
Host-microbe protein interactions during bacterial infection

Devin K. Schweppe, Christopher Harding, Juan D. Chavez, Xia Wu, Elizabeth Ramage, 
Pradeep K. Singh, Colin Manoil, and James E. Bruce
Departments of Genome Sciences, Medicine, and Microbiology, University of Washington School 
of Medicine, Seattle, WA 98195, USA

Summary

Interspecies protein-protein interactions are essential mediators of infection. While bacterial 

proteins required for host cell invasion and infection can be identified through bacterial mutant 

library screens, information about host target proteins and interspecies complex structures has 

been more difficult to acquire. Using an unbiased chemical cross-linking/mass spectrometry 

approach, we identified interspecies protein-protein interactions in human lung epithelial cells 

infected with Acinetobacter baumannii. These efforts resulted in identification of 3076 total cross-

linked peptide pairs and 46 interspecies protein-protein interactions. Most notably, the key A. 

baumannii virulence factor, OmpA, was identified cross-linked to host proteins involved in 

desmosomes, specialized structures that mediate host cell-to-cell adhesion. Co-

immunoprecipitation and transposon mutant experiments were used to verify these interactions 

and demonstrate relevance for host cell invasion and acute murine lung infection. These results 

shed new light on A. baumannii-host protein interactions and their structural features and the 

presented approach is generally applicable to other systems.

Introduction

Interspecies protein interactions and the underlying structural interfaces are essential for 
bacterial infection

The molecular-level arms race between hosts and pathogens is carried out on multiple 

fronts, but predominantly takes place through evolutionary adaptation of protein structural 

landscapes[1-5]. Bacteria commandeer host resources through evolutionarily optimized 

bacterial protein structures that bind with high specificity to host protein cognates. Pathogen 

proteins target diverse host proteins involved in metabolite acquisition [4], molecular 

trafficking to the cell membrane [2], cytoskeletal rearrangement [6], and cell adherence 

complexes [7]. As an example, iron is necessary for biochemical processes in both bacteria 

and hosts and can be sequestered by the vertebrate membrane protein transferrin to defend 
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against bacterial infection[4, 8]. In response, bacteria such as Neisseria gonorrhoeae and 

Haemophilus influenzae have evolved transferrin-binding proteins (TbpA) capable of 

binding and scavenging iron directly from transferrin to overcome sequestration[8]. Barber 

and Elde[4] showed that single point mutations in transferrin alter TbpA affinity at the 

interface of the two proteins and are responsible for establishing the host range of the 

bacteria and modulating host nutritional immunity. Therefore knowledge of not only the 

proteins involved in host-pathogen protein interactions but also the manner of their 

interaction, i.e. structural insight into interfacial regions, can profoundly advance 

understanding of bacterial infection and provide insight for developing new antimicrobial 

therapies[4].

Technologies have evolved to allow large-scale protein interaction identification, but 
relevant information on host-pathogen interspecies interactions and structures is still 
limited

Two-hybrid[9], affinity purification mass spectrometry[10], and protein compliment[11] 

methods have made the large-scale study of protein-protein interactions (PPIs) possible. 

Although recent efforts with these techniques have demonstrated the ability to identify PPIs 

relevant to host-pathogen interactions, including the virus-human protein interactions of 

HIV[12] and H1N1[13], host pathogen PPIs remain a general challenge to identify. 

Furthermore, structural details pertaining to host-pathogen protein interactions are 

exceedingly sparse. Many aspects of host-pathogen interactions are mediated by membrane 

proteins, as exemplified by the transferrin case above. With roles in quorum sensing, 

secretion, adhesion and invasion, membrane proteins play pivotal roles in bacterial 

pathogenesis, yet they often require significant dedicated efforts for interaction studies, are 

less suitable for many large-scale methods, and are equally challenging for conventional 

structural characterization[14].

Alternative technologies have the potential to shed light on interspecies PPIs and their 
structural interfaces

Chemical crosslinking mass spectrometry (XL-MS) approaches are beginning to have a 

greater impact on protein interaction studies[15-20]. Because of the finite crosslinker length, 

covalent linkage of two amino acid sidechains indicates their proximity during the 

crosslinking reaction period. Identification of crosslinked peptide pairs provides useful 

distance constraints for development and assessment of structural models, as illustrated for 

the interactions of protein in purified complexes from the protein phosphatase 2A 

network[16]. Chemical crosslinking can be carried out with mixtures of proteins in cell 

lysates[19, 21, 22] or on living cells[23-25], whereby interaction identification and structural 

details on complexes can be performed in an unbiased manner[26-29]. This approach holds 

great potential for the determination of transient or long-lived interactions that have been 

chemically stabilized[22], particularly for the identification of protein interactors and 

structural details of membrane proteins[27]. For example, the outer membrane protein 

OmpA in Escherichia coli is important for adhesion to host cells, catheters and implants 

among its other roles[30]. OmpA has been among the most heavily studied bacterial 

membrane proteins over the past 30 or more years. However, the protein was only recently 

shown to exist as a multimer through in vivo crosslinked sites within its C-terminal 
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domain[31]. This finding was recently verified in vitro by site-directed mutation based on 

our reported crosslinked sites and native mass spectrometry measurements[32]. Our recent 

efforts have further shown that in vivo crosslinking can yield large scale interactions and 

structural details on complexes in pathogenic bacterial cells, such as Pseudomonas 

aeruginosa[27]. These results demonstrated that OprF, an OmpA-homolog in P aeruginosa, 

exists as a multimer in vivo. Additionally, these data showed the potential to gain 

information from living cells on the interactions and structures of membrane and soluble 

protein complexes in systems where molecular biology-based strategies are less developed 

or even unsuitable.

Given the unbiased capabilities for membrane protein interactions and structural 
characterization, chemical crosslinking technologies offer the potential for identification of 
interspecies interactions that can help increase our understanding of bacterial infection

The results presented here illustrate the initial crosslinking application of Protein Interaction 

Reporter technologies to the study of interspecies PPIs in human lung epithelial cells 

infected with the nosocomial pathogen, Acinetobacter baumannii. These efforts produced 

the first large-scale interspecies crosslink dataset, including 46 host-pathogen PPIs, several 

of which involve the key A. baumannii virulence factor OmpA.

Results

Determination of interspecies protein interactions

In vivo proteomic XL-MS analysis of proteins from infected lung epithelial cells generated 

16,758 crosslinked peptide-peptide relationships (Figure 1A). Of these we identified 3,076 

non-redundant peptide-peptide relationships across three biological replicates at a 

relationship false discovery rate of 0.24% (Table S1). Crosslinked peptide-peptide 

relationships were mapped to a network of 715 PPIs attributed to 488 human proteins and 

113 bacterial proteins (Figure 1B, Figure 1C, Figure S1). Identified human proteins covered 

an abundance range of greater than five orders of magnitude (Figure S1C)[33]. 

Relationships between two peptides from the same protein constituted the majority of 

identifications (intraprotein PPIs). Two residues within a single protein have a high 

likelihood of being in close physical contact within a cell, are therefore more frequently 

cross-linked, and make up a higher proportion of interactions in crosslinked datasets[22, 34]. 

Importantly, intraprotein interactions define proximal residues within a protein, and thereby 

provide valuable structural coordinates for identified proteins even when no known structure 

exists for this protein (Figure 2). Alternatively, interprotein PPIs were derived from 

crosslinked relationships between peptides from two different proteins. Interprotein PPIs 

were used to generate interaction networks (Figure 1B, Figure 3) and yielded structural data 

pertaining to the interaction interfaces of protein complexes. Within the interprotein 

relationships, we determined that 3.7% of the total peptide-peptide crosslinks, and 6.4% of 

all PPIs, were interspecies interactions Figure 1B, Figure 1C). No bacterial proteins or 

interspecies interactions were detected in uninfected, crosslinked H292 cells (Table S2). 

Based on these cross-linked relationships we constructed a protein interaction network that 

included: host-host, pathogen-pathogen, and host-pathogen PPIs (Figure 1B).
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To verify that PIR technology could detect physiological protein complexes and 

interactions, we quantified the number of human PPIs that were (1) intraprotein interactions 

or (2) were previously annotated in a PPI databases (i.e. PrePPI[35] and IntAct[36]). Out of 

566 unique human PPIs 70% were attributed to either intraprotein interactions or identified 

in a PPI database (Figure 1C). Subnetworks of PPIs from known complexes included: host 

cytoskeleton, heterogeneous ribonucleoproteins, integrins, histones, cohesin, and ATP 

synthase (Figure S2) [37]. Identified A. baumannii PPIs included interactions with virulence 

factors, membrane integrity proteins, metabolic complexes, transcription and translation 

machinery, and many Genes of UNKnown function (GUNKs) (Table S1). The last group 

represents a large, and potentially important, subset of the A. baumannii proteome. Though 

they make up approximately 30% of the all A. baumannii proteins (Figure S1D), functional 

characterization of GUNK proteins is a challenge [38]. Owing to structural and network 

information derived from identified crosslinked peptide relationships this work provides 

insight on functional roles for several GUNK proteins.

A. baumannii interactions with host proteins

Bacterial adherence and internalization require host-microbe protein interactions involving 

bacterial virulence factors binding host signaling complexes, host membrane adherence 

proteins, and host cytoskeletal proteins [7, 39, 40]. Bacterial membrane proteins and 

proteins secreted via OMVs were previously suggested to be a major mechanism by which 

A. baumannii adhere to host cells[41] and deliver effector molecules [42]. Interestingly, the 

bacterial proteins observed in interspecies PPIs were enriched for the presence of predicted 

signal peptides (p-value = 0.019)[43] and proteins observed in outer membrane vesicles 

(OMVs) (p-value = 0.026) [42] (Figure S1E). Furthermore, we observed crosslinked 

relationships involving bacterial proteins previously determined to be A. baumannii 

virulence factors, including: OmpA, Lon protease, Oxa-23, hemolysin, TolB, TonB, and 

several lipoproteins (Figure 3, Table S1) [44]. We found crosslinked relationships between 

several of these virulence factors (lipoproteins, OmpA and Lon protease) and human 

proteins from the cytoskeleton (keratin-7, keratin-8, keratin-18, actin B, plectin, Arp 2/3-1B) 

and junctional adherence proteins (desmoplakin [DSP], plakoglobin, plectin) (Figure 3B)

[40, 41, 45].

Verification of OmpA as an essential virulence factor in Ab5075

Interactions identified between OmpA and host or bacterial proteins were of special interest 

as OmpA orthologs in other bacteria and A. baumannii strains are necessary for bacterial 

invasion [30, 41]. Verification of this critical role for OmpA in Ab5075 was necessary to 

better understand the significance of the in vivo cross-linking results and establish the 

pathogenic characteristics of this clinical isolate [46]. To investigate the role of OmpA in the 

A. baumannii strain Ab5075, we first tested bacterial invasion of a gene inactivation mutant 

of OmpA (transposon insertion, tn-ompa) in the Ab5075 genetic background. Invasion of 

host cells was severely attenuated for the tn-ompa mutant compared to wild type Ab5075 

(WT, Figure 4A, Figure S3A). Second, pre-treatment with α-OmpA serum prior to infection 

significantly attenuated Ab5075’s ability to invade host cells (Figure 4A). Third, we 

quantified bacterial invasion after pre-treatment of bacterial cells with novel, purified, and 

targeted OmpA antibodies (Figure 4A, Figure S3B). Three antibodies, targeting two 
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extracellular loops and a C-terminal portion of OmpA, were generated and pooled (Figure 

S3B). We observed that these targeted antibodies were able to attenuate bacterial invasion to 

the same degree as α-OmpA serum (Figure 4A). Finally in an acute murine lung infection 

model, all 5 mice treated with tn-ompa survived bacterial challenge, while 3 of the 4 mice 

treated with WT Ab5075 succumbed to infection within 36 hours (Figure 4B). Taken 

together, these findings establish the significance of OmpA in Ab5075 virulence and 

highlight new tools for studying Ab5075 virulence (i.e. tn-ompa strain and targeted 

antibodies)

Identification of interactions between a host desmosome and A. baumannii proteins

Bacterial outer membrane proteins have been proposed to be involved in host cell adherence 

and evasion of host immunity[47] and the outer membrane protein OmpA appears critical in 

several bacterial species[30, 41]. Therefore, identification of OmpA cross-linked to several 

host proteins in infected cells, including an obligate component of desmosomes and hemi-

desmosomes (Figure 3B) offers new insight on OmpA function during cell invasion. Peptide 

sequences from DSP and OmpA were unique to the human and A. baumannii proteomes, 

respectively (Table S1).

Bacterial infiltration of host epithelial layers has been demonstrated to involve close 

proximal relationships between desmosomes and bacterial cells[48]. Desmosomes are cell 

adhesion complexes that mediate cell-to-cell contact in host epithelia [45, 49, 50], and – 

along with tight junctions, gap junctions, and adherens junctions – create a physical barrier 

to prevent bacterial intrusion through the epithelium[51]. DSP-OmpA crosslinked peptides 

that we identified correspond to sites within the C-termini of both proteins. Disruption of the 

DSP C-terminus has been reported to interfere with epithelial integrity [50], and therefore 

virulence factor binding the DSP C-terminal could serve to destabilize host cell-to-cell 

interactions to bypass the barrier function of host epithelia[52]. Sites of crosslinking within 

both proteins were mapped to C-terminal crystal structures of OmpA and DSP (Protein 

Databank: 4G4Y [OmpA] and 1LM5 [DSP] [53, 54]) (Figure 5A) [55]. Consistent with our 

crosslinking results, when we modeled the protein docking of the C-termini of DSP and 

OmpA, the linked lysine residues between the two proteins in the predicted model were 

within the crosslinker distance constraint for the BDP-NHP crosslinker (Figure S4B).

To validate this interaction, we immunoprecipitated DSP from Ab5075-infected H292 cells 

and uninfected H292 cells and blotted for the presence of OmpA. OmpA precipitated with 

DSP from infected H292 cells in the presence and absence of crosslinker (Figure 5B, Figure 

S4A), confirming the interaction observed through large-scale, in vivo crosslinking. Notably, 

two high-mass bands, both greater than 250,000 Da in size, were present only in the 

crosslinked sample (Figure S4A). These high molecular weight bands were presumed to be 

the crosslinked protein complex formed by DSP (>260 kDa) and OmpA (38 kDa). By 

confocal immunofluorescence, DSP and OmpA proteins colocalized during Ab5075 

infection of H292 cells (Figure 6A). In addition, we observed an A. baumannii GUNK 

protein crosslinked with DSP. The GUNK identified in multiple peptide-peptide interactions 

with DSP was Ab57_2521 (later referred to as GUNK2), a signal-peptide containing protein 

that also physically interacts with OmpA in infected host cells. The random chance of 
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matching multiple interactors across species in this way was miniscule (ρ = 2.35×10−9, 

Figure 3B, Figure S5A).

Guilt-by-association: Functional significance of genes of unknown function

Defining the function and biological significance of GUNK proteins remains a challenge 

[38]. The unbiased determination of interactions between GUNK proteins and annotated 

gene products from a bacterial genome offers clues for putative functional characterization 

of GUNKs[56]. In addition to cross-linking infected host cells, we harvested Ab5075 alone 

and crosslinked the bacterial cells to improve network and structural coverage of bacterial 

interprotein and intraprotein crosslinks within Ab5075 (Table S3). Of particular interest 

were GUNK proteins we observed linked to OmpA, since OmpA appears necessary for 

bacterial infection (Figure 4). In both infected host cells and A. baumannii cells alone we 

observed crosslinks between OmpA and several GUNK proteins (Table S1, Table S3). We 

quantified bacterial invasion in host cells using transposon insertion mutants of three 

unannotated GUNKs most frequently identified cross-linked to OmpA – hereafter GUNK1, 

GUNK2, and GUNK3 (Figure 5C, Table S1). Transposon insertion mutants of GUNK1, 

GUNK2, and GUNK3 in the AB-5075 background showed reduced host cell invasion as 

compared to WT Ab5075 (Figure 5C). Two independent transposon mutants (A and B) for 

each GUNK gene were tested and observed to have consistent phenotypes (Figure 5C). 

While the attenuation of mutant bacterial invasion was not as great for these GUNK proteins 

as for OmpA, the reduction was still statistically significant compared to WT Ab5075 (p-

values < 2×10−4, < 7×10−5, and < 9×10−7 for GUNK1, 2 and 3, respectively) (Figure 5C).

The intersection of PPIs and bacterial genes essential for persistence in host lungs

We compared our dataset of interspecies crosslinked proteins to a recently established set of 

A. baumannii genes determined to be essential for bacterial persistence in the murine lung 

[57]. Of the bacterial proteins we identified in crosslinked interspecies interactions (n=31), 

we observed a significant enrichment of essential persistence genes (7/31, p-value = 

0.000664) (Figure S5B). Discrepancies between these two datasets can, in part be explained 

by three factors. First, a different, less virulent strain of A. baumannii (Ab17978) was used 

to test persistence in the murine lung[46, 57]. Second, not all proteins essential for invasion 

may interact with host proteins (proteins identified in persistence study but not in the 

proteomic interactome). Third, not all protein interactions between host and pathogen 

proteins may be essential (proteins identified in proteomic interactome but not in persistence 

study). Nonetheless, these results from in vivo host-pathogen cross-linking provide the first 

identification of host partners for seven A. baumannii proteins previously found to be 

essential for bacterial persistence in the host lung.

Discussion

Interspecies protein interactions are critical determinants in bacterial infection and 

pathogenesis[2]. Improved knowledge on which interspecies PPIs exist and how the 

involved proteins interact can greatly advance understanding of molecular mechanisms 

involved in host invasion and provide new opportunities for antibacterial therapies. As the 

growing threat of antibiotic resistant pathogens appears likely to surpass all currently known 
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antibiotics [58, 59], new knowledge and strategies that can help treat multidrug resistant 

bacterial infections are of critical importance. Many strains of Acinetobacter baumannii, 

such as the clinical strain Ab5075 used in these studies, exhibit increased resistance to all 

antibiotics, including carbapenems [46, 58]. Using unbiased in vivo protein crosslinking we 

identified physical interspecies PPIs during microbial infection to enable the first 

visualization of the A. baumannii-host interaction network. In total, more than 3000 cross-

linked peptide pairs were identified defining the existence and structural features of more 

than 700 PPIs and 46 interspecies PPIs representing one of the largest host-bacteria protein 

interaction datasets and the first large-scale PPI analysis of host-pathogen interactions for A. 

baumannii (based on HPIDB2.0, Figure 6B) [60].

Previous studies have shown the outer membrane protein OmpA to be critical to attachment 

and invasion in many pathogenic bacteria [30], including A. baumannii [41, 61]. OmpA was 

also identified as a required gene for microbial persistence in murine lung infection 

(ρ=7.6×10−79)[57]. Though our experimental design did not specifically target OmpA, the 

membrane porin was identified in cross-linked relationships to several host proteins in 

infected epithelial cells. During infection OmpA migrates to at least three subcellular 

locations within host cells: mitochondria, nuclei and cell-surfaces [62, 63]. Consistent with 

these findings, we identified OmpA interspecies interactions with a mitochondrial protein 

that affects reactive oxygen species generation (GFM-1) [64, 65], a nuclear protein involved 

in the DNA damage response[66] and circadian rhythm regulation[67] (SFPQ), and the 

obligate desmosomal adhesion protein DSP (Figure 3B).

Bacterial targeting of adhesion complexes is a well-established mechanism for microbial 

intrusion and invasion [68, 69]. Gram-negative bacteria, such as Staphylococcus aureus[70] 

and Campylobacter jejuni[71], have previously been observed to bind and disrupt 

desmosomes during infection. Van Schilfgaarde et al. showed that bacterial intrusion into 

human lung epithelial cells placed infiltrating bacteria in close contact with desmosomal 

plaques[48]. The in vivo cross-linking results presented here linking OmpA and DSP are 

consistent with these observations and is corroborated by the fact that OmpA co-localizes 

with DSP in infected human cells (Figure 6A). OmpA has previously been shown to be a 

component of secreted A. baumannii OMVs[61]. OmpA and DSP could therefore colocalize 

after bacterial internalization [72] (Figure 4A, Figure 6A) or through the local release of 

bacterial OMVs [61] and the subsequent integration of these vesicular membranes into the 

host membrane [73]. For the latter case, altering desmosomal integrity could aid infiltration 

through host epithelia. Finally, because desmosomes integrate signals between the host cell 

surface and cytoskeleton [74], and a functional host cytoskeleton is required for A. 

baumannii pathogenesis [75], binding and targeted disruption of the desmosome by bacterial 

proteins could be a means for A. baumannii to modulate the requisite host cytoskeleton and 

facilitate epithelial intrusion and host-cell invasion. This speculation requires further 

investigation of course, but knowledge of the OmpA-DSP interaction will enable these 

future studies.

With extensive evidence linking OmpA and orthologous proteins to pathogenicity, the 

discovery of GUNK proteins linked to OmpA established a preliminary association between 

these GUNKs and bacterial invasion. While two GUNK proteins were A. baumannii-specific 
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(GUNK2 and GUNK3), GUNK1 shares sequence identity with hypothetical proteins from 

Bacillus (52%) and Pseudomonas (43%) species and META-domain/HslJ proteins from 

Bordetella (38%) and E. coli (32%). The HslJ protein has previously been related to 

antibiotic resistance to novobiocin [76], and overexpression of META proteins in 

Leishmania resulted in increased virulence[77]; META-domain proteins, often observed in 

hypothetical bacterial proteins [78], have also been implicated in bacterial motility. The 

determination of multiple crosslinked relationships with OmpA provided interaction-based 

evidence (‘guilt-by-association’ [56]) leading to further characterization of these GUNK 

proteins. We believe that sequence similarity potentiating the involvement of GUNK1 in 

motility/resistance and the attenuated host invasion by all three GUNK transposon insertion 

mutants (Figure 5C) further support these GUNK proteins as putative A. baumannii 

virulence factors. These findings established the utility of an unbiased approach to identify 

novel interactions and disseminate functional characterization from PPIs between known 

virulence factors and GUNK proteins.

The techniques underlying our study of in vivo protein crosslinking in bacterially infected 

human cells provide a unique opportunity to view networks of intercellular PPIs. Recent 

studies have suggested that interactomes, even incomplete ones, can enable discovery of 

molecular commonalities between phenotypically-related disease pathologies that may not 

share primary disease genes [79]. When extrapolated to the study of bacterial pathogenesis, 

overlapping interspecies interactomes could reveal common paradigms of infection 

exploited by microbes. In vivo cross-linking of host-pathogen systems is a generally 

applicable technology and future applications with other pathogens will help to explore the 

possibility of common strategies used among multiple pathogens.

Significance

Protein interactions are essential mediators of bacterial pathogenesis. While methods to 

elucidate bacterial proteins required for infection have been employed extensively, 

information regarding the host proteins targeted by bacteria and interspecies complex 

structures has been more difficult to determine. In this proof-of-principle study, we used 

chemical cross-linking of proteins in combination with large-scale mass spectrometry to 

identify interspecies interactions between proteins in cultured human cells and Gram-

negative bacterial proteins during bacterial infection. These efforts resulted in identification 

of interspecies protein-protein interactions between human proteins and known bacterial 

virulence factors. Most notably we identified bacterial virulence factors interacting with host 

structural proteins that mediate host cell-to-cell adhesion. Our study shows the potential of 

chemical cross-linking of proteins in combination with large-scale mass spectrometry to 

shed new light on host-pathogen protein interactions and their structural features. We 

demonstrate the ability of said methods to interrogate protein interactions underlying 

complex pathogenic systems and the presented methodologies are generally applicable to 

other pathogen systems. The broad application of these methods could aid the rapid 

expansion of understanding of how diverse bacterial species target and manipulate host 

proteins during pathogenesis.
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Experimental Procedures

Cell culture

Ab5075 cells were grown to stationary phase in nutrient broth (BD). H292 cells were grown 

in RPMI-1640 (Thermo) with 10% fetal bovine serum and 1% penicillin/streptomycin 

(37°C, 5% CO2). Transposon mutants in Ab5075 were attained from Dr. Colin Manoil [80].

Crosslinker synthesis, infection, Stage-1 database creation, sample preparation

Biotin-Aspartate Proline-PIR n-hydroxyphthalimide (BDP-NHP) was synthesized as 

previously described [28, 81]. Confluent H292 cells were washed, released and pelleted 

before resuspended in crosslinking (XL)-buffer (0.17M potassium phosphate) containing 

Ab5075 cells at an MOI of 500 for 2 hours. Five experiments were run: three biological 

replicates of Ab5075-infected H292 cells (Figure S6), and two biological replicates of 

uninfected H292 cells (Table S2). BDP-NHP (8mM) was added to the cell suspension for 1 

hour. H292 cells infected with A. baumannii (i.e. HA-1, HA-2, HA-3) and uninfected cells 

were washed, pelleted, and frozen at −80°C.

Infected H292 cell pellets were resuspended in lysis buffer: 8M urea, 100mM Tris-Cl pH 

8.0, 150mM NaCl, and protease inhibitor tablets (Roche); then lysed by cryo-grinding and 

sonication. Proteins were reduced and alkylated. Protein lysates were diluted with 100mM 

Tris-Cl, pH 8.0. 1mg of protein was removed to enrich full length crosslinked proteins with 

monomeric avidin beads. Enriched, crosslinked proteins were digested with sequencing 

grade trypsin (Promega), and injected on a C-8 column eluting into an LTQ-XL or LTQ-

Velos-FT-ICR mass spectrometer to create a search database of proteins that had been 

crosslinked (Stage-1 database)[28]. Digested Stage-1 peptide samples were shot in 

quadruplicate on a 4 hour reverse phase data dependent Top5 method. Spectra were 

searched using SEQUEST. 30880 peptide-spectral matches (10304 unique peptides) were 

identified at a false discovery rate (FDR) of less than 1%, based on a concatenated, target-

decoy database of all human and A. baumannii (AB0057) proteins [28]. The remaining 

protein lysates were digested with sequencing grade trypsin. Digested peptides were 

desalted and fractionated by strong cation exchange (SCX). Eluted peptides were incubated 

with monomeric avidin beads to enrich crosslinked peptides.

LC-MS/MS/MS, ReACT, database searching, and data analysis

Crosslinked peptides were resuspended in 5% ACN/2% formic acid and injected onto an in-

house pulled C-8 column (Magic, 200A, 5um) run on 4 hour gradients as with the Stage-1 

mass spectral analysis; eluted peptides were analyzed on an LTQ-Velos-FT-ICR. 

Crosslinked peptides were fragmented in a data-dependent ReACT mode (Real-time 

Analysis for Crosslinked peptide Technology)[28]. Briefly, high-charge state precursor ions 

(MS1, z > 4+) were isolated and fragmented at low energy (Q = 0.20) to release crosslinked 

peptides and a reporter ion (m/z = 752.41). Data-dependent selection of fragmented MS2-

ions that sum to the precursor mass minus the reporter ion were further fragmented for MS3 

spectra and peptide sequencing.
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All parameters and filtering was done as previously described to identify unique PPIs and 

site-site interactions[28]. The final relationship FDR was calculated to be 0.24% [(2 * 20 

decoy relationships with at least 1 reverse hit)/16758 total relationships]. The final PPI FDR 

was 1% [(2 * 4 unique decoy PPIs)/719 total unique PPI’s]. All interaction data, including 

pep.xml files, can be found at http://brucelab.gs.washington.edu/xlinkdb/. Protein interaction 

networks were created using Cytoscape 3.0. Protein structures for OmpA and desmoplakin 

were downloaded from the Protein Databank (4G4Y and 1LM5, respectively). Protein 

structure interactions were modeled using PatchDock[55]. KEGG pathway enrichment p-

values were determined using STRING v9.1 [37].

Gentamicin protection assays

H292 cells were plated in 24-well plates and allowed to attach for 16 hours. H292’s were 

incubated with Ab5075 or Ab5075-tn-ompa for 3 hrs in serum-free, antibiotic-free 

RPMI-1640 media (RPMI). The supernatant was saved to normalize AB5075 growth during 

infection. H292 cells were incubated for 1 hour with 200μg/ml gentamicin in RPMI at 37°C. 

Lysis buffer (PBS with 0.1% Trition-X100) was added to each well, and the plate was 

shaken at 200rpm for 10 min. Lysates (50ul) were cultured on NB-agar plates (16 hours, 

37°C). Colonies were counted and normalized to WT AB5075 growth. Values are the 

average of technical duplicates from at least three experiments performed on three different 

days. For antibody blocking of OmpA-based invasion, Ab5075 cells were pre-incubated 

with α-OmpA or PBS-control serum (Dr. Michael McConnell) or purified Genscript 

synthesized antibodies. Pre-treated Ab5075 cells were then incubated with H292 cells as 

above.

Confocal immunofluorescence and brightfield microscopy

Confluent H292 cells were infected with Ab5075 (MOI = 100) on 3.5cm plates with glass 

coverslips (No. 1.5, Mattek). For confocal immunofluorescence, cells were fixed (formalin), 

blocked (3% milk in PBST) and incubated overnight at 4°C with α-DSP antibody (rabbit, 

Abcam) and primary mouse α-OmpA serum (Dr. Michael McConnell) in blocking buffer. 

Microscopy was performed with a Nikon A1 confocal mounted on a Nikon TiE inverted 

microscope (Garvey Cell Imaging Lab) at 20× magnification, n=1 (air), NA=0.75. Depth of 

field measured based on λ = 595nm. For brightfield microscopy, H292 cells were grown to 

confluency on 24 well plates, incubated in crosslinking buffer +/− Ab5075 cells (MOI=100), 

washed with PBS and imaged at 20× magnification.

Murine acute lung infection

WT Ab5075 or tn-ompA were streaked on LB agar or LB agar with 5ug/ml tetracycline 

(LBtet) from frozen stocks. PBS (50ul) containing ~2×108 CFU/ml bacteria were 

administered intratracheally to anesthetized mice as described before[82]. Animals that 

became moribund, distressed or were unable to eat/drink were euthanized using a CO2 

chamber. Experiments were approved by the University of Washington Institutional Animal 

Care and Use Committee (protocol number 4113-01).
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Co-immunoprecipitation (Co-IP) and western blotting

H292 cells were grown to confluency and washed prior to co-incubation with Ab5075 cells 

(MOI=500) for 2 hours at RT. Subsequently, either DMSO or BDP-NHP in DMSO was 

added to the samples followed by 1 hour incubation. Cells were pelleted and resuspended in 

IP buffer (10mM Tris-Cl pH 8.0, 100mM NaCl, 1% Triton-X100, 1mM EDTA, protease 

inhibitors, 100μg/ml lysozyme) and incubated on ice for 30min to lyse bacterial cells; 

samples were syringe pumped (27.5 gauge needle) and sonicated to further lyse cells and 

fragment DNA.

Lysates were pre-cleared with 50μl of Protein-G-agarose (Thermo) mixed at 4°C for 1 hour. 

α-Desmoplakin antibody was added for 16.5 hours at 4°C. For immunoprecipitation, 50μl of 

Protein-G-agarose was added for 3 hours at 4°C. Beads were pelleted and thoroughly 

washed. Co-IP proteins were eluted at 95°C for 10 min with a 3:1 ratio of 1% SDS, 15% 

glycerol, 50mM Tris-Cl pH 8.0, 150mM NaCl: XT Sample Buffer (Biorad). Finally, 

proteins were detected by SDS-PAGE and western blot (primary: α-OmpA serum; 

secondary: α-mouse antibodies [IRDye, Li-Cor]).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 3076 cross-linked peptide pairs identified from infected cells.

• Forty-six interspecies protein-protein interactions were identified from cells.

• Interspecies interactions involving unannotated A. baumannii proteins were 

identified.

• Structural features of OmpA-desmoplakin interaction revealed.
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Figure 1. Identification of protein interactions from infected lung epithelial cells
(a) H292 cells were infected with Ab5075, crosslinked using BDP-NHP. Digested peptides 

were enriched and analyzed by LC-MS/MS. (b) PPI map of human (blue) and bacterial 

(green) proteins. Interspecies crosslinks are highlighted in red. (c) Total number of PPIs 

within the dataset, their breakdown by species (Human-human, Ab5075-Ab5075, or 

Ab5075-Human), and the relative matched interactions from orthogonal data (i.e. previously 

observed in PrePPI[35]/IntAct[36] or intraprotein PPIs within a single protein).
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Figure 2. Intraprotein interactions mapped to known and predicted protein structures
Crosslinked sites identified in the large-scale proteomic infection experiment were mapped 

to Phyre2 predicted structures [83] (green lysine sites, light grey model) or known crystal 

structures (magenta lysine sites, dark grey model) for the bacterial proteins Ab57_2983 and 

Oxa23 and the human protein plakoglobin. For plakoglobin, while the central domain has 

been crystalized (PDB: 3IFQ), the N- and C- terminal portions have not been crystalized, yet 

a site within the C-terminus was identified in an intraprotein crosslinked relationship and 

shown within the predicted structural model of this region.
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Figure 3. Depth of interspecies and OmpA specific intercellular interactions
(a) Force-directed network of the interspecies protein interactions identified between A. 

baumannii and human proteins. Insets depict how multiple site-to-site crosslink interactions 

underlie each PPI. Interspecies crosslinks are red. (b) Site-to-site interactions for all proteins 

(bacterial and human) interacting with OmpA in the cell infection model. Nodes are 

individual lysine sites identified in crosslinked relationships between human (blue nodes) 

and bacterial (green nodes) proteins. Interspecies links are red.
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Figure 4. OmpA-related virulence in Ab5075
(a) Ab5075 invasion assays comparing WT Ab5075, Ab5075 with transposon disruption of 

OmpA (tn-ompA), and WT Ab5075 treated with control IgG serum, α-OmpA serum, or 

purified α-OmpA antibodies. Mean +/− SEM. (b) Murine intratracheal infection with WT 

Ab5075 (grey) or tn-ompa (black, log-rank p-value = 0.025).
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Figure 5. Functional significance of uncharacterized interspecies interactors and OmpA 
interactors
(a) Space filling models for crystal structures of OmpA (green, PDB: 4G4Y) and DSP (blue, 

PDB: 1LM5). Identified sites of crosslinking are highlighted in orange. Sites crosslinked 

between DSP and OmpA are highlighted in magenta. (b) Immunoprecipitation of DSP from 

Ab5075 cells, H292 cells alone or Ab5075-infected H292 cells (with and without 

crosslinker). (c) Ab5075 invasion assays comparing WT Ab5075 to Ab5075 with transposon 

disruption mutants of GUNK1, GUNK2, GUNK3 (Ab57_1108, Ab57_2521, and 

Ab57_2983). Mean +/− SEM. Inset: crosslinked site interactions between GUNK proteins 

and OmpA from Ab5075 crosslinked alone (nodes: non-redundant crosslinked lysines; 

edges: crosslinked relationships).
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Figure 6. Ab5075 host-pathogen interactions
(a) Confocal micrographs of Ab5075-infected H292 cells stained with primary antibodies 

against desmoplakin (green) and OmpA (red). DNA was stained with Hoechst 33342 (blue). 

Confocal images and overlaid images from replicate analyses at a minimal thickness of 

1.1μm, scale bars represent 10μm. (b) The 46 host-pathogen interactions identified in this 

study (green bar) compared to the number of interspecies interactions identified for other 

bacterial species (HPIDB 2.0 database) [60]. If substrains were present in the database, the 

strain with the highest number of interactions was shown. Due to scale, HPIDB 2.0 host 
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pathogen interactions for Yersinia pestis (n=4018), Bacillus anthracis (n=3061), and 

Francisella tularensis subsp. tularensis SCHU S4 (n=1346) were not shown.
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