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Abstract

N,N-bis-(2-chloroethyl)-phosphorodiamidic acid (phosphoramide mustard, PM) and N,N-bis-(2-

chloroethyl)-ethylamine (nornitrogen mustard, NOR) are the two biologically active metabolites 

of cyclophosphamide, a DNA alkylating drug commonly used to treat lymphoma, breast cancer, 

certain brain cancers, and autoimmune diseases. PM and NOR are reactive bis-electrophiles 

capable of cross-linking cellular biomolecules to form covalent DNA-DNA and DNA-protein 

cross-links (DPCs). In the present work, a mass spectrometry-based proteomics approach was 

employed to characterize PM- and NOR-mediated DNA-protein cross-linking in human cells. 

Following treatment of human fibrosarcoma cells (HT1080) with cytotoxic concentrations of PM, 

over 130 proteins were found to be covalently trapped to DNA, including those involved in 

transcriptional regulation, RNA splicing/processing, chromatin organization, and protein transport. 

HPLC-ESI+-MS/MS analysis of proteolytic digests of DPC-containing DNA from NOR-treated 

cells revealed a concentration-dependent formation of N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-

yl)ethyl]amine (Cys-NOR-N7G) conjugates, confirming that it cross-links cysteine thiols of 

proteins to the N-7 position of guanines in DNA. Cys-NOR-N7G adduct numbers were higher in 

NER-deficient Xeroderma pigmentosum cells (XPA) as compared with repair proficient cells. 

Furthermore, both XPA and FANCD2 deficient cells were sensitized to NOR treatment as 

compared to wild type cells, suggesting that Fanconi Anemia and nucleotide excision repair 

pathways are involved in the removal of cyclophosphamide-induced DNA damage.
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Introduction

DNA-protein cross-links (DPCs) are bulky DNA lesions that are formed as a result of 

irreversible trapping of cellular proteins on DNA strands.1 DPCs can form endogenously or 

may be induced by exposure to transition metal ions,2,3 ionizing radiation,4 and anti-cancer 

drugs such as nitrogen mustards,5–7 platinum compounds,8–11 and haloethylnitrosureas.12 

As a result of their size, DPC lesions are thought to interfere with chromatin folding, DNA 

replication, transcription, and repair, potentially contributing to toxicity and mutagenicity of 

cross-linking agents.13

Phosphoramide mustard (PM, Scheme 1) is a biologically active metabolite of 

cyclophosphamide (CP), a chemotherapeutic agent commonly used to treat lymphomas, 

breast cancers, certain brain cancers, and autoimmune diseases.14–16 Under physiological 

conditions, PM spontaneously dephosphoramidates to form another DNA alkylating agent, 

nornitrogen mustard (NOR) (Scheme 1).17–19 Both PM and NOR can modify N-7-guanine 

of DNA to yield N-(2-chloroethyl)-N-[2-(7-guaninyl)ethyl] amine, N-(2-hydroxyethyl)-N-

[2-(7-guaninyl)ethyl] amine, and N,N-bis-[2-(7-guaninyl)ethyl] amine adducts,17–19 and also 

produce covalent DNA-protein conjugates (Scheme 1).

DNA-protein cross-linking by nitrogen mustards was first observed by Ewig et al.7 These 

authors utilized the alkaline elution approach to detect DPCs in mouse leukemia cells 

(L1210) treated with nitrogen mustard.7 Hansson et al used a similar methodology to 

demonstrate DPC formation in human melanoma cells upon exposure to NOR and 

melphalan.20 When compared to other bifunctional lesions such as DNA interstrand and 

intrastrand cross-links, DPCs accounted for 60 – 70% of total cross-linked lesions.20 Our 

group initially investigated DNA-protein cross-linking by nitrogen mustards using a model 

protein, O6-alkylguanine DNA alkyltransferase (AGT).21 Covalent AGT-DNA conjugates 

formed in a concentration-dependent manner following treatment with mechlorethamine and 

chlorambucil21 and involved the N7 position of guanine in DNA and AGT active site 

cysteine residues, C145 and C150.21 More recently, a mass spectrometry-based proteomics 

approach was employed to identify mechlorethamine-induced DPCs in human fibrosarcoma 

(HT1080) cells.5 A total of 38 proteins including were identified, including those 

participating in DNA damage response/repair, RNA processing/mRNA splicing, and 
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transcriptional regulation/translation.5 Unfortunately, many of the cross-linked proteins 

remained undetected due to the limitations of mass spectrometry methodologies used at the 

time (ion trap MS).5

In the present study, highly sensitive and accurate Orbitrap methodology was used to 

characterize DNA-protein cross-linking in HT1080 cells treated with PM and NOR. As 

mentioned above (Scheme 1), NOR forms upon spontaneous dephosphoramidation of PM, 

and both mustards produce structurally identical DNA and protein adducts. Proteins 

covalently bound to chromosomal DNA following PM treatment were isolated using a 

modified phenol/chloroform extraction methodology developed by our group.5,22 Neutral 

thermal hydrolysis was used to release PM-induced DPCs from the DNA backbone in the 

form of guanine-protein cross-links, which were subsequently resolved by SDS-PAGE and 

identified by mass spectrometry-based proteomics on an Orbitrap Velos mass spectrometer 

(Scheme 2). A total of 134 proteins were found to form DPCs in the presence of PM, 

including gene products that function in DNA repair, transcriptional regulation, apoptosis, 

and cell signaling. Isotope dilution HPLC-ESI+-MS/MS analyses of N-[2-[cysteinyl]ethyl]-

N-[2-(guan-7-yl)ethyl]amine (Cys-NOR-N7G) conjugates with 15N5-labeled internal 

standard were used to quantify DPC formation in NOR-treated cells. Finally, DPC numbers 

were compared between human wild type fibroblasts and the corresponding cells deficient in 

nucleotide excision repair (NER) and Fanconi Anemia (FA) repair pathways to gain insight 

into potential mechanisms of DPC repair in humans.

Experimental

Chemicals and Reagents

Ammonium bicarbonate, ammonium acetate, diepoxybutane, bis-(2-chloroethyl)amine 

hydrochloride (nornitrogen mustard), mechlorethamine, d,l -1,2,3,4-diepoxybutane, 

phenylmethanesulfonyl fluoride (PMSF), Boc-L-cysteine (Boc-Cys-OH), triflouroacetic 

acid (TFA), leupeptin, pepstatin, aprotinin, methoxyamine, UCN-01, dithiothreitol (DTT), 

iodoacetamide, chloroform, ribonuclease A, deoxyribonuclease I, and alkaline phosphatase 

were purchased from Sigma (St. Louis, MO). Phosphodiesterase I and phosphodiesterase II 

were obtained from Worthington Biochemical Corporation (Lakewood, NJ). UltraPure 

buffer-saturated phenol was obtained from Invitrogen (Carlsbad,CA). Mass spectrometry 

grade trypsin was purchased from Promega (Madison, WI). Proteinase K was obtained from 

New England Biolabs (Beverly, MA). Cell Lysis Solution and Protein Precipitation solution 

were purchased from Qiagen (Valencia, Ca). Phosphoramide mustard was obtained from 

iTT GmbH/Niomech (Bielefeld, Germany).

N-(2-chloroethyl)-N-[2-(guan-7-yl)ethyl]amine (N7G-NOR-Cl)—2′-Deoxyguanosine 

(500 mg, 1.87 mmol) was reacted with nornitrogen mustard (3.34 g, 18.7 mmol) in 

trifluoroethanol (25 mL) at 37 °C for 72 h under anhydrous conditions. The reaction mixture 

containing N7G-NOR-Cl was dried under argon, and the resulting solid was washed with 1 

mL of anhydrous ether three times to remove unreacted NOR. The presence of N7G-NOR-

Cl was confirmed by UV spectrophotometry and mass spectrometry. UV: λmax = 246 nm, 

λmin = 275 nm (pH 4.9); ESI+-MS/MS: m/z 257.7 [M + H], m/z 178.2 [M + H – 

NH(CH2)2Cl]+, m/z 107.1 [M + H – Gua]+. 15N5-N7G-NOR-Cl was prepared analogously 
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starting with 15N5–2’-deoxyguanosine, and its structure was confirmed by UV and mass 

spectrometry. UV: λmax 246 nm, λmin 275 nm (pH 4.9); ESI+-MS/MS: m/z 262.7 [M + H]+, 

m/z 183.1 [M + H − NH(CH2)2Cl]+, m/z 107.1 [M + H − Gua]+.

N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]amine (Cys-NOR-N7G)—Boc-Cys-OH 

(167 mg, 0.7541 mmol) was combined with N7G-NOR-Cl (335 mg, 0.9438 mmol) in 7 mL 

DMSO, and the reaction mixture was stirred at 37 °C for 72 h. The insoluble product was 

isolated by filtration and separated by semi-preparative HPLC on a Supelcosil LC-18-DB 

column (25 cm × 10 mm, 5 μm) eluted with a linear gradient of acetonitrile (B) in 20 mM 

ammonium acetate, pH 4.9 (A). Solvent composition was changed linearly from 0 to 24% B 

in 24 min and further to 60% in 6 min. Under these conditions, Boc-Cys-NOR-N7G eluted 

as a sharp peak at 20.9 min. ESI+-MS/MS: m/z 443.5 [M + H]+ → m/z 343.5 [M + H −Boc]+ 

and m/z 193.3 [M + H − Boc – Gua]+. The Boc group was removed by incubating Boc- Cys-

NOR-N7G with 50% TFA at room temperature for 45 min, and the resulting deprotected 

product (Cys-NOR-N7G) was purified using the same HPLC method (retention time = 10.4 

min). Cys-NOR-N7G: ESI+-MS/MS: m/z 342.1 [M + H]+ → m/z 191.1 [M + H − Gua]+. 

Cys-NOR-[15N5]-N7G was synthesized analogously starting with 15N57G-NOR-Cl. ESI+-

MS/MS: m/z 347.1 [M + H]+ → m/z 191.1 [M + H − Gua]+.

Cell Culture

Human fibrosarcoma (HT1080) cells were obtained from the American Type Culture 

Collection (Camden, NJ). Human Xeroderma Pigmentosum Complementation Group A 

(XPA, XPA deficient) cells were obtained from NIGMS Human Genetic Cell Repository 

(Camden, NJ). Prof. Alexandra Sobeck (University of Minnesota) kindly provided FA-D2 

cells (PD20, FANCD2 deficient), and FA-D2-derivative cells stably expressing FANCD2 

(PD20 + FANCD2). The cells were maintained as exponentially growing monolayer 

cultures in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS), in a humidified incubator at 37 °C with 5% CO2.

Cytotoxicity Experiments

HT1080, XPA, PD20, and PD20 corrected cells were plated in Dulbecco’s modified Eagle’s 

medium containing 10% FBS at a density of 3 ×104 cells/dish and permitted to adhere for 24 

hours. Cells (1.0 × 105, in triplicate) were treated with 0 – 2000 μM PM, mechlorethamine, 

or DEB for 3 h at 37 °C. Following treatment, cell media was replaced, and the cells were 

grown for an additional 48 h at 37 °C. Cell viability was determined using an Alamar Blue 

assay23 using a Synergy HI Microplate reader (BioTek, Winooski, VT).

Cell Treatment with PM and Isolation of DNA-Protein Crosslinks

HT1080 cells in culture (~ 1 × 107, in triplicate) were treated with increasing concentrations 

of PM (0, 50, 100, 250, and 500 μM) for 3 h at 37 °C. Following treatment, the cells were 

washed with phosphate-buffered saline (PBS) and re-suspended in 3 mL PBS buffer. DPC-

containing DNA was isolated by a modified phenol-chloroform procedure as described 

previously.5,22 In brief, the cells were lysed by adding an equal volume of 2X cell lysis 

buffer (20 mM Tris-HCl/10 mM MgCl2/2% Triton-X100/0.65 M Sucrose), incubated on ice 

for 5 min, and centrifuged at 2000 g for 10 min at 4 °C. The nuclear pellets were re-
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suspended in saline-EDTA solution (75 mM NaCl/24 mM EDTA/1% sodium dodecyl 

sulfate) containing RNase A (10 μg/mL) and a protease inhibitor cocktail (1 mM PMSF; 1 

μg/mL pepstatin; 0.5 μg/mL leupeptin; 1.5 μg/mL aprotinin). The resulting nuclei were 

incubated for 2 h at 37 °C with gentle shaking. To the nuclear lysates, an equal amount of 

tris-saturated phenol was added, and the solutions were mixed for 5 minutes. Following 

centrifugation at 1500 RPM for 10 minutes, the aqueous layer containing DNA and the 

DPC-containing interface was collected. This material was re-extracted with phenol/

chloroform as described above two additional times, and DPC-containing DNA was 

precipitated with cold isopropanol. DNA amounts and its purity were estimated using UV 

spectrophotometry (A260) and subsequently determined by quantitation of dG in enzymatic 

hydrolysates as described below. Typical DNA yields from 10 million cells were 40–60 μg.

DNA Quantitation by dG Analysis

To quantify DNA extracted from cells, 5 μg aliquots of DNA were taken and subjected to 

neutral thermal hydrolysis (1 h at 70 °C) to release protein−guanine conjugates from the 

DNA backbone. The resulting partially depurinated DNA was digested to 2′-

deoxynucleosides in the presence of phosphodiesterase I (120 mU), phosphodiesterase II 

(105 mU), DNase (35 U) and alkaline phosphatase (22 U) in 20 μL 10 mM Tris-HCl/15 mM 

ZnCl2 (pH 7.0) for 18 h at 37 °C. Quantitative analysis of dG in enzymatic digests was 

conducted by HPLC-UV on an Agilent Technologies 1100 HPLC system equipped with a 

diode array UV detector and an autosampler. The samples were loaded on an Xterra MS 

C18 column (2.1 × 250 mm, 5 μm, from Waters Corporation, Milford, MA) and eluted with 

a gradient of 150 mM ammonium acetate (A) and acetonitrile (B). Solvent composition was 

changed linearly from 0 to 20% B over 30 min and further to 75% B over 3 min, then 

returned to 0% B over 3 min, where it was kept for the final 13 min of the HPLC run. UV 

absorbance was monitored at 260 nm. With this method, dG eluted as a sharp peak at 19.9 

min. dG amounts were determined by comparing HPLC peak areas to a calibration curve 

constructed by injecting known dG amounts. No RNA contamination was detected as 

demonstrated by the absence of ribonucloside peaks in enzymatic digests.

Mass Spectrometric Identification of Cross-Linked Proteins

To identify cellular proteins that become covalently trapped on DNA following exposure to 

PM, HT1080 cells (1 × 107, in triplicate) were treated with 100 μM PM for 3 h at 37 °C. 

Chromosomal DNA containing any covalently attached proteins was isolated by the 

modified phenol/chloroform extraction method described above.5,22 DPC-containing DNA 

(30 μg) was subjected to neutral thermal hydrolysis to release protein-guanine conjugates 

(Scheme 2), dried under vacuum, and reconstituted in 1 × NuPAGE Sample Buffer 

(Invitrogen, Carlsbad, CA). Proteins were resolved by NuPAGE Novex 12% Bis-Tris Gels 

(Invitrogen, Carlsbad, CA) and stained with SimplyBlue Safe stain (Invitrogen, Carlsbad, 

CA).

Gel lanes were divided into five sections encompassing the molecular weight range of 5 – 

250 kDa. Each section of the gel (260 – 110 kDa, 110 – 80 kDa, 80 – 50 kDa, 50 – 30 kDa, 

30 – 5 kDa) was excised and further diced into 1 mm pieces. The proteins present within the 

gel pieces were subjected to in-gel tryptic digestion by standard methods. In brief, gel pieces 
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were washed with 25 mM ammonium bicarbonate, protein disulfide linkages were reduced 

with DTT (300 mM), and the resulting thiols were alkylated with saturated iodoacetamide. 

Gel pieces were dehydrated by incubation with acetonitrile, dried under vacuum, and 

reconstituted in 25 mM ammonium bicarbonate buffer (pH 9.0). Mass spectrometry grade 

trypsin (1 μg) was added, and the samples were digested for 18 hours at 37 °C. The resulting 

tryptic peptides were extracted with 60% acetonitrile containing 0.1% aqueous formic acid, 

evaporated to dryness, and desalted using C18 ZipTips (Millipore, Temecula, CA). Samples 

were reconstituted in 0.1% formic acid for HPLC−ESI+−MS/MS analysis.

HPLC-ESI+-MS/MS analyses of tryptic peptides were conducted using an LTQ Orbitrap 

Velos mass spectrometer (Thermo Scientific, Waltham, MA) equipped with an Eksigent 

nanoLC 2D HPLC pump, a nanospray source, and Xcalibur 2.1.0 software for instrument 

control. Peptide mixtures were loaded onto a Symmetry C18 trapping column (180 μm ×20 

mm, Waters, Milford, MA) using 0.1% formic acid in water (A) and 0.1% formic acid in 

acetonitrile (B) at a solvent composition of 95% A and 5% B at 5 μL/min for 3 min. Typical 

injection volume was 8 μL. Following trapping, the HPLC flow was decreased to 0.3 μL/min 

and reversed to elute the peptides. The peptides were separated on a nanoHPLC column (75 

μm i.d.,10 cm packed bed, 15 μm orifice) created by hand packing a commercially 

purchased fused-silica emitter (New Objective, Woburn MA) with Zorbax SB-C18 5 μm 

separation media (Agilent, Santa Clara, CA). The gradient program started at 5% B, 

followed by a linear increase to 60% B over 60 min and further to 95% B in 5 min. Liquid 

chromatography was carried out at an ambient temperature. The mass spectrometer was 

calibrated prior to each analysis, and the spray voltage was adjusted to ensure a stable spray. 

Typically, the MS tune parameters were as follows: spray voltage of 1.6 kV, a capillary 

temperature of 275 °C, and an S-lens RF level of 50%. MS/MS spectra were collected using 

data-dependent scanning, in which one full scan mass spectrum acquired in the Orbitrap 

detector (R = 30,000) was followed by eight MS/MS spectra acquired in the Orbitrap 

detector (R = 7,500) with an isolation width of 2.5 m/z, activation time of 30 ms, activation 

Q of 0.25, 35% normalized CID collision energy, 1 microscan, with an AGC setting of 2 × 

105 and a maximum injection time of 100 ms. Dynamic exclusion was enabled for 60 s, and 

singly charged species were excluded from MS/MS analysis.

Spectral data were analyzed using an in-house developed software pipeline “TINT” that 

linked raw data extraction, database searching, and probability scoring. Raw data were 

extracted and converted to the mzXML format using ReadW. Spectra that contained fewer 

than 6 peaks or had measured total ion current (TIC) < 20 were excluded. Data was 

processed using the SEQUEST v.27 algorithm24 on a high speed, multiprocessor Linux 

cluster in the Minnesota Supercomputing Institute at the University of Minnesota. Peptide 

spectra were searched against the UniProt Human Protein Database. Cysteine 

carboxamidomethylation (+57.0215 Da) was set as a fixed modification, and methionine 

oxidation (+15.9949 Da) was selected as a variable modification. Precursor mass tolerance 

was set to 10 ppm within the calculated mass, and fragment ion mass tolerance was set to 10 

mmu of their monoisotopic mass. The identified peptides were filtered using Scaffold 3 

software (Proteome Software, INC., Portland, OR), to a target false discovery rate (FDR) of 

5%. The FDR was calculated with the following expression: FDR = (2R)/(R + F) × 100, 

where R is the number of passing reversed peptide identifications and F is the number of 
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passing forward (normal orientation) peptide identifications. The second round of filtering 

removed proteins supported by less than two unique peptide fragments in the analyses. Any 

proteins also found in control (untreated) samples were excluded from the final list.

Western Blot Analysis

HT1080 cells (~1 × 107) were treated with NOR (0, 50, 100, 250, or 500 μM) for 3 h at 37 

°C. Chromosomal DNA, along with any covalent DPCs, was extracted and quantified as 

described above. From each sample, 50 μg of DNA was subjected to neutral thermal 

hydrolysis (1 h at 70 °C) to release protein-guanine conjugates from the DNA backbone. 

The proteins were resolved by NuPAGE Novex 12% Bis-Tris gels (Invitrogen, Carlsbad, 

CA) and transferred to Invitrolon PVDF filter paper membranes (0.45 μm pore size, Life 

Technologies, Carlsbad, CA). The membranes were blocked for 4 h in Tris-buffered saline-

Tween 20 (TBST) containing 5% (w/v) bovine serum albumin. Following blocking, the 

membranes were incubated with the primary antibodies against vimentin, nucleophosmin, 

prohibitin-2, matrin-3, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), poly-(ADP-

ribose) polymerase 1 (PARP), and histone-H4 overnight at 4 °C. The membranes were 

rinsed with TBST and incubated with the corresponding alkaline phosphatase-conjugated 

antibody for 1 h at room temperature. The gels were developed using SIGMA Fast 

BCIP/NBT (Sigma, St. Louis, MO) according to manufacturer’s protocol.

Quantitation of Cys-NOR-N7G in NOR-Exposed Cells

HT1080 cells (1 × 107) were treated with increasing concentrations of NOR (0, 50, 100, 

250, and 500 μM) for 3 h at 37 °C. Following treatment, the cells were washed with PBS, re-

suspended in cell lysis solution (2 mL, Qiagen, Valencia, CA) containing 10 μg RNAse A, 

and incubated for 16 h at room temperature with gentle inversion. Proteinase K (10 μg) was 

added, and the samples were incubated for an additional 16 h at room temperature with 

gentle inversion. The lysates were mixed with 700 μL of protein precipitation solution 

(Qiagen, Valencia, CA), and the samples were vortexed for one minute. Following 

centrifugation at 1500 RPM for 10 minutes, the supernatant was collected, and DPC-

containing genomic DNA was precipitated with cold isopropanol. DNA was quantified by 

dG analysis as described above.

DNA (100 μg) was subjected to neutral thermal hydrolysis (1 h at 70 °C) to release protein

−guanine conjugates from the DNA backbone. Proteins were cleaved with trypsin (10 μg 

protein in 25 mM ammonium bicarbonate, overnight at 37 °C), and the resulting peptides 

were further digested to amino acids in the presence of proteinase K (10 μg in 100 μL water, 

overnight at 37 °C). The digests were spiked with Cys-[15N5]-NOR-N7G (internal standard 

for mass spectrometry, 200 fmol), followed by offline HPLC purification as follows. An 

Agilent Technologies HPLC system (1100 model) was used incorporating a diode array 

detector, an autosampler, and a fraction collector. A Synergi 4μ Hydro RP (4.6 × 250 mm, 5 

μm) column (Sigma-Aldrich, St. Louis, MO) was eluted at a flow rate of 1 mL/min using a 

gradient of 15 mM ammonium formate, pH 4.9 (A) and acetonitrile (B). Fractions 

containing Cys-NOR-Gua and its 15N-labeled internal standard (9.7 – 11.2 min) were 

collected, dried under vacuum, and reconstituted in 0.1% formic acid (20 μL).
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Quantitative analyses of Cys-NOR-N7G were conducted with a Dionex UltiMate 3000 

RSLC nanoHPLC system (Thermo Scientific, Waltham, MA) interfaced to a TSQ Vantage 

mass spectrometer (Thermo Scientific, Waltham, MA). Chromatographic separation was 

accomplished with a Hypercarb HPLC column (100 mm × 0.3 mm, 3 μm) eluted with a 

gradient of 0.1% formic acid (A) and acetonitrile (B) at a flow rate of 12 μL/min. Solvent 

composition was linearly changed from 4% to 30% in 13 min and further to 90% 1 min, kept 

at 90% for 1 min, then brought back to 4% in 1 min. Under these conditions, Cys-NOR-N7G 

and its internal standard (Cys-NOR-[15N5] N7G) eluted at ~ 9.6 min. Electrospray ionization 

was achieved at a spray voltage of 3200 V and a capillary temperature of 270 °C. Collision 

induced dissociation was performed with Ar as a collision gas (1.5 mTorr) at a collision 

energy of 23 V. Instrument parameters were optimized for maximum response during 

infusion of a standard solution of Cys-NOR-N7G.

HPLC-ESI+-MS/MS analysis of Cys-NOR-N7G was performed in the selected reaction 

monitoring mode by following the neutral loss of guanine from protonated molecules of the 

analyte (m/z 342.1 [M + H]+ → 191.0 [M + H − Gua]+) and the corresponding mass 

transitions corresponding to 15N5- labeled internal standard (m/z 347.1 [M + H]+ → 191.0 

[M + H − 15N5 − Gua]+). Analyte concentrations were determined using the relative 

response ratios calculated from HPLC-ESI+-MS/MS peak areas in extracted ion 

chromatograms corresponding to Cys-NOR-N7G and its internal standard.

Cys-NOR-N7G Quantitation in Wild Type and DNA Repair-Deficient Fibroblasts

Human fibrosarcoma cells (HT1080), NER-deficient Xeroderma pigmentosum cells (XPA), 

FANCD2-deficient cells (PD20), and the corresponding FANCD2-corrected cells (PD20-

corrected, 1×107) were treated with 250 μM NOR for 3 h at 37 °C. Following treatment, cell 

media was replaced, and the cells were allowed to recover at 37 °C for either 4 h (n = 6) or 

0, 4, 12, or 24 h (n = 3) to allow for repair. DNA was isolated using Qiagen Cell Lysis 

Solution extraction procedure and quantified by dG analysis as described above. DNA 

samples (100 μg) were subjected to neutral thermal hydrolysis (1 h at 70 °C) to release 

protein-guanine conjugates. Conjugated peptides were further digested to amino acids in the 

presence of trypsin (10 μg protein in 25 mM ammonium bicarbonate, overnight at 37 ° C), 

followed by proteinase K (10 μg in 250 μL water, overnight at 37 °C). The digests were 

spiked with Cys-NOR-[15N5]-N7G internal standard (200 fmol), followed by off-line HPLC 

purification as described above. Cys-NOR-N7G conjugates were quantified by isotope 

dilution HPLC-ESI+-MS/MS as described above.

Results

Cytoxicity Experiments in Human Cell Culture

To characterize the toxicity of PM in human fibrosarcoma cell cultures, HT1080 cells (in 

triplicate) were treated with increasing amounts of PM, and their viability was determined 

by the Alamar Blue assay.23 We found that PM was significantly less toxic than 

mechlorethamine, a structurally related nitrogen mustard investigated in our earlier 

publication (EC50 = 317 ± 43 and 20.2 ± 4.59, respectively),5 but had similar toxicity to 

1,2,3,4-diepoxybutane EC50 = 480.8 ± 41.9 (Supplementary Figure S-1). The fractions of 
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live cells following treatment with 50, 100, 250, 500, 750, 1000, 1500, and 2000 μM PM 

were 87 ± 2.6, 73.0 ± 3.4, 60 ± 3.7, 43 ± 3, 30 ± 3.6, 18 ± 2, 7 ± 0.3, and 8.5 ± 0.3 %, 

respectively (Figure 1).

Concentration-Dependent Formation of DPCs in PM-Treated Human Cells—To 

monitor PM-mediated DPC formation, human fibrosarcoma cells (HT1080) were treated 

with increasing concentrations of PM (0, 50, 100, 250, and 500 μM) for 3 h. DNA was 

extracted under mild conditions that preserved covalent DNA-protein conjugates. The 

samples were subjected to thermal hydrolysis to release proteins in the form of protein-

guanine conjugates, which were resolved by gel electrophoresis (Scheme 2 and Figure 2A). 

Although small amounts of endogenous DPCs were present in untreated cells (Lane 3 in 

Figure 2A), the amounts of cross-linked proteins increased in a concentration dependent 

manner (Lanes 5, 7, 9, 11 in Figure 2A, Figure 2B). In our previous studies, a 20-fold 

greater concentration of 1,2,3,4-diepoxybutane (DEB, 2 mM) was required to produce 

similar numbers of DPCs in HT1080 cells,22 while comparable cross-linking efficiency was 

observed upon treatment with mechlorethamine.5 This suggests that PM and NOR are 

equally efficient at forming DPCs, while DEB is less efficient than the two nitrogen 

mustards.

Identification of Cross-linked Proteins by Mass Spectrometry-Based 
Proteomics—To identify the proteins participating in DPC formation following exposure 

to PM, HT1080 cells (in triplicate) were treated with 100 μM PM for 3 h. Control cells were 

incubated with PM-free cell culture media. DPC-containing DNA was extracted as 

described above, and equal amounts of DNA from each sample (30 μg) were subjected to 

neutral thermal hydrolysis to release protein-guanine conjugates (Scheme 2), which were 

detected by gel electrophoresis.

SDS-PAGE analysis of protein-guanine conjugates isolated from PM-treated samples (Lanes 

9–11 in Figure 3) revealed intense protein bands, while control samples contained 

considerably weaker bands corresponding to endogenous DPCs (Lanes 3 – 5 in Figure 3). 

The gel lanes from both experiments were divided into five sections covering the molecular 

weight range of 5 – 260 kDa (A – E in Figure 3) and cut out of the gel. Individual gel pieces 

of each region were subjected to in-gel tryptic digestion, and the resulting peptides were 

extracted from the gel, desalted, and subjected to HPLC-ESI+-MS/MS analysis for protein 

identification.

MS/MS analysis of tryptic peptides from cross-linked proteins yielded characteristic b and y 

series ions, which were used to determine their amino acid sequences and to identify the 

corresponding proteins (see example in Supplementary Figure S-2). Protein identification 

was based on the sequence of at least two unique peptides. Any proteins that were also 

detected in control samples or were not present in all three treated samples were omitted 

from the final list. Using these criteria, a total of 134 proteins were identified (Table 1).

Proteins found to form covalent cross-links to chromosomal DNA following exposure to PM 

(Table 1) were categorized based on their cellular distribution, molecular function, and 

biological process using the GO database available from the European Bioinformatics 
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Institute (http://www.ebi.ac.uk/GOA).25 A large portion of the cross-linked proteins are 

classified as nuclear (67 total, 50%), including histones, high mobility group proteins, 

protein MAK16 homolog, and U1 small nuclear ribonucleoprotein 70 kDa (Figure 4A, 

Table 1). This is not unexpected as nuclear proteins are most likely to form DPCs due to 

their proximity to nuclear DNA. The remaining proteins were classified as cytoplasmic (38 

total, 28.4%), membrane bound/cytoskeleton (18 total, 13.4%), endoplasmic reticulum (7 

total, 5.2%), mitochondrial (5 total, 3.7%), golgi apparatus (2, 1.5%) and unknown (2 total, 

1.5%) (Figure 4A). It is important to note that many of the proteins may be present in 

multiple cellular compartments due to their participation in many diverse biological 

processes. For example, S100 A9 is classified as a cytoplasmic protein, but it has been 

shown to enter the nucleus and bind the promoter region of complement component 4 (C3), 

upregulating C3 expression.26

In respect to their molecular function, the majority of the cross-linked proteins are known to 

bind DNA and RNA (69 total, 37.7%). In addition, 10 of the proteins are known to 

participate in transcription factor binding, while 7 are involved in translation initiation factor 

binding (Figure 4).

In regard to biological processes, many of the cross-linked proteins are known to be 

involved in transcriptional regulation (20 total, 12.0%), mRNA/RNA processing (17 total, 

10.2%), translation (40 total, 23.9%), DNA damage response (8 total, 4.8%), and chromatin 

organization (7, 3.8%) (Figure 4). Included in this group are the nucleolar complex protein 2 

(inhibitor of histone deacetyltransferase and p53/TP53-regulated target promoters),27 Myb-

binding protein 1A (binds sequence-specific DNA-binding proteins),28,29 double-strand-

break repair protein rad21homolog,30 and chromodomain-helicase-DNA-binding protein 4 

(regulation of homologous recombination DNA repair).31 Some of the proteins were 

identified as structural constituents of the ribosome (27 total, 14.8%) (Figure 4). These 

include the 40S ribosomal protein S6, 60S ribosomal protein L7, 40S ribosomal protein S2, 

and 40S ribosomal S3 (Table 1). This is not a result of RNA contamination in our 

experiments, because HPLC analysis of enzymatic digests has confirmed that DNA isolated 

by our methodology was free of RNA (Supplemental Figure S-3). An alternative explanation 

is that many of known RNA binding proteins may also have an affinity for DNA. We also 

observed proteins involved in cell signaling (15 total, 8.9%) such as the heterogeneous 

nuclear ribonucleoprotein U-like protein 2, integrin β-1,32 and neurophilin 1,33 cell cycle/

homeostasis (21 total, 11.5%) such as the Lon protease homolog34 and dehydrogenase/

reductase SDR family member 2,35 and cell structure/architecture (11 total, 6.6%) such as 

actin,36 tubulin alpha-1B chain, and microfibrillar associated protein 1 (Table 1).

Many of the gene products identified in our study were counted into multiple GO categories 

due to their diverse cellular functions and their involvement in multiple biological processes. 

For example, the FACT complex subunit SPT16 is involved in regulating transcription from 

RNA polymerase II promoters,37–39 cellular response to DNA damage stimulus,40 and DNA 

replication.41 As a result, it is listed under three GO annotation categories: DNA repair, 

DNA replication, and transcriptional regulation. It is also possible that the GO annotation 

does not take into account every protein’s secondary cellular distributions and molecular 

functions. The identities of a subset of proteins detected by mass spectrometry-based 
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proteomics were further confirmed by western blot analysis using commercially available 

antibodies (Supplemental Figure S-4).

HPLC-ESI+-MS/MS Detection of Cys-N7G-NOR Conjugates

To quantify DPC formation in NOR-treated fibroblasts, HT1080 cells (in triplicate) were 

treated with 50, 100, 250, or 500 μM NOR, and DPC-containing chromosomal DNA was 

extracted as described above. Following thermal hydrolysis to release DNA and proteolytic 

digestion of proteins to amino acids, isotope dilution HPLC-ESI+-MS/MS was used to 

quantify N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine (Cys-NOR-N7G) 

conjugates, which correspond to cross-linking between the N7-position of guanine in DNA 

and cysteine thiols of proteins (Scheme 2 and Figure 5A). Cys-NOR-N7G adduct levels 

increased linearly with increasing concentrations of NOR, ranging between 3 and 14 adducts 

per 108 nucleotides (Figure 5B). These results confirm that PM and NOR treatment induces 

DPC formation between the N7-position of guanine and the cysteine thiols of proteins, as 

was previously reported for other nitrogen mustard drugs.5,6

Adduct formation in repair deficient cells

To gain insight into potential mechanisms of repair of NOR-induced DPCs in human cells, 

we examined PM toxicity and DPC formation in repair proficient and repair deficient cells. 

HT1080 (wild type), XPA (NER deficient), PD20 (FANCD2 deficient), and PD20 corrected 

cells (FANCD2 proficient) were employed in these experiments. Both NER-deficient 

Xeroderma pigmentosum cells (XPA) cells and Fanconi Anemia pathway-deficient cells 

(PD20) exhibited an increased sensitivity towards PM than the corresponding wild type cells 

(EC50 = 146 ± 31 and 168 ± 36 respectively, Figures 6A and S-5A). PD20-corrected cells 

had similar sensitivity as HT1080 cells (EC50 = 313 ± 65 vs 317 ± 43, Figures 6A and S-5). 

These results suggest that both NER and FA repair pathways help protect cells against PM-

mediated toxicity.

To determine whether the observed differences in sensitivity to PM can be attributed to 

impaired removal of DPC lesions, HT0180, XPA, PD20, and PD-corrected cells were 

treated with NOR (250 μM) and allowed to recover in drug-free media for 4h to allow for 

repair of NOR-induced DPCs. HPLC-ESI+-MS/MS analyses have revealed that NER-

deficient XPA cells had the highest numbers of Cys-NOR-N7G adducts 24.3 ± 3.5 

adducts/108 nucleotides, Figure 6B as compared to HT1080 (8.7 ± 1.5 adducts/108 

nucleotides), PD20 (5.2 ± 1.3 adducts/108 nucleotides) and PD20-corrected cells (5.6 ± 1.6 

adducts/108 nucleotides) (Figure 6B). To measure NOR-induced DPC repair over time, 

HT1080, XPA, PD20, and PD-corrected cells were treated with NOR (250 μM) and allowed 

to recover in drug-free media for 0, 4, 12, or 24 h. HPLC-ESI+-MS/MS analysis revealed 

that XPA cells had the highest Cys-NOR-N7G adduct levels at each time point measured 

(14.7 ± 6.2, 19.2 ± 5.1, 10.2 ± 6.1, and 7.2 ± 3.3 at 0, 4, 12, and 24 h respectively, Figure 

S-6). After 24 hours of repair, Cys-NOR-N7G adduct levels in all four cell types decreased 

to below 10 adducts/108 nucleotides (Figure S-6). Taken together, the results shown in 

Figures 6, S-5A, S-5B, and S-6 are consistent with an involvement of nucleotide excision 

repair in the removal of cyclophosphamide-mediated DPCs. Fanconi Anemia pathway 
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deficient cells (PD20) were more sensitive to PM (Figure S-5), but contained similar Cys-

NOR-N7G adducts levels as compared to corrected cells (Figure 6B). This could be 

rationalized by FA-mediated removal of other toxic DNA lesions induced by PM, such as 

DNA-DNA cross-links.42–44

Discussion

DNA-protein cross-links are bulky DNA adducts that can form upon exposure to bis-

electrophiles, reactive oxygen species, and transition metals.1,13 DPC formation is thought 

to contribute to the biological activity of bis-electrophiles. For example, the cytotoxicity and 

mutagenicity of dibromoethane and diepoxybutane is enhanced in bacteria overexpressing 

O6-alkylguanine DNA transferase (AGT) protein due to the formation of covalent AGT-

DNA conjugates.45 Furthermore, proteins functionalized with DNA-reactive 2-hydroxy-3,4-

epoxybutyl groups induced cell death and mutations in human cells.46

Identification of the proteins involved in DPC formation in living cells and determining the 

mechanisms of DPC repair are important for our understanding of the etiology of 

cardiovascular disease, age-related neurodegeneration, and cancer. DPCs accumulate in the 

heart and brain tissues of mice with age47 and are generated as a result of ischemia-

reperfusion injury (Groehler et al., unpublished observations). DPC formation is likely to 

contribute to both target and off-target toxicity of DNA bis-alkylating agents commonly 

used as antitumor drugs, and single nucleotide polymorphisms in DPC repair genes may 

contribute to inter-individual differences in response to antitumor therapy.

In the first part of this study, a mass spectrometry-based approach was used to characterize 

DNA-protein cross-linking following exposure of human cells to two biologically active 

metabolites of CPA (PM and NOR, Scheme 1). We found that PM and NOR induced 

covalent cross-links between DNA and over 130 cellular proteins, including those 

participating in chromatin remodeling, translation, DNA replication, DNA repair, RNA 

metabolism, transcriptional regulation, and apoptosis (Table 1). These proteins are involved 

in a variety of cellular functions including transcriptional regulation (e.g. prohibitin-2, 

protein FAM50A, and transcription activator BRG1), RNA splicing/processing (e.g. splicing 

factor, arginine/serine-rich 3, splicing factor 3B subunit 3, and 116 kDa U5 small nuclear 

ribonucleoprotein component), chromatin organization (e.g. core histone macro-H2A.2, 

SWI/SNF-related matrix associated actin dependent regulator of chromatin subfamily E 

member 1, chromodomain-helicase-DNA-binding protein 4), protein transport (e.g. charged 

multivesicular body protein 6, AP-3 complex subunit beta-1, and clathrin heavy chain1), 

cellular signaling (14-3-3 protein zeta/delta, DnaJ homolog subfamily B member 11, and 

neuropilin-1), and cell structure/architecture (actin, cytoplasmic-1, desmin, and 

vimentin).48–50 When the list of proteins participating in cross-linking to DNA in the 

presence of PM was compared to an analogous lists proteins cross-linked to DNA in the 

presence of DEB,22 a total of 47 proteins (30.9%) were found in common (Figure 7A). 

When compared to a list of cisplatin cross-linked proteins, 106 (41.4%) proteins were found 

in common (Figure 7B). These results suggest that nitrogen mustards and platinum drugs 

may target the same group of proteins for cross-linking to DNA, while a distinct group of 

proteins is cross-linked by DEB. Further studies will establish whether these differences in 
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specificity could contribute to different biological outcomes of DEB (known 

carcinogen)51–53 and cyclophosphamide (useful antitumor agent).14–16

HPLC-ESI+-MS/MS analysis have revealed that similarly to other nitrogen mustards, PM 

and NOR cross-link cysteine thiols of proteins to the N-7 position of guanine in DNA. Cys-

NOR-N7G conjugates were formed in a concentration-dependent manner in NOR-treated 

cells (Figure 5). Although N7-guanine cross links are expected to have limited hydrolytic 

stability, they may persist long enough to affect cellular replication and transcription, 

potentially leading to toxicity and mutations.

The biological outcomes of DNA-protein cross-linking are currently under active 

investigation. Nakano et al. have shown that covalent DPCs larger than 16.0 kDa blocked 

the progression of DNA helicases, thus preventing the unwinding of double stranded DNA 

ahead of the replication fork.54 In our experiments with recombinant human DNA 

polymerases, we found that proteins and large peptides (> 20 amino acids) conjugated to the 

C-5 position of dT blocked DNA synthesis in the presence of lesion bypass polymerases η 

and κ, while smaller DNA-peptide conjugates (< 10-mer) were bypassed by in an error-

prone manner, giving rise to deletions and point mutations.55,56 Recent in vivo studies of 

model peptide cross-links in human embryonic kidney cells have provided preliminary 

evidence for the ability of these conjugates to cause both targeted and off-target mutations 

(Pande et al., manuscript in preparation).

The processes by which covalent protein-DNA complexes are recognized as DNA damage 

and removed from genomic DNA are incompletely understood. Recently, Duxin et al used a 

plasmid containing a site-specific DPC to demonstrate that in Xenopus egg extracts, DPC 

repair is coupled to DNA replication.57 These authors proposed that the collision of the 

replisome/CMG helicase with a DPC located on the DNA leading strand triggers proteolytic 

degradation of the protein constituent of DPC.57 In the yeast, the metalloprotease Wss1 has 

been identified as the DPC-specific protease.58 The resulting DNA-peptide cross-links may 

serve as substrates for nucleotide excision repair (NER).59–61 Alternatively, Nakano et al 

proposed that large DPCs do not undergo proteolysis, but rather are directly repaired by the 

HR pathway.62,63

Our quantitative isotope dilution HPLC-ESI+-MS/MS results are consistent with a role for 

NER in removal of NOR-induced DPCs (Figure 6B). Cys-NOR-N7G numbers were 

significantly higher in cells deficient in nucleotide excision repair as compared with repair 

proficient cells. In contrast, the presence of functional FA pathway (PD 20 vs PD20 

corrected) did not influence the numbers of Cys-NOR-N7G adducts observed in NOR-

treated human cells (Figure 6B). These results are consistent with a model that in replicating 

human cells, NOR-induced DPCs are proteolytically digested to smaller DNA-NOR-peptide 

conjugates, which are subject to repair by NER. Further investigations are needed to 

elucidate the relative contributions of NER and HR in protecting human cells form toxic 

effects of DPCs and to establish the role of DNA-specific proteases such as Dvc1/

Spartan58,64 in initiating DPC repair.
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Abbreviations

PM phosphoramide mustard

NM nornitrogen mustard

DPC DNA-Protein cross-link

Cys-NOR-N7G N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]amine

XPA Xeroderma Pigmentosum

CP cyclophosphamide

AGT O6-alkylguanine DNA alkyltransferase

NER nucleotide excision repair

PMSF phenylmethanesulfonyl fluoride

Boc-Cys-OH Boc-L-cysteine

TFA triflouroacetic acid

DTT dithiothreitol

DMEM Dulbecco’s modified Eagle’s medium

FBS fetal bovine serum

PBS phosphate-buffered saline

EDTA ethylenediaminetetraacetic acid

UV ultraviolet light

kDa kilodaltons

TIC total ion current

GAPDH glyceraldehyde-3-phosphate dehydrogenase

PARP poly-(ADP-ribose) polymerase 1

Ar argon

DEB diepoxybutane
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MEC mechlorethamine

GO gene ontology
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Figure 1. 
Cytoxicity of phosphoramide mustard in human fibrosarcoma (HT1080) cells. Cells (in 

triplicate) were treated with 0 – 2000 μM PM for 3 h. Following exposure, the cells were 

allowed to recover in fresh media for 48 h. Cell viability was measured by the Alamar Blue 

assay using a Synergi H1 Microplate reader.
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Figure 2. 
(A) Concentration-dependent formation of DPCs in HT1080 cells treated with 0 – 500 μM 

PM for 3 h. Chromosomal DNA containing drug-induced DPCs was extracted using a 

modified phenol/chloroform extraction method described in the Experimental section. The 

proteins were released from the DNA backbone by neutral thermal hydrolysis to yield 

guanine-protein conjugates (Scheme 2), which were resolved by 12% SDS-PAGE and 

visualized by staining with SimplyBlue SafeStain. Lane 1: molecular weight marker. Lanes 

2, 4, 6, 8, 10 are blank. Lane 3: 50 μM PM. Lane 5: 100 μM PM. Lane 7: 250 μM PM. Lane 

9: 500 μM PM. (B) Densitometry measurements of the band intensity form Figure 2A, 

normalized to the untreated control.
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Figure 3. 
DNA-protein cross-linking in human fibroblasts used for proteomics experiments. HT1080 

cells (~5.0 × 106, in triplicate) were treated with 100 μM PM (lanes 9 – 11) or buffer only 

(lanes 3 – 5) for 3 h. Following DPC extraction and thermal hydrolysis to release guanine-

protein conjugates, the cross-linked proteins were resolved by 12% SDS-PAGE and 

visualized by staining with SimplyBlue SafeStain. Proteins within the molecular weight 

ranges of 30 – 5 kDa (A), 50 – 30 kDa (B), 80 – 50 kDa (C), 110 – 80 kDa (D), and 260 – 

110 kD (E) were excised from the gels, subjected to in-gel trypsin digestion, and analyzed 

by HPLC-ESI+-MS/MS.
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Figure 4. 
GO annotations for the proteins involved in PM-induced DPC formation in human HT1080 

cells according to cellular distribution, molecular function, and biological processes. The 

numbers of proteins falling into each category are included.
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Figure 5. 
Representative HPLC-ESI+-MS/MS trace (A) and quantitative results for Cys-NOR-N7G 

conjugates in HT1080 cells treated with 0–500 μM NOR for 3 h. Following treatment, 

genomic DNA containing DPCs was extracted, hydrolyzed to release DNA-protein 

conjugates, and digested by proteinase K to amino acids. NOR-induced Cys-NOR-N7G 

conjugates were analyzed by isotope dilution HPLC-ESI+-MS/MS using the 

corresponding 15N5-labeled internal standard.
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Figure 6. 
Cellular viability (A) and DPC formation (B) in HT1080, XPA, PD20, and PD20- corrected 

cells treated with 250 μM NOR for 3 h. Following treatment, NOR-containing media was 

removed, and the cells were allowed to recover in fresh media for 4 h. Cys-NOR-N7G 

conjugates were quantified by isotope dilution HPLC-ESI+-MS/MS.
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Figure 7. 
Venn diagrams showing the overlaps between the lists of proteins that form DPCs in human 

cells following exposure to PM, DEB, and cisplatin.
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Scheme 1. 
Metabolism of cyclophosphamide to phosphoramide mustard and nornitrogen mustard and 

the formation of DNA-protein crosslinks.
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Scheme 2. 
Experimental strategy for isolation of DNA-protein cross-links from phosphoramide 

mustard-treated cells and their characterization by mass spectrometry.
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