distal hemogenic endothelium we detected migrates from the 

proximal region during vascular remodeling and growth of the yolk sac[83], or relies on 

flow for hematopoietic commitment, is not discernable from these studies. However, the 

former hypothesis is supported by the normal numbers of EMPs that arise in circulation-

deficient yolk sacs[39].

Together with the identification of rounded Kit+ EMPs in the circulation-deficient yolk sac, 

our observations that EMPs emerge from the vascular plexus in anterior and posterior 

regions of the yolk sac, and arterial and venous vasculature after remodeling, suggests that 

they do not rely on arterial signals. This concept is also supported by the independence of 

endogenous EMP emergence on Notch1, a key mediator of arterial specification[84–86]. 

Interestingly, EMPs do arise in arterial regions of the yolk sac after remodeling, in 

agreement with at least some EMPs arising from a Sox17+ population[87]. Taken together, 

these findings implicate a putative proximal-derived signal, rather than a posterior/arterial 

signal, in the regulation of yolk sac hematopoiesis.
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Canonical Wnt signaling is active in the proximal yolk sac, and plays a role in murine 

primitive hematopoietic specification[88]. We observed canonical Wnt signaling in BAT-gal 

yolk sacs at E8.25-E8.5 (Fig. S4), when the first EMPs begin to emerge. Consistent with a 

role for β-catenin in the regulation of hemogenic endothelium[25, 76], we observed rare β-

gal+Runx1+ endothelial cells (Fig. 6E). Furthermore, loss of β-catenin initiated at the 

endothelial stage decreased numbers of functional EMPs, while in vitro Wnt3a treatment of 

phenotypically mature EMPs did not affect progenitor numbers. In the zebrafish aorta, the 

inductive effects of β-catenin on HSC emergence are blocked by nitric oxide synthase 

inhibition, suggesting that the effects of β-catenin on HSC emergence are mediated solely 

through blood flow[21]. Similarly, Notch signaling is downstream of β-catenin in the 

aorta[21]. Given the independence of EMP emergence both on blood flow and Notch 

signaling, it appears that Runx1 expression and commitment to hemogenic endothelium is 

alternatively regulated in the yolk sac, despite the common expression of other critical 

transcriptional regulators in EMPs (Fig. S1A). However, the conserved role of Wnt 

signaling in yolk sac hemogenic endothelium suggests an important role in regulating the 

endothelial-to-hematopoietic transition, rather than long-term hematopoietic potential.

Conclusion

Our findings provide evidence that EMPs emerge in both the presumptive venous (anterior) 

and arterial (posterior) vessels of the yolk sac from E8.25-E11 via a Runx1-dependent 

process of endothelial-to-hematopoietic transition (Fig. 7B). Despite the concurrent onset of 

EMP-derived hematopoiesis and angiogenesis, both arterial identity and embryonic blood 

flow are dispensable for EMP emergence. In contrast, EMP-producing hemogenic 

endothelium is specifically located in the proximal yolk sac, and is responsive to canonical 

Wnt signaling. Together, our results highlight key differences in the spatiotemporal and 

mechanistic control of hematopoietic specification in the mammalian conceptus.
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Significance Statement

While hematopoietic stem cell emergence from aortic endothelium has been extensively 

studied, the spatiotemporal location and regulation of yolk sac-derived hemogenic 

endothelium has remained largely undefined. Our studies capture morphological 

intermediates of the endothelial-to-hematopoietic transition of the first definitive 

hematopoietic progenitors in the murine yolk sac over developmental time. Interestingly, 

the emergence of erythro-myeloid progenitors is not restricted to arterial endothelium, 

nor is it dependent on blood flow, but is positively regulated by canonical Wnt signaling. 

Thus, hemogenic endothelium is more heterogeneous in location and hematopoietic 

output than previously recognized, and may help guide the derivation of definitive 

hematopoietic progenitors from pluripotent stem cells.
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Figure 1. Emerging Kit+ EMPs progress from an endothelial to hematopoietic 
immunophenotype in a Runx1-dependent manner
A. The majority of E8.5 Kit+CD41+ EMPs are negative for CD16/32 and CD45, and express 

endothelial markers Flk1 and VE-Cadherin. By E9.5, a higher proportion of the Kit+CD41+ 

population expresses hematopoietic markers, with reduced endothelial marker expression. B. 
A significant portion of isolated E8.5 Kit+CD41+CD16/32neg cells upregulate CD16/32 after 

16–20 hours of in vitro culture. Plots from one representative experiment are shown; 

population percentages are the average of 3 experiments +/− SEM. C. Kit+ cells (blue) arise 

in Runx1+/+ yolk sacs, but very few Kit+ events are detected in Runx1−/− yolk sacs. Kitneg 

populations of immunophenotypic megakaryocytes (KitnegCD41hiGp1bβ+, black) and 

macrophages (KitnegCD16/32+CD45hi, green), remain in Runx1−/− yolk sacs, albeit with 

significant depletion of immunophenotypic macrophages. Plots represent combined flow 

cytometric data from 4 E10.5 Runx1+/+ yolk sacs and 4 E10.5 Runx1−/− yolk sacs. D. 
Culture of sorted E9.5 and E10.5 wildtype hematopoietic populations confirm EMP progeny 

(i, Kit+CD41+CD16/32+), megakaryocyte potential (ii, KitnegCD41+Gp1bβ+), and 

macrophage potential (iii, KitnegCD16/32+CD45+). Images are of culture dishes (ii, iii) or 

Wright-Giemsa stained cytospins of cultures (i; ii and iii insets). n=2 pooled litters of yolk 

sacs. E. Immunohistochemical staining for CD41 demonstrates a significant overlap with 

Gp1bβ+CD41hi megakaryocytes in the E9.5 yolk sac, in addition to clusters of putative 

CD41+Gp1bβneg EMPs. EryP, primitive erythroblast autofluorescence. n=3 yolk sacs. F. 
Kit+ cluster cells are CD41+ and CD41lo/neg by immunohistochemistry. n=5 yolk sacs.
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Figure 2. EMPs emerge from morphologic hemogenic endothelium between E8.5-E11
Immunohistochemistry at the stages indicated with indicated markers. A. Flattened and 

rounded Kit+ cells are detected at E8.5. Arrows indicate flattened hemogenic endothelial 

cells; arrowheads indicate rounded hematopoietic cells. B. Examples of flattened hemogenic 

endothelial cells at E9.5-E10. Bottom right has both Runx1+Kit+ rounded cells (arrowheads) 

and Runx1+Kitlo flattened cells (arrows). C. Examples of polygonal Kit+ clusters (open 

arrows) and rounded Kit+ cells (closed arrows) at E8.5 (6, 8 somite pairs (sp)), E9.5 (19, 22 

sp), and E11 (41 sp). D (top right). Confocal Z-stacks through a polygonal Kit+ cluster at 

E9.5 indicates Kit+ cells are in the same plane of focus as the endothelium.
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Figure 3. EMPs continually emerge over a broad developmental time and remain in the yolk sac 
circulation as late as E12
A. Quantification of immunohistochemical Kit+ clusters in the yolk sac (YS) over 

developmental time. n=3 for all timepoints except 39–40sp (E11) (n=4). Error bars indicate 

SEM. Significance was determined (10–49 cells; P = 4.81x 10−6) by one-way Analysis of 

Variance. All means (10–49 cells) are significantly different from one another (P < 0.05, 

Tukey-Kramer post-test) except: 27–28sp and 35–36sp; 35–36sp and 39–40sp. B. Flow 

cytometry indicates that robust numbers of Kit+ cells, many of which are 

Kit+CD41+CD16/32+ EMPs, remain in the yolk sac circulation through E11, and begin to 

decline by E12. n=3 20–22sp, n=5 32–40sp, n=4 48–51sp. Error bars indicate SEM. 

Significant differences within each fraction were determined by one-way Analysis of 

Variance: P = 0.012 (Kit+), P = 0.001 (EMP). All means are significantly different from one 

another (P < 0.05, Tukey-Kramer post-test) except 20–22sp and 32–40sp (both Kit+ and 

EMP).
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Figure 4. EMPs emerge along a proximal-distal gradient without anterior/posterior or arterial/
venous preference
A–C. Immunohistochemistry at the stages indicated with indicated markers. A. Schematic 

represents an intact E8.5 embryo for clarity of anatomical locations within the flat-mounted 

yolk sac. EMP clusters are interspersed within the anterior and posterior regions of the blood 

island region of the proximal yolk sac (above the dotted line), where the primitive 

erythroblasts (EryP; purple) are also located. See Fig. S2 for images of each separate stain. 

B. By 14sp (E8.75), EryPs start to appear in the distal portion of the yolk sac (inside dotted 

circle), while EMP clusters remain in the proximal yolk sac (outside dotted circle). Blue 

asterisks in both B and C indicate background artifact; see Fig. S2. Boxed regions indicate 

clusters in venous (V) and arterial (A) regions (B, right; C, insets). C. At 21sp (E9.5), EMP 

clusters reside in both the arterial and venous regions of the yolk sac (approximated by 

dotted lines). Scale bar of insets: 50μm. The vitelline artery was identified based on distinct 

branching morphology[68], which was corroborated both with Sox17 labeling (see Fig. S3), 

and by identification of Kit+Runx1+ clusters in extensions of the artery (not shown). D. 
Anterior and posterior regions of the E8.5 yolk sac each produce GR-1+ granulocytes. B-

lymphocyte potential is also evident. Flow cytometric analysis of one anterior culture shown 

at day 12.
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Figure 5. The endothelial-to-hematopoietic transition occurs without circulation, and in larger 
and smaller vessels after vascular remodeling
A. EMP clusters in the Ncx1−/− yolk sac are localized to the proximal region. Blue asterisks 

indicate background artifact from folded tissue. Scale bar: 500μm; inset: 50μm. B–C. 
Examples of polygonal Kit+CD31+Runx1+ clusters (B) and flattened Runx1+ hemogenic 

endothelial cells (C, arrows) in E9.5 Ncx1−/− yolk sacs. 3 Ncx1−/− yolk sacs were analyzed. 

D–F. At E9.5-10, flattened and polygonal Kit+ cells are present in larger remodeled vessels 

and the vascular plexus. (F) Flattened KitloRunx1+ cells are denoted by closed arrows, 

polygonal cells by open arrows.
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Figure 6. Canonical Wnt signaling regulates EMP production in vitro and in vivo
A. Increased production of CFCs and HPP-CFCs in explanted E8.5 yolk sacs with Wnt3a 

treatment. (Left) Methylcellulose culture (CFCs) of 6–7sp yolk sacs. n=10. (Right) HPP-

CFC of 7–9sp yolk sacs (n=7 controls (Ctrl), n=8 Wnt3a treated). Error bars indicate SEM. 

*P <0.05, 2-tailed student’s t-test. B. No changes in CFC activity were observed with Wnt3a 

treatment of sorted E9.5-E10 Kit+CD41+CD16/32+ EMPs for 24 hours. n=5, error bars 

indicate SEM. C. Wnt3a treatment of E9.5 dissociated yolk sacs for 2 hours increased β-

catenin staining intensity in the nuclear region of Kit+VEC/AA4.1+CD16/32neg cells. n=3, 

error bars indicate SEM. *P <0.01, 1-tailed student’s t-test. D. Treatment of sorted VEC/

AA4.1+CD16/32neg cells with Wnt3a for 5 hours increased expression of β-catenin target 

gene Axin2. n=3. *P <0.05, 1-tailed student’s t-test. E. Immunohistochemistry and β-

galactosidase (β-gal) staining of E8.25 BAT-gal yolk sac reveals a rare subset of 

VEC+Runx1+β-gal+ putative hemogenic endothelium (asterisks). 1 example of 4 yolk sacs 

with VEC+Runx1+β-gal+ staining is shown. Runx1negβ-gal+ cells (dotted lines) are also 

present. The majority of Runx1+ cells are β-galneg. For whole yolk sac images, see Fig. S4B. 

F. E9.5-E10.5 Cdh5-Cre; Ctnnb1fl/fl yolk sacs (cKO) have reduced CFCs compared with 

yolk sacs of Cdh5-Creneg littermates. Colors of data points represent separate litters of 

embryos (n=4 litters). *P =0.01, 1-tailed student’s t-test.

Frame et al. Page 24

Stem Cells. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Summary of EMP specification in the murine yolk sac and comparison with HSC 
specification
A. Temporal model of yolk sac-derived definitive hematopoiesis. Hematopoietic potential is 

initiated as a wave of EMP colony-forming activity over developmental time (red arrow 

with shaded area)[27]. Analysis of hemogenic endothelial-derived Kit+ cluster numbers 

indicates that EMPs cease to emerge in the yolk sac after E11.5 (black dotted line, orange 

shaded area). This wave of hematopoietic emergence is preceded by the appearance of 

flattened hemogenic endothelium (HE; green dotted line) from E8.5 through as late as 

E10.5-11, as determined in Figure 2. The observed formation of hemogenic endothelium 

correlates well with the reported requirement of Runx1 in mediating EMP formation through 

E10.5 (green trapezoid)[79]. Note that presence of hemogenic endothelium at early 

developmental stages (green triangle) is approximated and remains unknown. Endogenous 

canonical Wnt signaling in the yolk sac is robust at early stages (blue trapezoid), and 

increases EMP production from hemogenic endothelium at E8.5 (green dotted line) ex vivo, 

as determined in Figure 6. Together, these kinetics suggest that canonical Wnt signaling has 

an early role in regulating hematopoietic potential from hemogenic endothelium. B. 

Comparison of the timing of and requirements for EMP and HSC emergence. UA, umbilical 

artery; VA, vitelline artery; HE, hemogenic endothelium, NO; nitric oxide.
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