
DATASPREAD: Unifying Databases and Spreadsheets

Mangesh Bendre, Bofan Sun, Ding Zhang, Xinyan Zhou, Kevin ChenChuan Chang, and 
Aditya Parameswaran
University of Illinois at Urbana-Champaign (UIUC)

Mangesh Bendre: bendre1@illinois.edu; Bofan Sun: bsun6@illinois.edu; Ding Zhang: dzhang13@illinois.edu; Xinyan 
Zhou: xzhou14@illinois.edu; Kevin ChenChuan Chang: kcchang@illinois.edu; Aditya Parameswaran: 
adityagp@illinois.edu

Abstract

Spreadsheet software is often the tool of choice for ad-hoc tabular data management, processing, 

and visualization, especially on tiny data sets. On the other hand, relational database systems offer 

significant power, expressivity, and efficiency over spreadsheet software for data management, 

while lacking in the ease of use and ad-hoc analysis capabilities. We demonstrate DATASPREAD, a data 

exploration tool that holistically unifies databases and spreadsheets. It continues to offer a 

Microsoft Excel-based spreadsheet front-end, while in parallel managing all the data in a back-end 

database, specifically, PostgreSQL. DATASPREAD retains all the advantages of spreadsheets, including 

ease of use, ad-hoc analysis and visualization capabilities, and a schema-free nature, while also 

adding the advantages of traditional relational databases, such as scalability and the ability to use 

arbitrary SQL to import, filter, or join external or internal tables and have the results appear in the 

spreadsheet. DATASPREAD needs to reason about and reconcile differences in the notions of schema, 

addressing of cells and tuples, and the current “pane” (which exists in spreadsheets but not in 

traditional databases), and support data modifications at both the front-end and the back-end. Our 

demonstration will center on our first and early prototype of the DATASPREAD, and will give the 

attendees a sense for the enormous data exploration capabilities offered by unifying spreadsheets 

and databases.

1. INTRODUCTION

Since the early days of computing, spreadsheet software, such as VisiCalc, Lotus 1-2-3, and 

more recently Microsoft Excel and Google Sheets, have found ubiquitous use in ad-hoc 

tabular data analysis, especially by non-programmers; including statisticians, finance 

professionals, consultants, and physical scientists. The main advantages of spreadsheets 

include the ability for direct manipulation of data, an intuitive user interface, and a flexible 

data model with the ability to add new rows, columns, or tuples, seamlessly.

However, spreadsheet software has many limitations, making it unsuitable for present-day 

big data analysis, primarily due to poor performance on large data sets, and the low 

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of 
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Articles from this volume were invited to present their results at the 41st International Conference on Very Large Data Bases, August 
31st September 4th 2015, Kohala Coast, Hawaii.

HHS Public Access
Author manuscript
Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

Published in final edited form as:
Proceedings VLDB Endowment. 2015 August ; 8(12): 2000–2003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/3.0/


expressivity of the spreadsheet syntax [1, 2]. For the former issue, i.e., poor performance, for 

example, in Microsoft Excel, it is common knowledge that beyond a few 100s of thousands 

of rows, the software is no longer responsive [1]. For the latter issue, there are a number of 

common data analytics operations that are either very cumbersome or not easy to do in 

spreadsheet software. To illustrate this, consider a simple example, where a user is studying 

a spreadsheet containing course assignment scores and eventual grades for students from 

rows 1–100, columns 1–5 in one sheet, and demographic information for the students from 

rows 1–100, columns 1–10 in another sheet. Consider the following operations that the user 

may want to do to compute some intermediate tabular result (The user may then visualize or 

study this result in some way.) :

• Say the user wants to understand the impact of assignment grades on the course 

grade, for which they want to select the students having points higher than 90 in at 

least one assignment. There is no way for the user to sub-select a set of rows of this 

form for further analysis, except manually identifying these rows, and then copy-

pasting each one into another area.

• Say the user wants to plot the average grade by demographic group (undergrad, 

MS, PhD). This requires a “join” of the two sheets of the spreadsheet to generate 

the desired result, also very cumbersome to do on current spreadsheet software.

• Say the course management software outputs actions performed by students into a 

relational database or a CSV file; there is no easy way for the user to study this data 

within the spreadsheet, as the data is continuously added.

There are many other data analysis operations that are similarly very cumbersome on current 

spreadsheet software.

Therefore, we propose to bring the power of relational databases to bear on spreadsheets. 

Relational databases are efficient and expressive, and are certainly capable of natively 

handling the operations described above via SQL. On the contrary, relational databases are 

not as easy-to-use or as amenable to direct manipulation as spreadsheet software, e.g., 

seamlessly adding a new column, copy-pasting data. Thus, we unify relational databases 

with spreadsheet software, in order to preserve the benefits of both.

We propose a system, DATASPREAD, that is a holistic unification of relational databases and 

spreadsheets. Here we use spreadsheet as an intuitive user interface and database as a back-

end engine. However, designing DATASPREAD is not trivial since databases and spreadsheets 

adopt very different architectures and ideologies. In particular, we need to deal with the 

following challenges:

• Schema: databases have a strict schema-first data model, which is based on tables 

and tuples, while the spreadsheet data model is based on sheets with rows and 

columns, and no explicitly defined schema.

• Addressing: spreadsheets treat rows and columns as identical, while databases 

operate on sets of tuples.

Bendre et al. Page 2

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Window: spreadsheet have the notion of the current window, which is the portion 

of the spreadsheet that the user is currently looking at; there is no such notion in 

databases.

• Modifications: spreadsheets support updates at any level and granularity: rows or 

columns, while databases only support modifications that correspond to a SQL 

query.

• Computation: spreadsheets support value-at-a-time formulae to allow derived 

computation, while databases support arbitrary SQL queries operating on groups of 

tuples at once.

We have identified these as research issues and have build the first version of DATASPREAD to 

explore them, among others. Externally, DATASPREAD retains many of the front-end user 

interface aspects of spreadsheets that make it as easy to use, while at the same time 

enhanced and supported by a back-end relational database, providing efficiency and 

expressivity. In the front-end, in addition to all the traditional spreadsheet commands, 

DATASPREAD supports the use of arbitrary SQL via custom DBSQL and DBTABLE commands, enabling 

the import, and constant updating of data from relational databases, as well as the 

computation of selections and joins of data contained in the spreadsheets. Conceptually, 

these commands, along with other spreadsheet commands, are stored as interface views in 

the underlying database. In the back-end, an optimizer, optimizes for keeping the user 

window up-to-date and in-sync with the underlying relational database. Even though the 

spreadsheet can only support a few rows, as the user pans through the spreadsheet, the 

burden of supplying or refreshing the current window is placed on the relational database, 

which is very efficient.

Demonstration

In our demonstration, we will allow conference attendees to interact with our prototype of 

DATASPREAD (built using Microsoft Excel and PostgreSQL), enabling them to interactively 

analyze a two-way synchronized view of relational data using more expressive DBSQL, DBTABLE 

commands to filter, join, project, and export data residing in multiple sheets.

Related Work

With the goal to achieve the benefits of spreadsheets and relational databases while dealing 

with tabular data, our holistic unification strives to unify the notion of table in both systems. 

Recent works have proposed to enrich spreadsheets and relational databases with features 

from one another in three orthogonal directions: a) Use of spreadsheets to mimic the 

relational database functionalities [3]: Although this approach achieves expressivity of SQL, 

it is unable to leverage the scalability of databases. b) Use of databases to mimic spreadsheet 

functionalities [4, 5]: Although this approach achieves scalability of databases, it is does not 

support ad-hoc tabular management provided by spreadsheets. c) Use of spreadsheet 

interface for querying data [6]. This approach provides an intuitive interface to query data, 

but looses the expressivity of SQL as well as ad-hoc data management capabilities.

Bendre et al. Page 3

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rest of the Paper

In the next section we propose a desired design by developing a unification semantics. We 

then use the semantics to propose an architecture for DATASPREAD. Finally, we discuss 

demonstration scenarios for our DATASPREAD prototype.

2. DESIGN OF DATASPREAD

In this section, we describe the semantics for DATASPREAD. In particular, we discuss some 

important concepts and challenges that arise due to the unification of the two disparate 

ideologies: spreadsheets and databases.

2.1 DATASPREAD Overview

With a goal of unifying databases and spreadsheets, we now propose a framework for 

DATASPREAD based on two key ideas. First, to leverage the intuitiveness and the richness of a 

spreadsheet interface, rather than changing it significantly, we enhance it with concepts 

borrowed from databases. Underneath the interface, we propose to have a relational database 

that is enhanced to support the spreadsheet interface. Second, to improve the expressivity of 

the interface, we expose some database features, for example, declarative querying, from the 

underling database to the interface. Using these two key ideas, we enable users to leverage 

the strengths of both spreadsheets and databases for dealing with tabular data.

2.2 Semantics and Syntax

Although spreadsheets and databases have both been designed to manage data in form of 

tables, their treatment of this data is vastly different. Spreadsheets have been developed 

primarily with presentation of data in mind and hence their design focuses primarily on 

simplicity, intuitiveness and a rich user interface. On the other hand databases have been 

designed with powerful data management capabilities to work with large tables. Hence, 

certain data manipulation operations, e.g., queries, joins, summarization, are very naturally 

expressed as SQL statements in databases.

We propose semantics for DATASPREAD such that we are able to naturally leverage the strengths 

of both systems. Since we plan to enrich databases to effectively support interfaces, we use 

the strong points of spreadsheets to motivate our semantics.

Support for Dynamic Schema—Spreadsheets enable users to effortlessly create tables 

and update their schema. A user typically structures data on a spreadsheet as tables, with 

columns and rows, where columns generally correspond to attributes and rows to tuples. 

Here, adding an attribute, which is essentially a change to schema, is as natural and 

convenient as adding a tuple. This is due to the fact that spreadsheets do not treat columns 

and rows differently when we consider the operations possible on each. On the other hand, 

relational databases have a schema-first data model. Relational tables, which belong to a 

database’s schema, need a pre-defined structure in terms of attributes. Since changing the 

structure of a table in a database requires an update to all its tuples, it is not efficient as 

adding, deleting or updating the tuples of the table.

Bendre et al. Page 4

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To make relational table creation as effortless as table creation on a spreadsheet, we propose 

the ability for a user to select an arbitrary range on the spreadsheet and use it to define the 

structure and the data for a table within the database. Once created it should behave like a 

regular table within the database, and the user should be able to refer to it and use it in 

queries.

To streamline the concept of a dynamic schema, we propose that a user is able to update a 

table’s schema and tuples that are displayed on a spreadsheet, which in turn updates the 

schema and tuples of the underlying table in the database. Further, the database should be 

able to handle this schema change with an efficiency similar to tuple updates. This makes 

table updates within a database as natural as updating them on a spreadsheet.

Make Databases Interface Aware—Since spreadsheets have been designed with an 

interface in mind, they very naturally lay out data that is both consumed and manipulated by 

users. This interface has a very strong influence on functionality offered to the user. Features 

like laying out a table in a desired format and obtaining the totals of some attributes beneath 

the table (using a spreadsheet formula) feel natural. Thus, the interface provides a context to 

the operations performed on a spreadsheet.

Positional addressing, which enable users to address data based on its position on a 

spreadsheet, is an intuitive and effective way to refer to presented data. By laying out data 

on a spreadsheet, a position gets implicitly assigned to the displayed data, due to which a 

spreadsheet is able to use positional referencing, e.g., a cell reference of A2 from cell C2 

implies a cell that is two columns left and in the same row. The positional referencing is a 

commonly used feature while building expressions as it enables us to copy expressions 

across cells while still maintaining the relative references.

Conversely, databases completely lack interface aspects. Once a query result is output, the 

database is no longer cognizant of how that result is consumed. This disconnect is a key 

weakness due to which a database cannot be used as-is to effectively support a spreadsheet 

interface. For instance, when a user wants to update a specific attribute of a displayed table, 

the database is unable to help because it is not aware of the tuple or attribute being modified.

We propose to make databases aware of the interface’s data layout. This enables them to 

understand interactions on the presented data, e.g., for a join using displayed tuples, the 

database is able to identify the tuples just based on their implicit context. This further 

enables the databases to optimize the query execution by prioritizing the displayed tuples 

over the ones that are not displayed.

After making the database interface aware, we propose to leverage this to enable positional 

addressing in databases. This implies that the user should be able to refer to a value by its 

location on the spreadsheet and use it in any arbitrary query.

Novel Spreadsheet Constructs—We now describe how the positional addressing is 

leveraged in the front-end spreadsheet, enabling users to pose rich SQL queries while 

referring to data in the spreadsheet as well as the underlying relational table.

Bendre et al. Page 5

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We encapsulate SQL references within the spreadsheet using one of two formulae: DBSQL and 

DBTABLE. DBSQL enables users to pose arbitrary queries combining data present on the 

spreadsheet, and data stored in the relational database. DBTABLE enables users to declare a 

portion of the spreadsheet as being either exported to or imported from the relational 

database, i.e., that portion of the spreadsheet directly reflects the contents of a relational 

database table.

In order to support arbitrary positional addressing or referencing of data on the spreadsheet 

for DBSQL, we add two new constructs: RANGEVALUE and RANGETABLE. This enables users to refer to a 

cell and a table on a sheet respectively relative to the cell where the query is entered. 

RANGEVALUE enables a user to refer to scalar values contained in a cell, e.g., SELECT FROM ACTORS WHERE 

ACTORID = RANGEVALUE(A1), referring to the value in cell A1. RANGETABLE on the other hand enables a user 

to refer to a range, and perform operations on it assuming it is a regular database table. This 

enables any range on a spreadsheet to be potentially a table, and all the operations, e.g., join, 

that the database allows on a table can be performed, e.g., SELECT FROM ACTORS NATURAL JOIN 

RANGETABLE(A1:D100).

Other Semantic Issues—Although we have discussed two important concepts, there are 

still many semantics that require attention if we want to realize a complete unification. Due 

to the space restriction, rather than discussing them in detail we have listed a few of them 

below: a) SQL support on spreadsheets: To leverage the expressiveness of SQL and the 

simplicity of formulae we propose to support both, and give flexibility to the user to 

interchangeably use either. b) Real-time sync: Using spreadsheets users are accustomed to 

having an always updated copy with them. For this we propose a real time two way 

synchronization of the displayed on the spreadsheet with the underlying database. c) Data 

typing: Spreadsheets dynamically type the data stored as cells. To make this work with 

databases, we propose the idea of automatically assigning data types within the databases 

based on the tuples. d) Computation optimization: By scaling up the amount of data, which 

can be presented on a spreadsheet, efficient computation become a necessity. We propose to 

leverage the presentation information for prioritizing computations for the data that is 

displayed. e) Lazy Computation: To maintain interactivity, we propose that the calculations 

of the visible cells should be prioritized and the remaining long running computations 

should be performed in background.

Challenge—Realizing the unified semantics is not a trivial task, since it stretches the 

capabilities of today’s relational databases beyond what is available. For example, consider 

the semantics of schema, for today’s databases a table’s schema change requires an update 

to all the tuples of the table. Further, the activity is considered as “data definition language” 

and generally cannot participate in transactions. This requires us to propose the architecture 

of DATASPREAD by radically rethinking the databases’ architecture.

3. PROPOSED ARCHITECTURE

Since relational databases are not designed to be interface-aware, when we unify the 

presentation layer of spreadsheets with databases, we need to redesign the underlying 

architecture of the database, as well as the interaction with the front-end interface.

Bendre et al. Page 6

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To enable databases to support the semantics described earlier, we propose a redesigned 

database architecture as shown in Figure 1, where the shaded blocks represent new or 

enhanced components. The interface manager is tasked with the goal of making databases 

interface-aware. The query processor is enhanced to support and optimize the execution for 

positional addressing, a natural way to locate data presented on the interface. The compute 

engine leverages interface aspects, e.g., windowing, to optimize execution. We introduce a 

new type of index, positional, which makes interface-oriented operations, e.g., ordered 

presentation, efficient. The interface storage manager stores data that is presented on the 

interface but not designated as a relational table. The relational storage manager is 

enhanced to effectively support interface related operations such as schema changes.

While we have identified the extent of modifications needed for databases to effectively 

support an interface, our current implementation and discussion focuses on enhancing some 

core components. Naturally, there are other components that require modification, such as 

the transaction manager, and we leave them for future work.

Interface Storage Manager

In this unified framework, a spreadsheet not only has tabular data, corresponding to 

relational tables in the underlying database, but also has other interface data, e.g., formulae 

or data entered by the user. This interface data requires special treatment as it does not have 

a schema. The interface storage component stores this data as a collection of cells. To enable 

efficient retrieval for a given range, the component groups the cells together by proximity 

and splits the groups into data blocks as required by the underlying storage. To enable 

efficient access, the blocks are further indexed by a two-dimensional indexing method.

Relational Storage Manager

Our unification semantics demand that the schema changes to the tabular data, which we 

persist in the database as relational tables, should be very efficient, almost as efficient as 

changes to tuples. With an insight to reduce the disk blocks to update during a schema 

change, the relational storage manager uses a hybrid of column-store and row-store to 

physically store the table. Here, data is structured along a collection of attribute groups, 

thereby radically reducing the disk blocks that need an update during a schema change.

Interface Manager

The interface manager keeps close tabs on the data presented to the user. For every data 

item, e.g., the output of a query, a table imported from the database, that is displayed on the 

interface, the presentation manager assigns a context; a context comprises a positional 

address along with a reference to the sheet. This context can then be utilized to enable 

functionalities such as two-way sync and relative addressing.

Along with positional addressing, the interface manager allows a two-way synchronization 

for the tables displayed on the interface. Since primary keys are a natural way to identify 

tuples in a relational database, the interface manager maintains a mapping between a tuple’s 

key attribute and its corresponding location. This enables translation of an update on the 

Bendre et al. Page 7

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interface, having a locational context, to the underlying relational database, which requires a 

key to uniquely identify a tuple.

Compute Engine

To optimally support interface interactions and data updates, we introduce a new component 

termed as “compute engine”. By using ideas like shared computation, the compute engine 

enables efficient handling of formulae and queries with positional referencing, e.g., DBSQL. It 

performs computations asynchronously, free from a user’s context, as updates are made to 

either the interface or the database. It further improves the interface’s interactivity by 

prioritizing the computation for visible cells.

4. DEMONSTRATION DESCRIPTION

Our DATASPREAD prototype is implemented using Microsoft Excel (that presumably most 

conference attendees as well as eventual users are already familiar with) as the front-end 

spreadsheet application, backed by PostgreSQL as the relational database backend. All the 

screenshots we depict are from our current prototype. A video demonstrating the features of 

DATASPREAD can be found at http://dataspread.cs.illinois.edu.

We demonstrate the following features of the DATASPREAD prototype: a) analytic queries that 

reference data on the spreadsheet, as well as data in other database relations. b) importing or 

exporting data from the relational database. c) demonstrating that DATASPREAD keeps data in 

the front-end and back-end in-sync during modifications at either end.

Feature 1: Querying

Consider Figure 2a. Here, expressed using the DBSQL spreadsheet function, the SQL query in B3 

uses data from three relations in the database (MOVIES, MOVIES2ACTORS, ACTORS), and references the two 

cells above (B1 and B2), via special relative referencing commands (RANGEVALUE(B1) and 

RANGEVALUE(B2)). The output of the query is not limited to a single cell, but spans the range B3:B10. 

This enables the collection of cells to be computed collectively in a single pass (as opposed 

to traditional spreadsheet formulae that are one-per-cell). This will demonstrate how 

DATASPREAD provides the ability to naturally query the underlying database, and other data in 

the spreadsheet.

Feature 2: Import/Export

Consider Figure 2b. Here, on selecting a range in the sheet and selecting the create table 

command from the add-ins menu, we provide the ability to users to transform it into a 

relational database table. The schema of this table is automatically inferred using the column 

heading and the data. Optionally, users will be allowed to specify constraints on the table, 

such as primary keys. On completion, the table is created in the underlying database. The 

data on the sheet is replaced by DBTABLE, which is a spreadsheet function that selects data from 

the database and displays it on the spreadsheet. DBTABLE could also be used to directly import 

data already present in the relational database into the spreadsheet. This will demonstrate 

how DATASPREAD allows us to import or export data to and from the relational database.

Bendre et al. Page 8

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dataspread.cs.illinois.edu


Feature 3: Modifications

Consider Figure 2c. Here, after a table is displayed on the spreadsheet using DBTABLE, and 

formatted in cells A3 to B5, as modifications are made to the table on the front-end the data in 

the relational database is updated, and the data displayed in cells from A10 to B12 

(corresponding to a DBSQL command referencing that data) is immediately updated. This will 

demonstrate how DATASPREAD provides the ability to keep data in-sync during modifications at 

both the front-end and back-end

Overall, the aforementioned demonstration scenarios will convince attendees that our 

DATASPREAD system offers a valuable hybrid between spreadsheets and databases, retaining the 

ease-of-use of spreadsheets, and the power of databases.

REFERENCES

1. Clemens S. 5 Ways To Tell You Have Outgrown Excel. http://www.insightsquared.com/2011/06/5-
ways-to-tell-you-have-outgrown-excel/. 

2. Collie R. Big Data is Just Data, Why Excel “Sucks”, and 1,000 Miles of Data. http://
www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/. 

3. Tyszkiewicz, J. SIGMOD. ACM; 2010. Spreadsheet as a relational database engine; p. 195-206.

4. Witkowski, A.; Bellamkonda, S.; Bozkaya, T.; Dorman, G.; Folkert, N.; Gupta, A.; Shen, L.; 
Subramanian, S. Proceedings of the 2003 ACM SIGMOD International Conference on Management 
of Data, SIGMOD ’03. New York, NY, USA: ACM; 2003. Spreadsheets in rdbms for olap; p. 
52-63.

5. Witkowski, A.; Bellamkonda, S.; Bozkaya, T.; Naimat, A.; Sheng, L.; Subramanian, S.; Waingold, 
A. Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05. VLDB 
Endowment; 2005. Query by excel; p. 1204-1215.

6. Liu, B.; Jagadish, H. Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on. 
IEEE; 2009. A spreadsheet algebra for a direct data manipulation query interface; p. 417-428.

Bendre et al. Page 9

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.insightsquared.com/2011/06/5-ways-to-tell-you-have-outgrown-excel/
http://www.insightsquared.com/2011/06/5-ways-to-tell-you-have-outgrown-excel/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/


Figure 1. 
DATASPREAD Architecture.

Bendre et al. Page 10

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Executing SQL with relative referencing. (b) Table creation. (c) Two-way table sync.

Bendre et al. Page 11

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


