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Cue Reliability Represented in the Shape of Tuning Curves in
the Owl’s Sound Localization System
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Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue
reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences
neuronal responses and behavior in the owl’s auditory system. We show that the firing rate and spatial selectivity changed with cue
reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among
neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons’ selectivity was
necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study
demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics.
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Introduction
Uncertainty in sensory perception depends on the reliability of
the sensory cues used to infer properties of the environment. The
reliability of a sensory cue can be viewed as its precision across
different environmental states (Fetsch et al., 2012; Ma and
Jazayeri, 2014); that is, how consistent the cue is across trials and
contexts. It is important for the brain to estimate the reliability of
sensory cues so that decisions can be based on the most reliable
signals and prior knowledge can be relied upon more heavily
when sensory signals are degraded. Change in the reliability of

sensory signals is inherent to natural environments. For example,
reverberation (Devore et al., 2009) or extraneous noise sources
(Keller and Takahashi, 2005) changes the signal-to-noise ratio of
the auditory input (Saberi et al., 1998). In fact, high signal-to-
noise ratio is unlikely in natural auditory scenes (Młynarski and
Jost, 2014). The environmental noise, shared among neurons,
can dramatically limit the information about the sensory cue
encoded by neural populations (Moreno-Bote et al., 2014; Pit-
kow et al., 2015). Many studies have demonstrated that sensory
reliability influences behavior (Ma and Jazayeri, 2014). For ex-
ample, decreasing the reliability of spatial cues for signaling
sound source direction increases the owl’s sound localization bias
(Saberi et al., 1998; Fischer and Peña, 2011). Although it is clear
that sensory reliability influences behavior, how it is encoded by
neurons is a matter of debate.

Several models of probabilistic computation have proposed
how cue reliability could be represented in neuronal responses.
These models make different assumptions about the role of tun-
ing properties and spiking variability in coding sensory reliability.
A population vector (PV) implementation of Bayesian inference
with heterogeneous populations (Fischer and Peña, 2011; Gir-
shick et al., 2011) hypothesized that sensory reliability is encoded
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Significance Statement

In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions,
the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are
debated. In this study, we used the barn owl’s sound localization system to address this question. We demonstrated that the
mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed
for the neurons’ selectivity to capture cue reliability, influencing the population readout commanding the owl’s sound-orienting
behavior.
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in the neurons’ spatial selectivity; that is, the sharpness of the
tuning curves, and does not require any particular distribution of
spiking variability. Conversely, in probabilistic population codes
and sampling-based theories, sensory reliability affects the pop-
ulation activity through the entire shape of the tuning curves,
along with their gain and correlated variability (Pouget et al.,
2003; Jazayeri and Movshon, 2006; Ma et al., 2006; Fiser et al.,
2010).

Here, we investigate the neural correlates of cue reliability in
the space-specific neurons of the owl’s midbrain. To localize
sounds in the horizontal space, owls and other animals rely on the
difference in the arrival time of a sound at the ears, called the
interaural time difference (ITD) (Strutt, 1907; Blauert, 1997).
ITD is initially processed in the owl’s brain by neurons that com-
pute the interaural phase difference (IPD) in narrow frequency
bands (Carr and Konishi, 1990). Estimating sound direction
from IPD carries a great deal of uncertainty due to corruption of
the IPD by concurrent sounds (Keller and Takahashi, 2005). The
owl’s sound localization system is well suited to study how sen-
sory reliability affects neural responses and behavior for several
reasons. First, it is well established that the IPD is the relevant
cue for the owl’s localization in horizontal space (Moiseff and
Konishi, 1983). Second, the spatial dependence of the cue vari-
ability in the presence of concurrent sounds has been estimated
(Cazettes et al., 2014). Finally, noise in IPD can be quantitatively
manipulated (Albeck and Konishi, 1995; Saberi et al., 1998).

To determine how cue reliability is represented in neural re-
sponses, we first examined the response of midbrain space-
specific neurons as cue reliability varies. We found that changing
cue reliability affects the response gain, the selectivity, and the
correlated variability of neurons. We demonstrated that this cod-
ing emerges from the IPD detection mechanism and direction-
dependent frequency tuning. Then, we showed that, when cue
reliability varies, the broadening of the tuning curves was neces-
sary and sufficient for a network of stochastic neurons to estimate
sound direction near optimally and predict behavior.

Materials and Methods
Electrophysiology
Surgery was performed as described previously (Wang et al., 2012).
Briefly, adult barn owls (2 females) were anesthetized with intramuscular
injections of ketamine hydrochloride (20 mg/kg; Ketaset) and xylazine
(4 mg/kg; Anased). It has been shown that the responses of midbrain
neurons are remarkably stable under ketamine anesthesia (Ter-
Mikaelian et al., 2007; Schumacher et al., 2011). Prophylactic antibiotics
(ampicillin; 20 mg/kg, IM) and lactated Ringer’s solution (10 ml, SC)
were injected at the beginning of each session. Carprofen (3 mg/kg,
Rimadyl, IM) was administered to prevent inflammation and pain. These
procedures complied with National Institutes of Health and guidelines of
the Albert Einstein College of Medicine’s Institute of Animal Studies.

The inferior nucleus of the external colliculus (ICx) was located ste-
reotaxically and by the characteristic responses to ITD and interaural
level difference (ILD) (Peña and Konishi, 2001). Responses were re-
corded using 1 M� tungsten electrodes (A-M Systems). Tucker Davis
Technologies (TDT) System 3 and MATLAB software (The MathWorks)
were used to record neural data.

Sound stimulation
All experiments were performed inside a double-walled sound-
attenuating chamber. Custom-made earphones consisting of a calibrated
speaker (Knowles model 1914) and a microphone (Knowles model EK-
23024) were inserted in the owl’s ear canal (Wang et al., 2012). Auditory
stimuli delivered through the earphones consisted of 100 ms signals with
a 5 ms rise–fall time at 10 –20 dB above threshold. For each ICx neuron,
we first measured the ITD, ILD, and rate-level response with broadband

noise (0.5–10 kHz) and frequency tuning with tones. ITD was initially
varied from �300 �s with 30 �s steps over 5 trials and sound level varied
from 0 to 70 dB SPL with 5 dB steps. Frequency tuning was estimated
with tones ranging from 600 to 9000 Hz varied in 200 Hz steps over 15–20
trials. ITD tuning within the main peak of the rate–ITD curve was re-
corded at a finer resolution (10 �s steps; 20 repetitions) at the best ILD to
measure the ITD-tuning width. Finally, neural responses to ITD with
various tonal stimulations within the excitatory frequency range (�300
�s; 30 �s steps; 20 repetitions) were measured. Stimuli within all tested
ranges were randomized during data collection.

To manipulate the binaural correlation (BC), three random noises
(N1, N2, and N3) were generated on the computer. N1 was delivered to
one ear and its copy with a time shift was delivered to the other ear. N2
was added to N1 in one ear and N3 was added to N1 in the other ear.
These additional noise signals reduced the correlation between the sig-
nals in the two ears depending on the relative amplitudes of the uncor-
related and correlated noises. BC was calculated from BC � 1/(1 � k 2),
where k is the ratio between the root-mean-square amplitudes of the
uncorrelated and correlated noises (Licklider and Dzendolet, 1948; Jef-
fress and Robinson, 1962; Saberi et al., 1998). On a subset of neurons, we
obtained ITD curves at the finer resolution (10 �s steps; 10 repetitions)
using noise bursts at different BC levels (from 0 to 1 in 0.1 steps).

Data analysis
Wave_clus was used for spike sorting (Quiroga et al., 2004). Briefly,
spikes were detected using a voltage threshold set at five times the esti-
mated SD of the signal. To avoid double detection, spikes were separated
by at least 1 ms. Neurons were considered isolated based on the presence
of a refractory period of �1 ms in the interspike interval histogram and
the similarity of spike shape. A complementary quality metric was the
non-overlap of wavelet coefficients. In addition, the results of the sorting
algorithm were visually inspected to confirm the quality of the sorting.
Consistent with previous reports (Winkowski and Knudsen, 2006), no
significant differences were found between the results of sorted and non-
sorted traces.

For each stimulus parameter, a rate curve was computed by averaging
the firing rate during the stimulation over trials. The spontaneous firing
rate, obtained when no sound stimulation was presented, was subtracted
from the response to the stimulus. The widths of the ITD-tuning curves
were measured at half the distance between the minimum and the max-
imum response. Because the ITD tuning in owl’s neurons are nearly
symmetrical (Viete et al., 1997; Pérez and Peña, 2006), the center of the
range used for the width measurement was used to estimate the preferred
ITD. This method was used to avoid sampling bias in peak responses and
was not significantly different from the best ITD measured at the maxi-
mum response (Wilcoxon rank-sum test, p � 10 �10). We used the ab-
solute value of the best ITDs to combine data from contralateral and
ipsilateral sides as a function of the eccentricity of the receptive field. We
have previously tested different methods to quantify frequency selectiv-
ity, which yielded similar results (Cazettes et al., 2014). Therefore, here,
we defined the best frequency as the center of the frequency range that
elicited �30% of the maximum response (Cazettes et al., 2014).

In the owl, ITD increases monotonically with eccentricity (Moiseff,
1989), from small values in the front ITDs (	0 �s) to the largest values in
the periphery (	200 �s). We estimated azimuth from ITD for the owl
using published measurements (Moiseff, 1989) to compare the width
and maximum firing rate of ICx neurons as a function of ITD with cue
variability as a function of azimuth.

Variability of IPD at the input to the ears is dominated by the presence
of concurrent sounds, which can shift the IPD of the target source. The
filtering effect of the head causes IPD variability to be inherently direc-
tion and frequency dependent in the presence of concurrent sounds
coming from different directions (Cazettes et al., 2014). Furthermore,
the IPD variability may change depending on the amount of noise in the
environment; that is, the signal-to-noise ratio. We quantified IPD
variability across space for concurrent sounds as described previously
(Cazettes et al., 2014). Briefly, to compute the IPD variability for concur-
rent sound sources, broadband noise signals with flat spectra between 0.5
and 9 kHz and equal level (50 dB) were each convolved with head-related
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impulse-responses of 10 barn owls at the appropriate source direction.
The outputs were passed through a gamma-tone filter bank with center
frequencies ranging from 1 to 8 kHz in 0.2 kHz steps and equal gains
across frequency. The bandwidths of the gamma-tone filters were esti-
mated from (Köppl, 1997) to match the bandwidths of the owl’s cochlear
filters, as described in (Fischer et al., 2009). The IPD in narrow frequency
channels was calculated as the phase delay with the highest value of the
cross-correlation between the left and right outputs of the gamma-tone
filter bank. For each target direction, we obtained 37 estimates of IPD,
each with a second source located at one of the directions covering the
frontal hemisphere (between �90 and 90 degrees in steps of 5 degrees at
elevation zero). The circular SD of IPD over directions of the second
sound source was used as the estimate of IPD variability at each direction
(Batschelet, 1981). To quantify the IPD variability at each direction, we
averaged the SD of IPD across frequency.

Model of space map population
To model the population response in the owl’s midbrain (Fig. 1), single
broadband noise signals between 0.2 and 12 kHz were first passed
through a gamma-tone filter bank with center frequencies ranging from
0.25 to 8 kHz in 0.25 kHz steps and equal gains across frequency (Köppl,
1997). The outputs were cross-correlated and transformed by an expo-
nential input– output function to produce a set of frequency-dependent
ITD curves (from 0.5 to 8 kHz). This step simulates the response of
neurons directly upstream of ICx (Fischer et al., 2009). The input to ICx
was then modeled as a weighted sum of the frequency-dependent ITD
curves. The weights were direction dependent to model the direction-
dependent frequency tuning in ICx (Cazettes et al., 2014). The weights
for each neuron have a Gaussian shape with a center and width selected to
match the observed frequency tuning at the preferred direction of the
neuron. The weighted sum of the frequency-dependent ITD curves was
passed through an exponential nonlinearity to produce the firing rates of
Poisson neurons that modeled ICx responses (Fischer et al., 2009). The
responses of space-specific neurons in the owl’s optic tectum, which
receive point-to-point projections from ICx (Knudsen and Knudsen,
1983), are influenced by feedback inhibition that serves to select the
dominant stimulus when multiple peaks of activity are present in
the map (Mysore and Knudsen, 2012, 2014). To model the output of the
midbrain, we used a simplified version of the model of Mysore and
Knudsen (2012, 2014) by multiplying the ICx activity pattern by a rect-
angular window function to select the dominant peak. The window is
equal to one on an interval that is 28 degrees wide and centered on the
location of the peak in a smoothed version of the ICx activity pattern and
is zero outside this interval. The decoding analyses are applied to the
windowed response pattern representing the population activity of the
optic tectum.

Predictions for coding reliability in optimal
and suboptimal decoding approaches
We considered the properties of optimal and
suboptimal decoders in the context of a per-
ceptual inference task consisting of inferring an
unknown property of the environment, de-
noted �, from a sensory cue S extracted from
the sensory input. For the sound localization
task, � is the direction of a target sound source
and S is the set of IPD cues across frequency
channels computed in the sound localization
pathway. The sensory cues determine the re-
sponses of a population of neurons, denoted r.
In our study, r represents the responses of ICx
neurons. For a given �, the sensory cues S may
vary due to environmental factors such as the
presence of background noise (Cazettes et al.,
2014). The variance of the sensory cues S, given
�, Var(S��), is used to quantify this variability.
Similarly, the inverse of the variance is used to
quantify the cue reliability (Landy et al., 2011).
The cue reliability will have an effect on infer-
ences made about � by allowing the most reli-

able cues to dominate the estimate and by producing estimates that
depend more on prior knowledge when sensory cues are unreliable. In
the context of Bayesian inference, we expect to see an increase in behav-
ioral bias when cue reliability decreases. This occurs because the likeli-
hood function gets wider when cue reliability decreases and the prior has
more influence on the posterior and thus on the estimate.

Population vector. The suboptimal decoder considered was the PV,
which has been used previously to describe the owl’s sound localization
behavior (Fischer and Peña, 2011). The PV is the average preferred di-
rection of a population of N neurons, weighted by their respective spike
counts as follows:

PV �
1

N�
n�1

N

rnu
�n�,

where the response of the n th neuron is denoted rn and u(�n) is a unit
vector pointing in the n th neuron’s preferred direction �n. The model of
Fischer and Peña (2011) proposes that the neural activities satisfy specific
properties that allow the PV to accurately approximate a Bayesian esti-
mate from the posterior p(��S). It is assumed that the preferred directions
of neurons in the population �n are drawn from the prior distribution
p(�). It is also assumed that the mean firing rates of the neurons are
proportional to the likelihood function p(S��). That is, the mean firing
rate of the neuron with preferred direction �n can be written fn( S) �
p(S��n). The response rn( S) on any trial may be modeled as a Poisson
variable with mean fn( S). If these assumptions are satisfied, then the PV
will point in the same direction as the Bayesian estimate from the poste-
rior p(��S) (Shi and Griffiths, 2009; Fischer and Peña, 2011).

The hypotheses for how the population is constructed to allow for the
PV to accurately approximate the Bayesian estimate determine how sen-
sory cue reliability is encoded in the neural responses. Sensory cue reli-
ability is captured by the likelihood function p(S��), which here is
assumed to determine the response of the population to the stimulus. If
the cue reliability decreases, then the likelihood function p(S��) will be
wider and thus the population activity will be spread over more neurons.
To produce this spread of population activity for each stimulus, the
individual neurons must respond to more stimulus values, so the tuning
curves will be wider. Conversely, the overall gain of the population re-
sponse does not represent any property of the likelihood function p(S��)
in this model. Therefore, the overall gain is not assumed to encode stim-
ulus reliability.

The model also yields predictions for how tuning width and gain are
incorporated into the neural decoding of �. Increasing the widths of the
neural tuning curves throughout the population results from the activity
being distributed over more neurons. This allows the nonuniform
distribution of preferred directions to increase the bias in the PV

Figure 1. Model of the midbrain’s output. Left and right broadband stimuli are filtered by a gamma-tone filter bank and a
cross-correlation is performed within each frequency channel. The outputs are passed through an exponential function. The
weighted sum of the output is transformed by an exponential function and the firing rates are drawn from a Poisson distribution.
A window function selects the peak of the activity pattern in the model ICx population to model the midbrain’s output that is
decoded to guide behavior.
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toward the region of highest concentration of preferred directions.
Alternatively, changing the overall gain of the tuning curves will not
influence the average behavior of the PV. Specifically, if the mean
firing rates of all neurons are scaled by a constant G, then the average
value of the PV over the Poisson neural variability would only be
scaled by G as follows:

E
PV� �
1

N�n�1

N

E
rn
S��u
�n� �
1

N�n�1

N

Gfn
S�u
�n� �
G

N �
n�1

N

fn
S�u
�n�,

which would not influence the direction of the PV.
Maximum a posteriori. A general approach to decoding neural popu-

lation activity optimally is to compute a maximum a posteriori (MAP)
estimate of the environmental property � using a statistical model of the
neural responses (Seung and Sompolinsky, 1993; Salinas and Abbott,
1995; Ma et al., 2006). Typically, neurons are assumed to have indepen-
dent Poisson responses with mean values fn
��. This model does not
explicitly take into account the sensory cue S that generates neural activ-
ities in response to the environmental property �. Instead, the mapping
from � to S is contained in the activity function fn
��. In this framework,
sensory reliability may be encoded by any response feature that changes
the information in the population response. For example, sensory reli-
ability has previously been hypothesized to be represented in the gain of
the activity function fn
�� (Pouget et al., 2003). For neurons with Poisson
responses, the SD of the spike count is equal to the square root of the
mean. Therefore, reliability measured as the signal-to-noise ratio of the
neural response, defined as the ratio of the mean to the SD, increases with
the mean response. Therefore, higher response gain corresponds to
higher stimulus reliability. Specifically, for a large population of indepen-
dent neurons with uniform widths, the likelihood p
r��) has a Gaussian
shape the variance of which is inversely proportional to the gain of the
neural responses over the population (Pouget et al., 2003) (Ma et al.,
2006). Notably, sensory reliability may also be represented in the widths
of the tuning functions fn
�� in MAP estimates. For example, if the gain
of the tuning functions is held constant, the SD of the Gaussian-shaped
likelihood becomes proportional to the width of the tuning functions.
Therefore, when decoding using a MAP estimate, both the gain and
widths of the neural tuning functions may encode sensory reliability (Ma
et al., 2006).

To decode an estimate of sound source direction � from the model
population using a MAP estimate, we compute the stimulus direction �
at binaural correlation level BC that maximizes the posterior probability,
or equivalently the log posterior probability, of � given the neural activ-
ities as follows:

�̂map �
argmax

� ln p
��r, BC�.

We computed the MAP estimate of stimulus direction at different BC
values from the model population response assuming Gaussian variabil-
ity with mean population response f(�, BC). The covariance matrix
�(�, BC) characterized the correlations among neurons. The MAP esti-
mate is computed assuming that the determinant of the covariance ma-
trix is constant across stimulus direction as follows:

�̂map �
argmax

� ln p
��r, BC�

�
argmax

� � fT
�, BC���1
�, BC�f
�, BC�.

Effect of gain and width of tuning curves on the MAP and
PV decoders
We tested the effect of the gain and tuning width on the MAP and PV by
separately manipulating the gain and width in the ICx model responses.
The gain was held constant by keeping the maximum response of the
cross-correlation model fixed at the average gain at BC � 1 or BC � 0.1
before Poisson noise was added to the response. Alternatively, the
shape of the tuning curves was held constant by keeping the curves of
the cross-correlation model at BC � 1 before scaling them with the

appropriate gain for each BC and applying the Poisson noise to the
response.

Measure of population information
We computed a measure of the information about the stimulus in the
neural population response, known as the linear Fisher information,
from the model population response to assess the quality of the code.
Here, the linear Fisher information estimated the amount of information
about stimulus direction available in a locally optimal linear estimator
(Beck et al., 2012; Moreno-Bote et al., 2014). The linear Fisher informa-
tion is inversely proportional to the square of the discrimination thresh-
old, which is the smallest difference between two stimulus directions that
can be correctly determined by an optimal decoder of the neural activity.
Specifically, the linear Fisher information quantifies the information
contained in the neural responses that can be extracted without further
nonlinear processing.

The linear Fisher information is a function of the population re-
sponse at each stimulus direction � and is determined by the tuning
curves and the covariance of the neural responses. It is given by
I
�� � f�T
����1
��f�
��, where f�
�� is a vector of tuning curve derivatives
for all neurons in the population and �
�� is the covariance matrix of the
population response. Because some correlations among neurons can be ex-
tremely small, small errors in estimating these correlations can result in large
biases in the information estimate when inverting the covariance matrix.
It has been demonstrated recently that it is possible to compute an
unbiased estimate of the linear Fisher information that is given

by: Îbc
�� � f̂�T
��S�1
��f̂�
���2M � N � 3

2M � 2 � �
2N

Md�2, where N is the

number of neurons, M is the number of trials, and f̂�
�� and S
�� are esti-
mates of the tuning curve derivatives and covariance matrix, respectively, at
direction � (Kanitscheider et al., 2015). The tuning curve derivatives are
estimated from the responses at stimulus directions �� � � � d�

and �� � � � d� as f̂�
�� �
f̂� � f̂�

d�
where f̂�/� �

1

M
�

i�1
M ri
�

�/�� and

ri
�� is the population response on trial i. Similarly, the covariance matrix is
estimated as the average of the sample covariance matrices at the two test

directions S
�� �
S
��� � S
���

2
where the sample covariance matrix

is S
��/�� �
1

M � 1
�

i�1
M 
ri
�

�/�� � f̂�/��
ri
�
�/�� � f̂�/��T. We used a

model population of N � 500 neurons and computed responses of M �
4000 trials at directions � � 0, 20, 40, 60, and 80 degrees with d� � 1
degree.

Information-limiting noise
The Fisher information in the population response can be limited by
noise that cannot be distinguished from a change in the stimulus
(Moreno-Bote et al., 2014; Pitkow et al., 2015). Information-limiting
noise affects the linear Fisher information by causing the covariance
matrix to have a component that is proportional to the product of the
derivatives of the tuning curves f�
��f�T
��, called differential correla-
tions (Moreno-Bote et al., 2014). The covariance matrix �
�� can be
written as �
�� � �0
�� � �f�
��f�T
�� where �0
�� is the covariance
matrix of the noise that does not limit information and � is the variance
of the information-limiting noise (Moreno-Bote et al., 2014; Pitkow et
al., 2015). The quantity 1/� is an upper bound on the linear Fisher infor-
mation created by the presence of differential correlations. This means
that, no matter how the population is decoded, the information-limiting
noise prevents the linear Fisher information from exceeding 1/�. The
variance of the information-limiting noise can be computed from the
covariance matrix �
�� and the differential correlations f�
��f�T
��

as � �
Tr
�
��f�
��f�T
���

Tr
f�
��f�T
��f�
��f�T
���
where the trace operation Tr is the

sum of the elements on the main diagonal of the matrix. We estimated
the variance of the information-limiting noise � for model population
responses to stimulus directions 0, 20, 40, 60, and 80 degrees at BC � 1
and for BC levels 0.1 to 1 in steps of 0.1 at direction 0. For each stimulus
condition, we first computed the sample covariance matrix S
�� and the

estimate of the differential correlations f̂�
��f̂�T
�� as described above.
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Results
Data from 184 neurons recorded from the ICx of two adult barn
owls were used to determine the neural correlates of IPD reliabil-
ity in the owl’s midbrain. In this study, we treated IPD reliability
as inversely proportional to the IPD variance (Landy et al., 2011).
Below, we examine the relationship between the gain and width
of ITD tuning, correlated variability of responses, and the IPD
variability in different contexts.

Neuronal correlates of IPD variability
For each direction of a target source, we estimated the mean
IPD variability by averaging the IPD SD across frequency and
directions of concurrent sources. This is a way to assess how
variable the sensory cue corresponding to a given source is in
the presence of simultaneous sounds from other sources. This
analysis showed that the variability due to concurrent sources
was lower in frontal directions than in the periphery (Fig. 2A).
We examined how the change in IPD variability with eccentric
directions is correlated with the different parameters of the
population responses. We found that ITD-tuning curves
broadened with the eccentricity of preferred direction (Fig.
2B, top, r 2 � 0.54, p � 0.001), as reported previously (Knud-
sen, 1982). Remarkably, the change in ITD-tuning curve
widths was highly correlated with the increase in SD of IPD
(Fig. 2C; r 2 � 0.88, p � 0.001). In contrast, the mean firing
rate at the peak of the tuning curves measured at a constant
sound level at the ears (10 –20 dB above each neuron’s thresh-
old) did not vary across space (Fig. 2B, bottom; r 2 � 0.03,
p � 0.1).

The reliability of IPD can also be quantitatively manipulated
by changing BC (Saberi et al., 1998). Changing BC varies the
similarity of the sounds reaching the left and right ears by adding
independent noise to each side, thus instantaneously changing
the signal-to-noise ratio (Saberi et al., 1998). IPD is most reliable
when the sounds are perfectly correlated (BC � 1) and least
reliable when the sounds are uncorrelated (BC � 0). We found
that the relationship between BC and the resulting variability of
IPD was nonlinear. The SD of IPD, computed from the cross-
correlation of the left and right ear inputs, was well fitted by an
exponentially decreasing function of BC (Fischer and Peña,
2011). Specifically, the IPD variability was low when the BC of the
signals at the two ears is between 1 and 0.5 and steeply increased
for BCs �0.5 (Fig. 3A). Therefore, a neural response parameter

encoding IPD variability should change
greatly at low BC values and less at higher
BC values.

To measure the effect of changing
stimulus reliability on the width and the
gain of ITD-tuning curves, we presented
stimuli with BCs between 0.1 and 1 while
recording responses of ICx neurons (n �
46). We found that a high level of noise in
the stimulus broadened the ITD-tuning
curves (Fig. 3B) and decreased their gain
(Fig. 3C). Although lowering BC affected
both the width and the gain, they each var-
ied with BC in different ways (Fig. 3D,E).
The width of the ITD-tuning curves was
not significantly affected by low levels of
noise (BC �0.4; Wilcoxon rank-sum test,
p � 0.05), but markedly increased at
higher noise levels (BC �0.4; Wilcoxon
rank-sum test, p � 0.002). In contrast, de-

creasing BC from 1 to 0.9 already reduced the firing rate signifi-
cantly (Wilcoxon rank-sum test, p � 0.05).

If the IPD SD, which varies exponentially with BC (Fig. 3A), is
linearly encoded in the width of the tuning curves, then the width
of the curves should have an exponential dependence on BC as
well (Fig. 3A). In fact, the broadening of the curves with BC was
better fit by an exponential than by a linear fit (Fig. 3D); the root
mean square error (RMSE) of the exponential fit (RMSE � 2.8%)
was considerably smaller than for the linear fit (RMSE � 11.6%).
If the gain is the response parameter that captures the IPD vari-
ability, the IPD SD should be proportional to inverse square root
of the gain (see Materials and Methods). However, the relation-
ship between the inverse square root of the gain and BC was better
fit by a linear model than by an exponential (Fig. 3E; exponential
fit RMSE � 10.3%, linear fit RMSE � 5.5%). Therefore, the
change in IPD variability due to external noise was better
matched by the change in the tuning width than by the change in
gain. We next investigate the mechanism by which this happens.

Mechanism for the change in neural responses with
IPD reliability
We first considered the mechanism controlling the change in the
width of tuning curves as a function of preferred direction. Spa-
tial tuning in ICx neurons emerges by integrating inputs from
ITD-sensitive neurons across frequency channels (Takahashi and
Konishi, 1986). Before frequency channels converge in ICx, up-
stream ITD-sensitive neurons are narrowly tuned to frequency.
In these upstream neurons, the shape of the ITD-tuning curves is
determined by their preferred frequency (Wagner et al., 2002).
Specifically, the width of the peaks of the ITD-tuning curves of
upstream neurons depends on the period of the stimulating fre-
quency, becoming narrower as frequency increases. We tested
whether, in ICx, the width of the tuning-curve peaks from stim-
ulation with tones also decreased as the frequency increased. We
observed that this phenomenon still stands in ICx (Fig. 4A), con-
trasting with a previous report that omitted tones �3 kHz (Pérez
and Peña, 2006). We have shown previously that preferred direc-
tion and preferred frequency are correlated in ICx such that neu-
rons selective for directions in the frontal space are tuned to high
frequencies and neurons selective for directions in the peripheral
space are tuned to low frequencies (Cazettes et al., 2014). There-
fore, we hypothesized that the change in width of the spatial

Figure 2. IPD variability across azimuth. A, IPD variability (SD of the cue over different directions of concurrent sources)
increases as a function of target source direction. B, Top, ITD-tuning curve widths of ICx neurons increase with preferred azimuth.
Bottom, Mean maximum firing rate of ITD-tuning curves shows no correlation with preferred azimuth. C, Normalized (from 0 to 1)
SD of IPD (red) correlates well with the increase in widths with azimuth (normalized by the median width at each direction).
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tuning across the ICx population is determined by the integration
across frequency (Fig. 4B).

We used a model similar to Fischer et al. (2009) to determine
whether integration over different frequency ranges could ex-
plain the broadening of ITD-tuning width in the periphery. This
model described frequency integration in ICx, starting by cross-
correlating time-delayed sine waves to produce simulated output
of coincidence detector neurons (Carr and Konishi, 1990; Fischer
et al., 2009). The output of the cross-correlation was then trans-
formed to a spiking response by a nonlinear input– output
function, which yielded a bank of modeled tonal ITD curves
corresponding to neurons that are presynaptic to ICx. The mod-
eled tonal ITD curves were then linearly combined using weights
estimated from the experimental frequency tuning curves on a
neuron-by-neuron basis. Finally, the linear combination of nar-
rowband inputs was passed through an exponential nonlinearity
to simulate the responses in ICx. The response of ICx neurons
was therefore given by the following: yi � ai exp
�

n�1
N fi,nxn�,

where y is the response of modeled ICx neurons, xn are the mod-
eled tonal ITD curves, and fi,n their weights given by the normal-
ized frequency tuning of ICx neurons. The parameter ai was
adjusted for each neuron to minimize the squared error between
the modeled and the experimental ITD-tuning curve. The model
predicted the shape of the ITD-tuning curves well (Fig. 4C,D). In
particular, the frequency tuning of the model ICx neurons pre-
dicted the width of the ITD-tuning (r 2 � 0.95, p � 0.01; Fig.
4C,D). When the frequency weights fi,n were shuffled between
neurons, the model failed to reproduce the widths even if the

parameter ai was readjusted (r 2 �0.01, p � 0.34; Fig. 4E). There-
fore, a weighting of the frequencies in the band driving ICx neu-
rons is sufficient to explain the width of their ITD-tuning curves.
These results show that, by its effect on the shape of tuning curves,
frequency selectivity is sufficient to induce a progressive change
in width that correlates with the spatial dependence of the IPD
variability due to the presence of concurrent sources.

Next, we used the cross-correlation model to predict the
changes in tuning width and gain when IPD reliability was ma-
nipulated by changing BC. Similarly to the experimental data, the
model predicted that the width of ITD-tuning curves signifi-
cantly increased only after BC dropped below 0.4 (Fig. 4F; Wil-
coxon rank-sum test, p � 0.05), whereas the gain already
decreased significantly for BCs �0.9 (Fig. 4G; Wilcoxon rank-
sum test, p � 0.001). The model reproduced both the exponential
broadening of ITD-tuning (p � 0.001, RMSE � 3.5%) and the
linear increase in the inverse square root of the gain (p � 0.001,
RMSE � 4.5%) induced by decreasing BC. These results suggest
that cross-correlation and integration across frequency explain
the variation in tuning width corresponding to both the depen-
dency of cue reliability on horizontal directions and the dynamic
fluctuations in cue reliability induced by changes in signal-to-
noise ratio. In the model, the cross-correlation at low BC resulted
in the activity spreading over more neurons in the population on
a single-trial basis rather than a shift of the peak of the population
activity across trials (Fig. 4H). This shows that the broadening of
individual tuning curves is consistent with a decrease in selectiv-
ity at the population level. Finally, we calculated the linear Fisher
information in the modeled population response and charac-
terized the correlated variability of ICx neurons as reliability
changes. Using the cross-correlation model allowed us to model
realistic correlated variability between ICx neurons due to exter-
nal shared noise and internal fluctuations. We found that the
linear Fisher information declined at peripheral directions and at
lower BC (Fig. 5A), showing, respectively, that the reliability of
the ICx representation decreases with eccentricity and with BC.
Therefore, the linear Fisher information was correlated with the
IPD reliability across azimuth (r 2 � 0.79, p � 0.04) and BC (r 2 �
0.62, p � 0.007). We also computed the linear Fisher information
in a population with a uniform distribution of preferred direc-
tions and found a similar decrease in linear Fisher information
(Fig. 5B) and thus a similar correlation with IPD reliability across
azimuth (r 2 � 0.92, p � 0.01) and BC (r 2 � 0.48, p � 0.02).
Because the gain is constant across preferred directions, this
shows that the direction-dependent change in tuning width is the
primary factor causing the linear Fisher information to decrease
in the periphery and to correlate with IPD reliability.

We also found that the differential correlations, which occur
because of higher levels of shared noise, increased at eccentric
directions and as BC decreases (Fig. 5C). However, the differen-
tial correlations for peripheral stimulus directions computed in a
model population with a uniform distribution of preferred direc-
tions (Fig. 5D) started increasing at a lower BC than for the non-
uniform population. This is not surprising because the effect of
differential correlations depends on the number of neurons in
the population (Moreno-Bote et al., 2014). Here, the nonuni-
form population contained fewer peripheral neurons than the
uniform population. However, the change in the variance of the
information-limiting noise (�) computed from the uniform and
nonuniform populations had strongly correlated patterns across
azimuth (r 2 � 0.98, p � 0.002) and BC (r 2 � 0.68, p � 0.003).
This shows that the variation in the differential correlations
across space largely depends on the shape of the tuning curves.

Figure 3. Changing binaural correlation affects width and gain in ICx neural responses. A,
Variability (SD of IPD, gray dots) as a function of BC. The exponential fit is shown by a black line.
B, C, Normalized (B) and non-normalized (C) ITD-tuning curves measured at different BCs. In B,
the normalization was used to visualize the broadening of the tuning curve at lower BCs. In C,
the gain of the non-normalized curves decreases with BC. D, E, Median (gray circles) and quar-
tiles (shaded areas) of the proportional difference between BC � 1 and lower BCs (0.9 to 0.1) in
width (D) and the inverse of the square root of the gain (E). The exponential (D) and linear (E)
fits are indicated by the red and green lines, respectively.
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The increase in differential correlations when curves broaden
predicts that behavioral performance must decrease at eccentric
directions and at low BC (Pitkow et al., 2015), which we exam-
ined next.

Decoding the owl’s behavior
To test which parameters of the neural responses influence the
behavioral performance, we tested how different decoders pre-
dict the owl’s behavioral responses at different azimuths and
while varying BC. Specifically, we tested the suboptimal PV (Fi-
scher and Peña, 2011) and the optimal MAP estimator (Seung
and Sompolinsky, 1993; Salinas and Abbott, 1995; Ma et al.,

2006). To test these decoders, we gener-
ated a large population of model neurons
(n � 500) with preferred directions cov-
ering the frontal hemisphere. The popula-
tion of neurons had greater density of
preferred directions near the center of
gaze, as seen in the owl’s midbrain (Knud-
sen, 1982; Fischer and Peña, 2011). The
cross-correlation model produced spatial
tuning curves with widths that increased
with eccentricity and displayed constant
maximum firing rates, as observed in the
data (Fig. 2B). In addition, the model in-
troduces realistic correlated variability be-
tween neurons (Fig. 5).

We compared the owl’s behavior with
the directions predicted by the PV and
MAP decoders. We found that the PV pre-
dicted well the systematic underestima-
tion of the owl’s at eccentric directions
(Knudsen et al., 1979) (Fig. 6A, correla-
tion of PV and behavioral accuracy: r 2 �
0.67, p � 0.01; correlation of PV and be-
havioral precision: r 2 � 0.87, p � 10�3).
The MAP estimates were slightly more ac-
curate and precise than the behavior and
the PV (Fig. 6A, correlation of MAP and
behavioral accuracy: r 2 � 0.63, p � 0.02;
correlation of MAP and behavioral preci-
sion: r 2 � 0.68, p � 0.01).

Saberi et al. (1998) previously charac-
terized the localization behavior of the
owl for different BCs by measuring the
head-turn accuracy in response to four
different sound locations. They showed
that the owl’s direction estimates re-
mained relatively constant for BCs from 1
down to 0.4 or 0.3. However, as BC de-
clined further, the mean direction esti-
mates became biased toward the front
(Fig. 6B). Both the PV and MAP estimates
matched the owl’s behavior as BC
changed (Fig. 6B–D, correlation of PV
and behavioral accuracy: r 2 � 0.85, p �
0.01; correlation of PV and behavioral
precision: r 2 � 0.74, p � 0.04; correlation
of MAP and behavioral accuracy: r 2 �
0.88, p � 0.008; correlation of MAP and
behavioral precision: r 2 � 0.75, p � 0.04).
Therefore, both the behavior and the PV
approached optimality. In addition, we

have shown that correlations among neurons emerged when the
reliability of IPD was degraded. Because the PV is based solely on
the signal strength of individual neurons without removing the
correlated fluctuations present in the population, this shows that
the correlated variability that does not limit information does not
play a major role in the representation of IPD reliability. Next, we
investigated why the suboptimal PV approximated the optimal
MAP.

The MAP is an estimate from the posterior distribution over
directions, given the population response p��R
��r�. If the condi-
tions are right in the nonuniform population code (Fischer and
Peña, 2011; Rich et al., 2015), the PV can approximate a Bayesian

Figure 4. A cross-correlation model explains ITD-tuning curves. A, Widths of ITD-tuning curves as a function of the stimulus
frequency in ICx neurons. B, Schematic ITD tuning shaped by the integration range across frequency. The ITD-tuning curves
generated from high frequencies (red) are narrower than those generated from low frequencies (blue). C, Examples of experimen-
tal ITD-tunings (gray) and cross-correlation model predictions for narrow (red) and broad (blue) curves, where the broader curve is
tuned to a larger ITD. D, Experimental ITD-tuning width (gray dots) decreases as a function of best frequency. A cross-correlation
model that takes into account experimental frequency weights predicts the exponential fit of the data (blue line). The 95%
confidence intervals of the fit are shown by the upper and lower edges of the shaded areas. The box-plot on the right shows the
median (blue) and the quartiles of the coefficients of determination (r 2) between experimental and modeled curves. E, Same as in
D but overlapping data with the model’s prediction after shuffling frequency weights. The model no longer predicts the increase in
width with best frequency, demonstrating the dependence of the shape of ITD-tuning curves on the specific frequency weights for
each neuron. F, G, Model predictions of width and gain changes as a function of binaural correlation. Median (gray circles) and
quartiles (shaded areas) of the proportional difference between BC � 1 and lower BCs (0.9 to 0.1) in width (F ) and the inverse of
the square root of the gain (G). The exponential (F ) and linear (G) fits are indicated by black lines. Red and green dashed lines show
the exponential and linear fits from the data. H, Modeled population activity in response to a stimulus at ITD � 0 is less selective
at low BC than at high BC.
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estimate based on the posterior p��S
��S�, where S is the sensory
cues used; for example, ITD or the cross-correlation response.
The PV and MAP will be similar if these two posteriors are
similar. The relationship between the posteriors is defined by
p��R
��r� � � p��S
��S�pS�R
S�r�dS. There will be equality,
p��R
��r� � p��S
��S�, under two conditions. The first is that the
mapping between the sensory cue S and the response r is unique
so that pS�R
S�r� is a delta function; that is, the sensory cues S can
be uniquely identified from the pattern of activity across the pop-
ulation. This happens when there are enough neurons firing
enough spikes so that the Poisson noise does not cause the pat-
terns of activity for different stimuli to be indistinguishable. We
have found that, in a population of 500 ICx neurons each firing
an average of at least 2 spikes, the likelihood pS�R
S�r� is approxi-
mately a delta function at BCs from 1 down to 0.3 (Fig. 6E, top
and middle). The second condition for the equality of the poste-
riors is when the sensory cue is not informative about the stimu-
lus and both posteriors are uniform distributions. We found that
this is approximately the case at BCs near 0, where the cross-
correlation response is almost flat for any target direction (Fig.
6E, bottom).

To further parse out the key parameters that influence behav-
ior, we artificially kept the gain or the shape of the tuning cur-
ves constant across BC. Because other stimulus features, such as
sound level, can affect the neuronal gain, we tested the decoders
both at high and low gain (similar to the gains at BC � 1 and
BC � 0.1, respectively). Preventing a change in gain did not
significantly affect the predictions of the two decoders (Fig. 6F).
This means that the width change with BC was sufficient to code
for IPD reliability. However, preventing the broadening of the
tuning curves and also eliminating the differential correlations
(Moreno-Bote et al., 2014) greatly reduced the predictive power

of both decoders (Fig. 6F). In fact, the decoders’ estimates did not
change with BC at any direction (Fig. 6G), being markedly incon-
sistent with the owl’s behavior. Therefore, the broadening of the
tuning curves and the corresponding increase in differential cor-
relations were also necessary to code for reliability.

Discussion
We have identified a behaviorally relevant representation of the
reliability of a sound localization cue in the owl’s midbrain. We
showed that the mechanism that accounts for spatial cue selec-
tivity also explained how neural responses change with degraded
signals, allowing for the cue reliability to be encoded in parallel
with the value of the cue. We demonstrated that the owl’s behav-
ior as reliability changes reflects a near optimal decoding of the
midbrain population. The effect of signal degradation on the
shape of the tuning curves was necessary and sufficient to predict
the owl’s behavior from stochastically firing neurons. This find-
ing demonstrates that neurons’ selectivity can act as a coding
dimension independent from the gain.

The auditory space map in the owl’s midbrain is a classic
example of a sensory representation of the environment relevant
for behavior. This study demonstrates that this map encodes, not
only space, but also the reliability of spatial cues, along with the
selectivity of the stimulus itself. Broadening tuning curves across
a population has been observed in other sensory (Johansson and
Vallbo, 1980; Wilson and Sherman, 1976) and high-order corti-
cal systems (Harvey et al., 2013), where it was linked to a decrease
in sensory precision. In the owl, the dependence of the spatial
tuning on frequency tuning is crucial for the width to correlate
with signal degradation. In the frontal space, where cues are the
most reliable, high frequencies dominate and provide the ICx
neurons with narrow spatial tuning. In the periphery, where cues
are inherently less reliable, low frequencies dominate and yield
broader spatial tuning. Interestingly, the auditory system is not
the only sensory system where neurons’ selectivity is correlated
with frequency tuning. In fact, in the primary visual cortex of the
macaque, neurons with narrow orientation tuning prefer high
spatial frequencies and neurons with broader orientation tuning
prefer lower spatial frequencies (Xing et al., 2004; Zhu et al.,
2010). Remarkably, correlation in natural images, a proxy for
image variability (Field, 1987), is also tightly related to spatial
frequency. Robust invariance exists across natural images at high
spatial frequencies due to the stronger correlation of nearby
points (Field, 1987; Simoncelli and Olshausen, 2001). Therefore,
a representation of stimulus reliability in the neurons’ selectivity,
achieved by regulating frequency tuning, could also take place in
the visual system.

Our results may establish links between previous theories for
the estimation of cue reliability by populations of neurons. Prob-
abilistic population codes assume that information about cue
reliability is carried in the neural variability of stochastic popula-
tions (Ma et al., 2006; Beck et al., 2008), whereas nonuniform
population codes hypothesize that sensory reliability is repre-
sented in the shape of tuning curves (Fischer and Peña, 2011).
Here, we show that both schemes converge because changes in
neurons’ selectivity by degraded signals and the corresponding
changes in differential correlations (Moreno-Bote et al., 2014)
are the parameters linking neural noise to cue reliability and ul-
timately driving performance (Pitkow et al., 2015).

We demonstrated that the midbrain population is decoded
near optimally to guide behavior. Moreover, we showed that the
suboptimal PV approximated the performance of an optimal de-
coder. Unlike the optimal decoder (Ma et al., 2006; Beck et al.,

Figure 5. Information in the model population decreases with azimuth and BC. A, B, De-
crease in normalized linear Fisher information with BC for the nonuniform (A) and uniform (B)
populations at five stimulus directions. C, D, Increase in the variance of the information-limiting
noise (normalized �) with BC for the nonuniform (C) and uniform (D) populations at five stim-
ulus directions.
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2008), a PV uses a low-dimensional probability distribution over
sound direction. This probability distribution depends only on
the statistical relationship between the sound source direction
and the localization cue IPD and is therefore more plausible for
learning and implementation than the high-dimensional proba-
bility distribution used in the MAP framework. Furthermore, the
PV discards the information contained in the response gain from
the decoding. Because the gain is not only correlated with stimu-
lus reliability, but also varies with sound level, removing the gain
from the decoding of sound direction could eliminate this con-
found. This would allow “where” to be decoded independently
from “what” the stimulus is. However, this simplified code may
result in some accuracy errors that would not occur if stimulus
information was taken into account in the decoding, as it is in the
MAP framework.

Our findings lend support to Bayesian theories of brain pro-
cessing (Knill and Pouget, 2004; Ma et al., 2006; Fischer and Peña,
2011). Bayesian inference allows sensory information and prior
knowledge to be combined optimally. In the Bayesian frame-
work, a likelihood function captures the reliability of the sensory
input and a prior distribution represents previous knowledge.
The combination of the prior and likelihood are used to produce
an estimate of the variable of interest that reflects a probabilistic
model of the environment. Typically, the noisier the sensory in-
puts, the more the final decision will rely on prior knowledge

because, at high noise levels, the likelihood function widens
(Knill and Pouget, 2004; Fischer and Peña, 2011). A computa-
tional model of the barn owl’s auditory midbrain proposed that
the sound localization behavior is a Bayesian inference process
(Fischer and Peña, 2011). In ICx, information about the stimulus
reliability combined with prior information could allow for
Bayesian inference (Fischer and Peña, 2011). However, until
now, this coding had not been verified or the mechanism of its
emergence understood. By showing that the shape of tuning
curves explains how reliability is incorporated into the code and
that the regulation of frequency tuning is the underlying mecha-
nism, our study demonstrates the plausibility of an additional
framework for how the brain can support perceptual judgments
operating in situations of uncertainty.
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