
1Scientific Reports | 6:21402 | DOI: 10.1038/srep21402

www.nature.com/scientificreports

A novel gene delivery composite 
system based on biodegradable 
folate-poly (ester amine) polymer 
and thermosensitive hydrogel for 
sustained gene release
Yi Yang1,*, Hang Zhao1,*, YanPeng Jia1, QingFa Guo1, Ying Qu1, Jing Su2, XiaoLing Lu2, 
YongXiang Zhao2 & ZhiYong Qian1

Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect 
and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, 
a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing 
folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, 
a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-
weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted 
gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency 
in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted 
gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite 
containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into 
cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene 
delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) 
polymer and thermosensitive PECE hydrogel showed potential for sustained gene release.

Gene therapy, which means the genetic modification of pathological cells through the delivery of DNA or RNA 
that can up- or down-regulate genes, holds great promise for treating diseases ranging from inherited disorders to 
acquired cancers1–3. Genes can be delivered into cells with the use of modified viruses or non-viral gene delivery 
vectors. Though viruses have the inherent function of cell invasion that is followed by the expression of genes into 
the host cell, the use of viruses in gene delivery is limited by the side reaction such as the host’s immune response, 
insertional mutagenesis leading to death and so on4. Among non-viral gene delivery vectors, polyethylenimine 
(PEI) derivatives have been commonly used in gene delivery for their high transfection efficiency, biodegradabil-
ity and low cytotoxicity5,6. Poly (ester amine) (PEA), based on L-lactide and low molecular weight polyethylen-
imine, has been widely used in gene delivery for cancer therapy because of high transfection efficiency, favorable 
biodegradability, preferable biocompatibility and low cytotoxicity5,7,8.

In spite of the great promise of biodegradable polymer-mediated gene delivery for cancer therapy, the broad 
clinical application still faces great challenges, including targeted gene delivery, sustained release and local gene 
delivery and so on9–11. A large number of new approaches have been reported that have overcome some short-
comings of polymer carriers in gene delivery. For example, tumor-specific peptide and antibodies were linked to 
cationic polymers, and these new vectors enabled certain degrees of success12–15. Besides, controlled release of 
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genes from biodegradable polymeric microspheres using PLGA16,17 was suggested as a potential vector for con-
tinuous gene release in a desired local tissue. However, the degradation and structural change of genes in PLGA 
microspheres were inevitable when preparing the gene-loaded microspheres18,19. The study of local delivery of 
genes through a hydrogel matrix has attracted much attention3,4,20–22. Raw DNA encapsulated in collagen hydro-
gels was able to promote bone regeneration in vivo, but gene transfection efficiency was very low23,24. Based on 
this, researchers used cationic polymers to condense the genes into particles, and dispersed the complexes into 
hydrogel, the prepared hydrogel composite system could both retain the DNA in the matrix and significantly 
increase the transfection efficiency3.

Based on the above consideration, we developed a multifunctional thermoresponsive hydrogel gene delivery 
system, based on thermoresponsive hydrogel PECE (PEG550-PCL2200-PEG550) for retaining genes in the matrix 
and biodegradable folate-poly (ester amine) polymer for gene delivery into cancer cells, which met the demands 
of tumor-targeted gene delivery, safety, sustained gene release and local gene delivery. Therefore, in this study, 
we synthesized a biodegradable poly (ester amine) polymer modified by folic acid (FA-PEA) which had been 
widely used in targeted delivery of genes because of the folate receptor’s over-expression in many tumors25–28. 
Afterwards, the FA-PEA polymer was used to condense the gene into particles, and the gene complexes were dis-
persed into a thermosensitive hydrogel PECE which had excellent sol-gel phase transition behavior and sustained 
release of drug reported by our group29–31. The prepared hydrogel system could slowly release genes into local 
tissue and selectively deliver genes into cancer cells rather than normal cells.

Results
Synthesis and characterization of PEA and FA-PEA.  The poly (ester amine) (PEAs) polymer was syn-
thesized in three steps according to Fig. 1. First, we obtained poly (L-lactide) (PLLA) by ring-opening polymer-
ization of L-lactide initiated by 1,4-butanediol, then NCO-ended PLLA polymer was obtained according to the 
reaction of isophorone di-isocyanate (IPDI) and PLLA, finally we got poly (ester amine) (PEA) polymer by the 
reaction of NCO- on IPDI-PLLA-IPDI and NH2 on low molecular weight branched PEI 1800. The FA-PEA poly-
mer was obtained by the reaction of carboxyl on FA and amidogen on PEA, as shown in Fig. 2.

Figure 3 shows the 1H-NMR spectrum of the synthesized PLLA macromer, PEA and FA-PEA. In Fig. 3A, 
peaks “c” and “a” were attributed to the methyl protons of -O-CH(CH3)CO- and HO-CH(CH3)-CO- in PLLA, “e” 
was the peak of methylene protons of the –CH2- in 1,4-butanediol, “d” and “b” were assigned to the tertiary pro-
tons of –O-CH(CH3)CO- and HO-CH(CH3)CO- in PLLA, these peaks indicated the success of PLLA synthesis, 
and the molecular weight of PLLA was about 454Da analyzed by gel permeation chromatography (GPC). The 
1H-NMR spectrum of PLLA-PEI polymer is shown in Fig. 3B, the broad peaks between 2ppm and 3ppm were 
attributed to the protons of –NHCH2CH2- in the PEI moiety of PLLA-PEI, the characteristic peaks of PLLA were 
barely discovered because of the lower molecular weight of PLLA compared with PEI. The 1H-NMR spectrum of 
the resulting FA-PEA based on the reaction of FA and PEA is shown in Fig. 3C, the small, broad peaks were the 

Figure 1.  Synthetic route of PLLA-PEI (PEA) polymer. The Fig. was drawn with ChemBioDraw Ultra 12.0 by 
the author Y. Y.
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characteristic peaks of folic acid (FA), the peaks around 10ppm on behalf of the carboxyl did not appear in this 
Fig., which also meant the successful synthesis of FA-PEA.

In vitro cytotoxicity.  The cytotoxicity of the PEA and FA-PEA polymers in vitro compared with PEI 25k was 
evaluated by MTT assay and the results are shown in Fig. 4, The Cell Lines used in this study was C26. Cell viabil-
ity was calculated according to the following equation: Cell viability (%) =  (ODsample− ODblank/ODcontrol− ODblank), 
where ODsample was the absorbance of the solution of the cells cultured with the polymers and PEI 25k; ODblank 
was the absorbance of the medium; and ODcontrol was the absorbance of the solution of the cells cultured with the 
medium only. Both PEI derivants all showed dose-dependent effect on cytotoxicity, and showed little cytotoxicity 
at the low concentration (≤ 8μ g/ml). We also found that the cytotoxicity of PEA modified by folic acid (FA) was 
clearly lower than that of PEA at almost all the concentrations, both PEA and FA-PEA were all found to have 
significant cytotoxicity when the concentration was higher than 16μ g/ml. However, we could clearly see that the 
PEI derivatives had lower cytotoxicity compared with PEI 25 k, which might be caused by PLLA that decreased 
the positive charges of PEI.

Gel retardation assay.  In this study, agarose gel electrophoresis was carried out to determine the optimal 
concentration for complete condensation of DNA. Figure 5 shows the results of agarose gel electrophoresis of the 
polymers/DNA complexes at various ratios (from 0.05 to 10), and raw DNA was used as the control group. It was 
observed that with the increase in the ratio of the polymers, there was a reasonable decrease in the electrophoretic 

Figure 2.  Synthetic route of FA-PEA polymer. The Fig. was drawn with ChemBioDraw Ultra 12.0 by the 
author Y. Y.

Figure 3.  1H-NMR spectra of the synthesized polymers. (A) PLLA in CDCl3, (B) PLLA-PEI and (C) FA-PEA 
in D2O, the1H-NMR spectra of these three polymers was merged with Adobe Photoshop.
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mobility. The PEA/DNA complexes showed complete retardation and the band disappeared completely when the 
weight ratio (PEA to gene) was 1. Meanwhile, a similar result was obtained for FA-PEA/DNA complex when the 
ratio was 1.5, this phenomenon might be caused by the less PEI content of FA-PEA compared with PEA.

Sol-gel transition behavior of hydrogel.  Figure 6A shows the preparation and intracorporal process of 
hydrogel loading genes. FA-PEA/DNA complexes were prepared and added into thermosensitive PECE hydrogel 
solution, which was intraperitoneally injected into tumor-bearing mice afterwards, the sol-state hydrogel imme-
diately changed into gel-state and kept in the abdominal cavity of the mice. With the degradation of PECE hydro-
gel, the FA-PEA/DNA complexes were slowly released and targeted into certain tumor cells, such as colorectal 
cancer cells, prostate cancer cells and so on25–28 which had over-expressed folate receptors. Finally, the antitumor 
genes were released with the disaggregation of FA-PEA/DNA complexes, and played a role in tumor inhibition.

As shown in Fig. 6B both PECE hydrogel and FA-PEA/DNA/PECE hydrogel were sol state at room tempera-
ture, and transformed into gel state at 37 °C. The sol-gel transition phase behavior indicated that the addition of 
FA-PEA/DNA complexes had no effect on the sol-gel transition behavior of the thermosensitive PECE hydrogel.

Besides, the rheologies of PECE hydrogel and FA-PEA/DNA/PECE hydrogel were also analyzed by 
ARE2000ex rheometer (TA Instruments, USA) according to tube-inverting method. The lower critical gelation 
temperatures of PECE hydrogel and FA-PEA/DNA/PECE hydrogel were 36.17 °C and 36.21 °C, and the upper 
critical gelation temperature of PECE hydrogel and FA-PEA/DNA/PECE hydrogel were 50.36 °C and 49.85 °C, 

Figure 4.  Cytotoxicity of PEA, FA-PEA and PEI 25k in C26 cell lines. Cell viabilities after treatment 
of polymers at various concentrations were determined by MTT assay. The results were presented as 
mean ±  standard deviation (n =  6).

Figure 5.  Agarose gel electrophoresis of polymer/gene complexes. PEA/DNA complexes (up) and FA-PEA/
DNA complexes (down) were formed at various ratios using 1 ×  TAE buffer (constant voltage of 110 V, 20 min) 
and stained with SYBR gold (1× ). Lane codes: described as shown in fugure.
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respectively. So the adding of FA-PEA/DNA complexes had little or no effect on sol-gel transition behavior of 
PECE hydrogel.

In vitro transfection.  The gene could be delivered into cells with the help of PEA and FA-PEA polymers. 
To test this hypothesis, eGFP plasmid was delivered into C26 cell lines mediated by PEA and FA-PEA polymers. 

Figure 6.  Formation of hydrogel loading gene. Preparation and intracorporal process of hydrogel (A); sol-
gel transition behavior at room temperature and at 37 °C (B), hydrogel (20% weight ratio of PECE) at room 
temperature (a) and at 37 °C (b), hydrogel (loading FA-PEA/DNA, the weight ratio of PECE was 20%) at room 
temperature (c) and at 37 °C (d). All parts of Fig. 6A were drawn with ChmoBioDraw Ultra by the author Y. Y.
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Fluorescence inversion microscopy was employed to investigate their transfection efficiency qualitatively and the 
results are presented in Fig. 7B. It was found that with the help of these polymers, gene was delivered into the cells 
successfully.

Flow cytometry was further applied to quantitative study of their transfection efficiency and the results are 
presented in Fig. 7A. The transfection efficeiency in C26 cells presented a peak pattern with the increase in the 
ratio of polymers/DNA, which might be caused by the cytotoxicity of the polymers. The maximum transfection 
efficiency of PEA/DNA, FA-PEA/DNA and PEI/DNA complexes was nearly equal in the C26 cell when the ratio 
of polymer/DNA was 2. Based on the above results, the optimum weight ratio of polymer to DNA was determined 
as 2, and the weight ratio of polymer to DNA in all of the following experiments was 2 without further statement.

Apoptosis in vitro.  The apoptosis of colon cancer cells in vitro induced by the treatments of PEA/WIF-1 and 
FA-PEA/WIF-1 complexes was qualitatively detected by Hoechst 33258/PI and DAPI respectively.

The nuclei of cells were stained by Hoechst 33258 and appeared blue in fluorescence inversion microscopy, 
but the dye could be excluded from viable cells; Necrotic and late apoptotic cells were stained by PI and showed 
red fluorescence32. Therefore, we could detect normal cells (weak red and weak blue fluorescence), apoptosis cells 
(blue and weak red fluorescence) and necrotic cells (red and blue fluorescence). As shown in Fig. 8, WIF-1 had no 
effect on C26 cell lines, while apoptotic and necrotic cells were observed when the cells were treated with PEA/
WIF-1 or FA-PEA/WIF-1 complexes. These results indicated that with the help of PEA and FA-PEA, WIF-1 was 
successful delivered and expressed in C26 cells, and it also revealed the excellent antitumor effect of WIF-1.

DAPI is a fluorescent dye that could strongly combine with nuclear genes, therefore nuclear changes associ-
ated with apoptosis33 could be monitored and the results are shown in Fig. 9. We could recognize the apoptotic 
cells with chromatin condensation and nuclear fragmentation (blue, in crescent shape or with apoptotic bodies) 
and normal cells (weak blue, without chromatin condensation or nuclear fragmentation). There was apoptosis 
when the cells were treated with PEA/WIF-1 complexes or FA-PEA/WIF-1 complexes, and the results are in good 
agreement with that of Hoechst 33258/PI staining.

Figure 7.  Transfection in vitro. Transfection efficiency of eGFP in C26 cell lines analyzed by (A) flow 
cytometric analysis, the results were presented as mean ±  standard deviation (n =  3); Fluorescence inversion 
microscopy images of the C26 cell lines (B) by the eGFP polyplexes with PEA (B-a), FA-PEA (B-b) and PEI 25k 
(B-c), × 100.
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Besides, the apoptosis was determined quantitatively by flow cytometry when stained with an Annexin 
V-FITC Apoptosis Detection Kit. Figure 10 shows that the apoptotic rate of colon cells were 16.5%, 19.4%, 10.6%, 
10.9% and 5.3% after incubation with PEA/WIF-1, FA-PEA/WIF-1, PEA, FA-PEA and WIF-1 plasmid respec-
tively, which was also in accordance with the results of Hoechst 33258/PI and DAPI staining.

Sustained release of the gene from PECE hydrogel.  As shown in Fig. 11, more than 5% DNA (about 
1.24 μ g) was released from FA-PEA/DNA encapsulated PECE hydrogel in PBS 7.4 over the first 24 hours, follow-
ing a more rapid release in the next 2 days, which reached a total release of 18% DNA (3.6 μ g) at the end of day 3. 

Figure 8.  Apoptosis in vitro. The C26 cells were dyed with Hoechst 33258/PI after being treated with PEA/
WIF-1 (A–C), FA-PEA/WIF-1 (D–F), free WIF-1 (G–I). The apoptotic cell was stained by Hoechst 33258 and 
revealed by blue in fluorescence inversion microscopy images (A,D,G); the apoptotic necrotic cell was stained 
by PI and presented by red(B,E,H); the blue and red fields of fluorescence inversion microscopy images of each 
sample were merged (C,F,I), × 200.

Figure 9.  Apoptosis body of colorectal cancer cell C26. The cellular nucleus was dyed with DAPI after being 
incubated with PEA/WIF-1 (A), FA-PEA/WIF-1 (B), free WIF-1 (C). The arrows in the fluorescence inversion 
microscopy images were pointing to the apoptosis body, × 400.
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Slow release was then observed from day 3 to 7, and about 0.5 μ g DNA was released in these 4 days. These data 
indicated that PECE hydrogel might be a promising vector for sustained gene release.

Distribution of genes inside PECE hydrogel.  Gene complexes in aqueous solution were easy to aggre-
gate due to the random motion that led to frequent collisions34,35. However, PEA/DNA and FA-PEA/DNA com-
plexes had hardly any aggregation when dispersed into PECE hydrogel (Fig. 12). This can be attributed to the 
high viscosity of PECE hydrogel that slowed down the particle motion and the interaction between particles. The 

Figure 10.  Apoptosis in vitro determined by flow cytometric analysis with Annexin-V/PI staining. The C26 
cells were treated with PEA/WIF-1 (A), FA-PEA/WIF-1 (B), PEA (C), FA-PEA (D), free WIF-1 (E). The lower-
left (3), upper-left (2), upper-right (4) and lower-right (1) quadrants in each panel represent the populations of 
normal, early and late apoptotic, and apoptotic necrotic cells, respectively.

Figure 11.  Release of gene from PECE hydrogel. The weight ratio of PECE was 20%; the initial concentration 
of gene was 20 μ g), and the results were presented as mean ±  SD (n =  3).
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morphology of the gene particles was thus maintained and therefore, it became possible to deliver these gene 
complexes into targeted tumor cells.

Transfection in vitro mediated by PECE hydrogel.  The genes inside the FA-PEA/DNA/PECE hydro-
gel could be delivered into cells after the release of FA-PEA/DNA complexes from PECE hydrogel. To test this 
hypothesis, FA-PEA/eGFP/PECE hydrogel was test with 293T cell lines. Fluorescence inversion microscopy was 
used to investigate the transfection efficiency qualitatively as shown in Fig. 13. It was found that eGFP expressed 
at a relative low level in the 293T cells, and this might be due to the small amount of gene in the release medium. 
The above results demonstrated that PECE hydrogel might be a potential gene delivery vector for sustained 
release of genes into cells.

Discussion
In this study, we had synthesized a biodegradable tumor-targeted folate-poly (esteranmine) (FA-PEA) polymer 
based on low-molecular-weight polyethyleneimine, which was a favorable gene vector. The 1H-NMR spectrum 
indicated the successful synthesis of both PEA and FA-PEA polymers, which was then demonstrated to be bio-
compatible through MMT assay. The agarose gel electrophoresis was carried out and the results indicated DNA 
was successfully condensed into the complexes. The maximal transfection efficiency of both PEA and FA-PEA 
were demonsntrated to be higher than 40% in the C26 cells. Although the transfection efficiency of these pol-
ymers was slightly lower than that of PEI 25k, their cytotoxicity was much lower, thus these polyethyleneimine 
derivatives might be more favorable gene vectors than PEI 25k.

Wnt inhibitory factor-1 (WIF-1) was a secreted antagonist of Wnt signaling, and down regulation of WIF-1 
had been reported in many kinds of cancers, such as non-small cell lung cancer36, colon cancer37 and so on. In this 
work, WIF-1 gene, as an anti-oncogene, was delivered into colon cancers with the help of the FA-PEA polymer. It 
was surprisingly found that the cell uptake of FA-PEA/WIF-1 complexes was much easier than that of raw WIF-1 
genes, and FA-PEA/WIF-1 complexes could induce apoptosis at a very high level.

Moreover, we constructed a thermo-sensitive FA-PEA/DNA/PECE hydrogel system for the sustained release 
of genes complexes and successfully delivered the genes into tumor cells. The gene complexes were homodis-
perse and no aggregation was found in the hydrogel system. The thermo-sensitive FA-PEA/DNA/PECE hydrogel 
system showed great potential in targeted gene therapy and achieved local sustained release of antitumor genes.

Figure 12.  Distribution of gene inside PECE hydrogel stained with DAPI. (A) DNA, (B) PEA/DNA 
complexes, (C) FA-PEA/DNA complexes, the gene were stained with DAPI, and the pictures were taken with 
fluorescence inversion microscopy, × 50.

Figure 13.  Transfection mediated with PECE hydrogel in vitro. Fluorescence inversion microscopy images of 
the 293T cell lines by the transfection of FA-PEA/eGFP (weight ratio was 2) polyplexes inside PECE hydrogel. 
(A) × 50, (B) × 200.
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Materials and Methods
Materials.  Branched PEI (molecular weight 1800Da and 25kDa) were obtained from Alfa Aesar, USA. 
Isophorone di-isocyanate (IPDI), L-lactide, folic acid (FA), catalyst stannous octoate (Sn(Oct)2, 95%), 1-Ethyl-3-
(3-dimethylaminopropyl) carbodiimide (EDC), N-Hydroxysuccinimide (NHS), 4′ ,6-Diamidino-2-phenylindole 
dihydrochloride (DAPI), Hoechst 33258, propidium iodide (PI), Dulbecoo’s Modified Eagle’s Medium (DMEM), 
Roswell Park Memorial Institute (RPMI)-1640 Medium (1640) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen-
yltetrazolium bromide (MTT) were purchased from Sigma, USA. PECE hydrogel (PEG550-PCL2200-PEG550) 
was supplied by our group. Plasmid eGFP (green fluorescent protein) was offered by our group and after ampli-
fication was isolated and purified using a Qiagen plasmid purification kit following the protocol provided by 
manufacturer. Murine anti-oncogene WIF-1 (NM_011915.2) transformed into E.Coli JM109 was purchased as a 
sample from Biowit Technologies, China and after amplification was isolated and purified using a Qiagen plasmid 
purification kit. An Annexin V-FITC Apoptosis Detection Kit was supplied by Keygene biotech, China. Other 
chemicals were got from Chengdu KeLong Chemicals, China. They were all analytical pure grade and used as 
received.

Cell lines and cell culture.  C26 cell lines were incubated in Roswell Park Memorial Institute (RPMI)-1640 
Medium (1640) containing 10% bovine serum and 1% antibiotics (penicillin-streptomycin, 100U/ML) at 37 °C 
in a humidified atmosphere containing 5% CO2. 293T cell lines were incubated in Dulbecoo’s Modified Eagle’s 
Medium (DMEM) containing 10% fetal bovine serum and 1% antibiotics (penicillin-streptomycin, 100 U/ML) 
at 37 °C in a humidified atmosphere containing 5% CO2. The cell lines in this paper were obtained from the 
American Type Culture Collection (ATCC).

Synthesis and characterization of PEA and FA-PEA.  Synthesis of PEA was conducted according to the 
method reported by our team previously5. First, we obtained poly (L-lactide) (PLLA) by ring-opening polymer-
ization of L-lactide initiated by 1,4-butanediol, then NCO-ended PLLA polymer was obtained according to the 
reaction of isophorone di-isocyanate (IPDI) and PLLA. Finally we got poly (ester amine) (PEA) polymer by the 
reaction of NCO- on IPDI-PLLA-IPDI and NH2 on low molecular weight PEI 1800.

FA-PEA was synthesized by the reported method25 with some modification. Firstly, folic acid (FA) (0.5 mM) 
and PEA (0.5 mM) were respectively dissolved in PBS (pH 7.4). Then, 1-Ethyl-3-(3-dimethylaminopropyl) car-
bodiimide (EDC) (5 mM) and N-hydroxysuccinimide (NHS) (2.5 mM) were respectively added into the folic acid 
solution, and magnetically stirred for 30 minutes in order to activate the carboxyl of FA. Thereafter, the PEA solu-
tion was put into the FA mixture solution, and continued to be magnetically stirred for 24 hours. The mixture was 
purified by membrane dialysis (MWCO: 3500) in distilled water for 3 days and the solution was lyophilized. All 
of the experiments were conducted at room temperature and kept in a dark place. The chemical structure of PEA 
(in D2O) and FA-PEA (in D2O) were characterized on 1H Nuclear Magnetic Resonance (1H- NMR, 400MHZ, 
Varian, US).

Preparation of polymer/DNA complexes.  A plasmid DNA solution (0.5μ g/ml) was prepared in TNE 
solution. Polymer (PEA or FA-PEA) was dissolved in distilled water to form a solution of 0.5 μ g/ml, and DNA 
solution was added to the polymer solution at the desired weight ratio and mixed gently. The complexes were 
incubated at room temperature for 30 minutes before further application and characterization.

Cell cytotoxicity assay.  Cytotoxicity evaluation of polymers compared with PEI 25k was measured with 
an MTT (Sigma, USA) assay using C26 cell lines according to the manufacturer’s instructions. Cells were plated 
at a density of 4000 cells per well in 100 μ l 1640 growth medium in 96-well plates and grown for 24 hr. The cells 
were then exposed to PEA, FA-PEA and PEI 25k at different concentrations for 24 hr, followed by the addi-
tion of 20 μ l 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) solution (5 mg/ml). After 
further incubation of 4 hours, the MTT solution was removed from each well, and 150 μ l DMSO was added to 
dissolve the formazan crystals. The absorbance was recorded at 570 nm by an ELISA microplate reader (Bio-Rad). 
Polymer-untreated cells were used as a control.

Gel retardation assay.  The extension and efficiency of DNA condensation by polymers was conducted 
with a gel retardation assay. The polymer and plasmid DNA were diluted to a certain concentration with distilled 
water, and the plasmid DNA solution was added to the cationic polymer solution with the same volume at various 
polymer/DNA weight ratios and then mixed well. After incubation for 30 mins at room temperature, the polymer/
DNA complexes formed. 10 μ l of the solution was put on a 1% (w/v) agarose gel in a 1 ×  tris-acetic acid-EDTA 
(TAE) buffer at 120V for 30 min. The DNA bands stained with ethidium bromide were illuminated by ultraviolet 
Tran illumination and photographed with a Lumi-Imager.

Preparation of hydrogel loaded with gene.  FA-PEA/DNA complex was added into the PECE solution 
with the final PECE concentration of 21 Wt% to get a thermosensitive hydrogel composite system containing the 
gene. These samples were kept at 4 °C before use. The pictures of hydrogel in room temperature and 4 °C were 
taken by Nikon digital camera.

Transfection efficiency in vitro.  Efficiency of the developed cationic polymers to induce gene expression 
in C26 cells was determined using eGFP (green fluorescent protein) plasmids according with the standard pro-
tocol recommended by DharmaFECT, ThermoFisher Scientific, the optimal weight ratio of PEI/DNA was 1.5 in 
this paper without further statement.

In order to quantitatively evaluate the transfection efficiency of the two PEI derivatives in vitro, 2 μ g of eGFP 
plasmid was respectively encapsulated with PEA and FA-PEA at different ratios to transfect into C26 cells. Cells 
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were plated at a density of 2 ×  105 cells per well in 2 ml 1640 growth medium in 6-well plates and grown overnight, 
then the culture medium was replaced with serum free medium containing polymer/DNA complexes. After incu-
bation for 4 hr, the culture media was removed, and the cells were washed with 1640 growth medium and replaced 
by fresh growth medium. After 24 hr, the culture medium was removed, and the cells were collected to detect the 
transfection efficiency using flow cytometry. Furthermore, the transfection images were observed by a DM2500 
fluorescence inverted microscope (Leica Microsystems CMS GmbH, Wetzlar, Germany) and photographed by 
Spot Flex in order to qualitatively analyze the transfection efficiency.

Apoptosis detections in vitro.  The apoptosis of C26 cell lines in vitro by the treatments of complexes con-
tained murine tumor suppressor gene WIF-1 was quantitively detected by Annexin V-FITC Apoptosis Detection 
Kit (KeyGEN BioTECH, China) followed by the manufacturers’ experimental protocols. C26 cells were plated 
at a density of 2 ×  105 cells per well in 2 ml 1640 growth medium in 6-well plates and incubated for the night, 
then PEA/WIF-1 and FA-PEA/WIF-1 complexes were delivered into C26 cell lines and incubated for 4 hours 
with serum free medium, the culture media was removed, the cells were washed with 1640 growth medium and 
replaced by fresh growth medium. PEA and FA-PEA were treated in the same way as control, the concentration of 
WIF-1 was 2 μ g/cell, PEA and FA-PEA were all 4 μ g/cell. Finally the cells were collected and stained with Annexin 
V-FITC Apoptosis Detection Kit, then detected with flow cytometry.

Meanwhile, the cells were also stained with PI/Hoechst 33258 and DAPI respectively according to the manu-
facturers’ protocols, and the apoptotic bodies were observed by DM2500 fluorescence inverted microscope (Leica 
Microsystems CMS GmbH, Wetzlar, Germany), the images were obtained by Spot Flex in order to qualitatively 
analyze the cell apoptosis, according to the manufacturer’s protocol.

Sustained release of gene from PECE hydrogel.  The prepared PEA/DNA, FA-PEA/DNA complexes 
and DNA loaded PECE solutions (the PECE concentration was 21% and the gene was 20 μ g) were incubated at 
37 °C for 12 hr, and 4 ml PBS 7.4 solution were added. Then at given times (t =  0.5 hr, 1 hr, 2 hr, 4 hr, 6 hr, 8 hr, 12 hr, 
24 hr, 48 hr, 72 hr, 96 hr) 1 ml release medium was replaced by 1 ml fresh PBS 7.4 solution. The genes in release 
media were stained with Hoechst 33258 and detected with LS55 fluorescence spectrophotometer (Perkin-Elmer 
Limited Co.) according to the method reported by Penketh, P. G. et al.38.

Distribution of genes inside PECE hydrogel.  The prepared PECE solution loaded PEA/DNA, FA-PEA/
DNA complexes and DNA (the PECE concentration was 21% and the gene was 5 μ g) was exposed at 37 °C to 
form hydrogel, then the hydrogel stained with DAPI working solution for 10 min before imaging with DM2500 
fluorescence inverted microscope (Leica Microsystems CMS GmbH, Wetzlar, Germany) to show the distribution 
of genes inside the hydrogel following the method reported by Lei, Y. et al.3.

Transfection in vitro mediated by PECE hydrogel.  The prepared FA-PEA/eGFP complexes loaded 
PECE solution (the PECE concentration was 21% and the gene was 20 μ g) was put into 6-well plates and incu-
bated at 37 °C for 12 hr to completely form hydrogel, 2 ml DMEM serum free medium was added, and the release 
medium was obtained after incubating for 48 hr. 293T cells were plated at a density of 2 ×  105 cells per well in 
2 ml DMEM growth medium in 6-well plates and grown overnight, then the culture medium was replaced with 
the release medium. After incubation for 4 hr, the culture medium was removed, and the cells were washed with 
DMEM growth medium and replaced by fresh growth medium. After 24 hr, the culture medium was removed, 
and the cells were observed by DM2500 fluorescence inverted microscope (Leica Microsystems CMS GmbH, 
Wetzlar, Germany) and the images were obtained by Spot Flex in order to qualitatively analyze the transfection 
efficiency. This experiment was conducted according to the above experimental protocol.

Statistical Analysis.  All data expressed as mean ±  standard deviation were representative of at least three 
independent experiments. Data were statistically evaluated using one-way analysis of variance (ANOVA) test.
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