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ABSTRACT

Somatic mosaicism refers to the existence of somatic
mutations in a fraction of somatic cells in a single
biological sample. Its importance has mainly been
discussed in theory although experimental work has
started to emerge linking somatic mosaicism to dis-
ease diagnosis. Through novel statistical modeling
of paired-end DNA-sequencing data using blood-
derived DNA from healthy donors as well as DNA
from tumor samples, we present an ultra-fast compu-
tational pipeline, LocHap that searches for multiple
single nucleotide variants (SNVs) that are scaffolded
by the same reads. We refer to scaffolded SNVs as lo-
cal haplotypes (LH). When an LH exhibits more than
two genotypes, we call it a local haplotype variant
(LHV). The presence of LHVs is considered evidence
of somatic mosaicism because a genetically homo-
geneous cell population will not harbor LHVs. Ap-
plying LocHap to whole-genome and whole-exome
sequence data in DNA from normal blood and tu-
mor samples, we find wide-spread LHVs across the
genome. Importantly, we find more LHVs in tumor
samples than in normal samples, and more in older
adults than in younger ones. We confirm the exis-
tence of LHVs and somatic mosaicism by validation
studies in normal blood samples. LocHap is publicly
available at http://www.compgenome.org/lochap.

INTRODUCTION

Many cancers arise from a series of mutational events oc-
curring throughout a person’s life span (1,2). Considerable
evidence (3,4) has accumulated supporting the presence of
genetically heterogeneous cells in a somatic sample, a phe-

nomenon called somatic mosaicism, which may be a pre-
cursor to the onset of many cancers (5). However, there are
no effective and economical tools that can reliably measure
the presence and degree of somatic mosaicism in a biolog-
ical sample. Single cell sequencing (6) in principle provides
the genetic landscape of each individual cells, although in
practice only up to hundreds or thousands of cells can be
measured due to the formidable cost of money and effort.
In contrast, next-generation sequencing (NGS) technolo-
gies assemble an average genome sequence of all the cells
in a sample, assuming cellular homogeneity. In the pres-
ence of somatic mosaicism, the average genome may not
be a good representation of the sample. Despite continuous
breakthroughs in DNA sequencing since the completion of
the human genome project (7), researchers are still unable to
precisely dissect individual cellular genomes on large scales.

Somatic mosaicism is often seen in samples derived from
patients with cancer. Future targeted and personalized can-
cer therapy must take into account mosaic tumor cells in or-
der to better customize therapies (8,9). In contrast, somatic
mosaicism in samples from healthy individuals has been dis-
cussed as a theory over the last decade (10-12), with only a
few recently reported examples (5,13-20). Due to the avail-
ability of high-throughput DNA sequencing, hundreds of
millions of short reads can now be mapped to cover whole
genomes or exomes. [f somatic mosaicism is present in a bio-
logical sample, the DNA sequences of the short reads are ex-
pected to reflect the variations of the cellular genomes at the
single nucleotide level. Based on this concept, pioneering
work in 2014 by Genovese et al. (5) reported the presence of
somatic mutations in blood samples as precursor of hema-
tologic cancer and death. They carefully constructed bioin-
formatics and statistical methods to filter single nucleotide
variants (SNVs) based on whole-exome and whole-genome
sequencing data and identified clonal somatic blood sam-
ples with somatic mutations. Because the somatic mutations
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were only present in a fraction of the cells, the blood sample
was considered mosaic. Their main computational analysis
aimed to identify SN'Vs with variant allele fractions (VAFs)
that are far <0.5 and attributed these SN'Vs to the existence
of small cellular subpopulations harboring the SNVs. Com-
putationally it is challenging to differentiate true biologi-
cal subpopulations from noise and artifact in the NGS data
since both would give rise to small VAFs (21).

We propose here a different approach. Instead of using
SNVs, we consider ‘local haplotypes’ (LHs) for calling so-
matic mosaicism. An LH is a scaffold of multiple proximal
SNVs (Figure 1). Examining paired-end DNA-sequencing
data, we find that sometimes multiple SNVs are simulta-
neously mapped by the same short reads. The short reads
provide linked genotypes for the SNVs. In Figure 1, two
SNVs are considered in each example and some short reads
cover both SNVs. Treating the scaffold of the two SNVs as
an LH, shown in Figure 1, we observe three different geno-
types with substantial read counts in each example. We call
such an LH a local haplotype variant (LHV). The presence
of LHVs across the genome is direct evidence supporting
mosaicism and cellular heterogeneity because a homoge-
neous cell population can only manifest up to two haplo-
types. Therefore, the key idea of examining an LH instead of
an SNV allows for direct observation of more than two al-
leles in local genomes, a rare event for single loci but not for
haplotypes. Based on this idea, we develop an open-source,
ultrafast and powerful computational tool, ‘LocHap’, for
identifying LHVs using deep DNA-sequencing data from
a single biological sample. We construct rigorous statis-
tics models that provide probability measure for the LHVs.
We also introduce bioinformatic filters that account for the
usual noise and artifact in NGS data. However, the noise
and artifact are partially mitigated due to the use of LHVs
instead of SNVs. We elaborate more on these points in the
next section. LocHap can be applied to any DNA-sequence
data using paired-end reads and only requires a binary
alignment and mapping (bam) file, the associated index (bai)
file and the corresponding variant call format (vcf) file (‘Ma-
terials and Methods’ section). These files are almost always
generated from standard variant-calling pipelines. To facil-
itate downstream analyses and experimental validation, we
introduce a new file format, the haplotype call format, or
hef, that contains a list of LHVs inferred by LocHap. An hcf
file has a tab-delimited format similar to a v¢ffile, and can be
viewed in popular visualization tools like integrated genome
viewer (IGV) (22). The proposed /icf format is derived from
the vef format to facilitate visualization and interpretation.
However, unlike vef which contains SNVs and other genetic
variants, cf only contains information about LHVs, which
is a scaffold of multiple local SNVs (each SNV is in the vcf
file for the sample). Therefore, a non-empty /cf file presents
information supporting genetically heterogeneous samples.

MATERIALS AND METHODS

Main idea

The basic idea of LHV calling is to probabilistically model
short reads mapped to multiple proximal SNVs and look
for multi-allelic loci. In other words, we search for proximal
SNVs that are scaffolded by short reads and exhibit more
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Figure 1. Two examples of LHVs based on direct observations of aligned
short reads. The pairs of a single short read are marked with orange and
green colored arrow, respectively. Panel (A): an LHV called from WES data
of a normal blood sample. The haplotype consists of two SNVs separated
by 97 bps in a coding region of gene SY7T/5. Among all the short reads
mapped to this region, 23, 10 and 9 short reads are mapped to both SNVs
and exhibit alleles GG, GC and AG, respectively. Due to the large count
of the least frequent allele (AG) and the combined information from all
other short reads, LocHap calls three local haplotypes (LH) with high sta-
tistical confidence, making it a variant (i.e., an LHV). Panel (B): an LHV
called from WGS data of a normal blood sample from a normal individ-
ual (NA12878 in the CEU TRIO family in the 1000 genome project). The
LH consists of two SNVs separated by 300 bps in an intronic region of
an ncRNA FAM66D. Again, similar haplotype variants are seen based
on the short reads mapped to both SNVs. In both examples, some reads
are mapped to only one of the two SNVs. These reads provide partial in-
formation on the existence of certain haplotypes. For example, reads with
‘-G’ in panel (A) are only mapped to the second SNV with genotype ‘G’.
They support that haplotypes AG or GG might be present in the sample.
Hence, reads mapped to both SN'Vs and reads mapped to at least one SNV
are used in the statistical models of LocHap.
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Figure 2. Illustration of DNA segments in LocHap. The first segment con-
sists of two SNVs (SNV 1 and 2) and the second one has three SNVs (SNV
3,4 and 5). SNV 3 is more than K base pairs from its adjacent SNVs 2 and
S, and therefore is not included in any segment.

than two alleles with high statistical confidence. For exam-
ple, Figure 1A shows an LHV consisting of two SNVs, at
chromosomal locations separated by only 97 bp. Examin-
ing data ‘horizontally’ across both SN'Vs, many reads scaf-
fold the SNVs as they are mapped to both loci. There are
three directly observed haplotypes, GG, GC, and AG, with
read frequencies 23, 10, and 9, respectively. In addition, four
other types of overlapping short reads cover only one of the
two SNVs. Each type of short reads potentially supports
the presence of one or two different haplotypes and col-
lectively they provide information on how many and what
haplotypes are present in the region. Using all the short
reads, LocHap employs a Bayesian hierarchical model, per-
forms statistical inference accounting for the noise in the
data and filters dubious LHV calls based on false discovery
rates (FDR) (23,24).

Statistical methods

SNV segments. LocHap uses DNA-Seq data and assumes
that base calling, reads alignment and variant calling have
been completed and bam, bai and vcf files are available
for one or more samples. LocHap first constructs non-
overlapping segments on the genome, each of which is a
set of continuous base pairs (bps) and contains at least two
proximal SNVs separated by no more than K bps apart. The
segment is formed by starting at a SNV and extended to
the next closest SNV as long as it is within K bps from the
previous SNV. The segment ends if the next closest SNV is
more than K bps away. Therefore, each segment starts and
ends at a SNV, with potential multiple SNVs in between.
A schematic illustration of DNA segmentation is shown in
Figure 2.

Along the genome, we start with the first called SNV, and
form as many segments as we can until we reach the last
called SNV. LocHap allows any integer K set by users as the
maximum distance between two adjacent SNVs. For short-
read data, we allow K to vary between 50 and 1000. Chang-
ing K values will affect the size and number of segments.
Usually the value of K can be set to reflect the insert length
of the DNA sequencing experiment.

Probability model for LHV calling. LocHap analyzes each
DNA segment separately. The goal of the analysis is to es-
timate the number and sequences of the haplotypes within
the segment. Assume N numbers of short reads are mapped
to the segment and each read overlaps with at least one SNV
in the segment. Mapped reads that do not overlap with any
SNVs are discarded since they do not contribute to the hap-
lotype calling.
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For a given segment, let i = 1, ..., N be the index of the
mapped short reads. Assume that R SNVs are present in
the segment. We consider up to L = 2% candidate haplo-
types that can be formed by R SNVs. That is, we assume at
each SNV, one can observe up to two different alleles (e.g.,
a reference and a variant allele). More than two alleles are
rarely observed from short reads for an SNV and most of
them are caused by sequencing error. Weuse j =1, ..., K
to index possible haplotypes. The genotypes (nucleotide se-
quences) of each candidate haplotype are denoted by h; =
{hj1,...,h;r},j=1,..., L, where h takes one of the four
nucleotides, i.e., ij € {4, C, G, T} forr =1, ..., R. For ex-
ample, in Figure 1, R =2 and L = 2% = 4. In each example
some short reads overlap with both SNVs. Specifically, for
each shortread i, use s; = {s;1, ..., s;g} to denote an R-base
DNA sequence of interest, where s;, € {4, C, G, T, M}; here
M denotes a missing base readout when there is no overlap
between a short read and an SNV. Let s = {s1,..., sy} be
the set of all short reads. One could define an indicator m;,
= I(s;; = M) to denote the missing base of s; and set up a
model f(m;|0). We assume missing completely at random
(MCAR) (25) , which leads to conditional independence in
the posterior inference. That is, conditional on s, parame-
ters in the model describing target haplotypes are indepen-
dentof m={m;.,, i=1,...,N,r =1,..., R}, the vector
of missing indicators. This greatly simplifies the inference
procedure. The MCAR assumption is proper here since in
NGS experiment, typically the missing base in s;, is due to
that read 7 is not aligned to base SNV r, which is caused by
the limited read length as a technological limitation. Hence
the missing mechanism in s; has nothing to do with what
sequences are observed or not observed.

Using standard missing data notations, let:

§°% = {s;,,where m;, =0fori=1,...,N;r=1,..., R}
and
s™ = (g, wherem;, = Lfori=1,...,N;r=1,..., R}

denote the observed and missing DNA sequences for reads
iat SNV r, respectively, for all i’s and r’s. Then {s°°, s™_ m)
are the complete data, and {s°°, m} are the observed data.
We introduce a few additional notations needed for model-
ing. Denote {\; = 1} or {\; = 0} the event that haplotype j
is present or absent in the sample, respectively. Apparently
\/’s are key parameters of interest. Intuitively, the sequence
similarity between haplotype sequences &; and short read
sequences s; provides information on which haplotype is
present. For example, if s; matches /&, in most of the R bases,
it is likely s; is generated from a DNA segment having hap-
lotype j, thereby supporting the presence of the haplotype.
To model the similarity, we denote A;(s°%) and D;(s°*) the
set of agreeing and disagreeing bases between s; and £;, re-
spectively. Mathematically, they refer to:

AP = {rcsip =yl D) = {r < sir # e & sip # M),
Denote /() the indicator function and let

R

Bi={"isir=A/I}andwi=|3i|=21(sir=M)

r=1
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be the set of indices and number of missing bases of read i,
respectively.

We propose a Bayesian probability model treating
(s°%, m) as observed data and {s™, A ;} asunknown param-
eters. The inference is based on posterior probability that
a haplotype j is present in the sample, Pr(i; = 1 | s°*, m).
The higher value the probability takes, the more likely hap-
lotype j is present. We will show next that this posterior
probability can be calculated in a closed form.

Let A={A,..., AL} and hoj =
{At, ... Aj—1, Aj41, ..., Ak} be the vector without the
J-th component. The posterior probability Pr(A; =1 |s)
can be calculated as follows:

Prny =115 m) = Pr(; =15 h) oc p(s°™ | 2; =1) Pr(x; = 1)

likelihood prior

Yo P Ay = 1) Pr(y =1,0)
h_j€Vr—1

= 2 |:1_[P(S?bS [hj=10-5) PrOj =121,

A_je¥pq | i=1

I 17

(D

where )y 1 denotes the set of all binary (0 or 1) strings of
length (L — 1). The first equation is due to the MCAR as-
sumption. It can be shown (Supplementary Data) that:

7=

L
j'=

1
Iy =1)-¢;j(A) ———x
|: ! 1 Zj!-‘zl Aj

1

(1 —ejr) x

2 [1 5
. ) 3 ’
bie(A.C.GIYE | red (s955 smis—b;) reD (5905, sMis=b;)

where e; is the error probability for the DNA sequence
called at base r on short read i. Typically e; is known from
upstream analysis, e.g. in the form of Phred quality score.
LocHap requires user-assigned values for ¢; with a default
value of 0.001 (corresponding to a Phred score of 30). Al-
ternatively, we recommend setting e; = 107"°¢(*") where Ph
is the Phred score at the base r of read i (26).

Next, the second term (ZZ) of Equation (1) is the product
of independent prior term for each \; forall j=1, ---, L,

Xj ~ Beta-Bernoulli(er, 8, n), where &; € {0, 1}.

The Beta-Bernoulli prior for A\ is the marginal density of
hierarchical construction in which

A | T ~ Bernoulli(1, p); 7 ~ Beta(a, B).

Integrating out T, we get a Beta-Bernoulli prior given by
LI+ a)l'(B) T'(x +B)

I'(l+a+p) T@I(B)
To reflect the weak prior belief that a random haplotype has
a low prior probability to be present in a sample, we set o« =

0.05and B = 1 so that a priori the probability that haplotype
Jj 18 present is only 5%.

Prin=1)= )

FDR-based inference and calibration of e;.. Denoting &; =
Pr(x; =115, m) the posterior probability that haplo-
type j is present in the sample. Posterior inference is based
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on selecting the haplotypes with the largest &; subject to an
FDR threshold. For example, with a desired FDR thresh-
old of f, compute

. (U =gw)
x=maxj]j: —F——— <

J e TSy Y fo 3)
where & 1) is the ordered statistics with decreasing order and
I{set}l is the cardinality of the set. Then select all the hap-
lotypes with &; > &;+. Such a selection procedure is optimal
(23,24) in controlling posterior expected FDR.

All the parameters in the proposed Bayesian model are
estimated directly. The models only depend on one calibra-
tion parameter, ¢;,, which must be given. The error rate ¢;,
captures the quality and Phred quality score from base call-
ing, an upstream analysis. In most cases, a Phred quality
score of >30 is considered of high quality for a base, which
translates to ¢; < 0.001 by definition (http://en.wikipedia.
org/wiki/Phred_quality_score). Also, shown in Jier al. (26) a
higher error rate leads to more noisy inference, in our case,
less confidence on haplotype calls. As an example, Sup-
plementary Data Table S1 provides a simulated dataset in
which each row represents a short read and its called bases
and a ‘—’ sign represents a missing base. Applying our pro-
posed model with ¢;, = 0.001 for all reads and bases, we infer
that three LHs, 44, GA and GG, are present in the sample
using an FDR threshold f, = 0.01. If we increase the ¢; to
0.2 we obtain only one LH 44 with fy = 0.01. If we use ¢;,
= 0.14, we get two significant LHs A4 and GG.

In LocHap, we remove reads having a mapping quality
score <30; we also consider a base missing if the Phred qual-
ity score of base calling is <30. These two steps ensure the
high quality of the reads and bases used in the statistical in-
ference. Then we take a conservative value of 0.001 for all
the e;’s as the default setting. This is a conservative choice
since 0.001 is the largest possible ¢;- value after the above
read filtering. As a less conservative choice, one could use
the provided ¢;, for each base and read from the bam file.

Efficient computational algorithm

Posterior inference of LHVs centers at the calculation of
Pr(1; = 1| s°®). We re-list Equation (1) again to facilitate
the subsequent discussion, given by

N
Prig=11s"yoc > ]Prs™ 12 =1a )Py =14 (4)

hojeypy | i=1

A 1T

I11T

As mentioned before, if the number of SNVs is R, then
the number of possible haplotypes L = 2%, assuming up to
two alleles can be observed at each SNV. Correspondingly,
we have L number of A;’s to estimate and the total different

configurations of all the \;’s is 2F = 22" a super exponent
of R. Therefore, when R is slightly increased, say from 2 to
4, the number of configurations to be calculated increases
from 64 to 65, 536. This super-exponential increment calls
for efficient computation.

A straightforward way to calculate the right hand side of
the Equation (4) would follow the derivation in the previous
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section, resulting in computing multiple loops of summa-
tions and products. It would be time consuming. We take
a more efficient approach. For each j =1, 2, ..., L, sum-
ming over all the binary configurations of A_; amounts to
2L~ 1 many sums. Each term under the outer sum is de-
noted by ZZ7 in (4). A straightforward computation of
(4) would calculate term ZZZ (L*2X ~ 1) times for all the ;.
Same amount of computation is also required for calcula-
tion of Pr(x; =0]s°®) for all j =1, 2, ..., L. But care-
ful examination of the terms to be added reveals that some
terms are repeatedly calculated L times. For example, as-
sume L = 4. In calculating the probability for the event
Pr(x = 1| s°%), we have to sum over all the other 2- ~ ! =
8 configurations of A_;. Let us take one specific configura-
tion from that set of eight configurations, A_; = 101 (mean-
ing the three elements in A_; take values 1, 0 and 1, respec-
tively). When \; = 1, the full vector A takes 1101. How-
ever, the value 1101 will also show up in the computation
of Pr(xy =11s°%) with A_y = 101, Pr(x3 = 0| s°*) with
A_3 = 111and Pr(rs = 1| s°®) with A_4 = 110. Therefore,
we only need to compute the joint probability of A = {1101}
once and re-use it for the other three terms. Similarly, for all
other possible configurations of A, we only need to compute
it once. The straightforward way of computation would cal-
culate each configuration four times.

Once all 2% configurations are calculated, we add up the
probabilities from appropriate configurations in order to
calculate the probability Pr(A; =1 | s°%%) We first put dec-
imal indices against all the configurations of A from 0 to
(2% — 1) by treating the first position as the most significant
bit of a binary string and convert the binary string to its
decimal equivalent number. For example, the decimal index
of A=A =14 =1,A3 =0, 14 = 1} is 13. Denote each
configuration by C;where /=0, 1, ...2" — 1. Once indexing
is done, then for each event we sum up the probabilities for
a fixed (computed beforehand) set of indices of configura-
tions. For example, for the computation of Pr(x, = 1 | s°%)
the set of indices is {4, 5, 6, 7, 12, 13, 14, 15}. Similarly
for Pr(x; = 0] s°%) that set is {0, 1, 4, 5, 8, 9, 12, 13}.
Denote the set of indices for computing Pr(x; = 1 | s°%)
and Pr(x; = 0 | s°*) by V;1 and V), respectively. Below, we
propose Algorithm 1 for computing (4).

Algorithm 1 Algorithm for computing Pr{\; = 1] s%} Vj=1,2,..., L

Index all the configurations of A from 0 to (2F — 1).
Enumerate Vj; and Vjo for all j =1,2,..., L.
Compute Pr(s® | C;) and Pr(C)) for all 1 =0,1,...,25 — 1.
for j=1,2,...,L do

Pi(j) « Z[evj, Pr(s® | Cy) Pr(C)).

o) < Yyeny Pris™ | C) Pr(Ci).

P
Pr(y =1 %) < 53
end for

Calculation of Pr(s°® | C)) forall /=0, 1, ...,2F — 1
in Algorithm 1 is carried out with an additional algorithm
that takes advantage of the structured probability formula-
tion. The detail is shown in Supplementary Data. Calcula-
tion of Pr((;) is trivial based on the independent prior of
\;’s. Because of the closed-form derivation for (4) and effi-
cient computation algorithms, LocHap is ultra-fast in ana-
lyzing whole-genome and whole-exome data, taking usually
less than a minute for a whole genome.
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Figure 3. Overview of the LocHap pipeline.

LocHap pipeline

A computational pipeline (Figure 3) supports LocHap ap-
plications. LocHap analyzes one sample at a time and can
be used sequentially or in parallel for the analysis of mul-
tiple samples. For a single sample, the input of LocHap in-
cludes (i) a bam file with the associated index bai file and (i1)
a corresponding vcf file that contains the SNVs in the sam-
ple, called by any standard variant calling algorithm, such
as GATK’s (27-29) UnifiedGenotyper tool. The output of
LocHap is a set of LHVs stored in /cf files, one for each
sample.

Haplotype call format (hef). Each line in the /Acf file con-
tains information about one particular LHV segment. Be-
low is a line in an /i¢f file from analysis of real-world data.

##CHROM POS REF NumSig HAP_Call All.LHAP DataForSample = NA12878

chrl 4369613,4369623 GA 3 GA(1.000), AA(1.000), GG(0.985) GA(1.000;0.000), AA(1.000;0.000),
GG(0.985;0.005), AG(0.000; 0.254)
nSNP = 2;nTot = 90;nACGT = 75; nBlank = 15;nDisc = 0;nM0 = 41;nM1 = 34;nM2 = 15;nClus = 3;

Same as vcf, an hcf file is a tab-delimited text file. After
the initial header fields, each line in the hcf file represents
a LH (might not be a variant) and has seven column fields.
Also, at the end of each /cf file, a summary stating the to-
tal number of SN'Vs in the vc¢f file, number of segments with
zero significant haplotypes, one significant haplotype, two
significant haplotypes and so on, are given (see Supplemen-
tal Data).

Post processing

The inferred LHVs can be filtered to remove false positives
caused by artifact and noise in the sequencing data. The fil-
ters are devised to remove dubious reads and SNVs. In NGS
data, known artifact and error affect SNV calling (21) by er-
roneously calling or aligning the bases on short reads. How-
ever, they do not artificially create additional LHs which re-
quire more sophisticated changes to the bases of short reads
across multiple SNVs. The typical artifact and error often
changes the base calling or alignment for a single locus and
usually affect all the short reads in the region. Therefore,
LHV-based inference is less prone to the errors and arti-
facts for SNV calling. Nonetheless, we apply a set of op-
tional and customizable filters (Supplementary Data) with
different stringency levels for post-processing of the LHVs
in the output /¢f files. Currently, despite the large amount
of effort directed by the community (21) the noise and er-
ror in NGS experiments and data preprocessing cannot be
statistically modeled or quantified. There is no consensus
on filtering the variant calls from various analysis pipelines.
We present a conservative filtering pipeline that is heavily
biased toward reducing FDR, so that reported LHVs are
of high confidence. The proposed filtering depends on var-
ious parameters that can be modified to enforce different
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Figure 4. Visualization of /icf files in IGV.

degrees of filter stringency. A more stringent filter results in
fewer LHVs at the end.

The proposed filters can remove SNVs that are too close
to each other (within, say 50 bps) and SNVs that are close
to other types of variants such as indels. It has been noted
(30,31) that these variant calls are not trustworthy due to
artifacts and base calling errors in the data. In addition, our
filters can remove SN'Vs for which most reads are aligned to
the SNV at a base near the end of the reads. The reason is
that bases called toward the end of a read are usually of low
quality, which then affect the reliability of the alignment.
Lastly, SNVs mapped by reads with strand bias (32) are also
filtered.

Integrated genome viewer (IGV) compatibility

For better visualization, we provide an additional IGV-
compatible format so that LHV segments can be visually
examined in the popular genome visualization tool IGV
(22). A snapshot of five hcf files in IGV is shown in
Figure 4. The details of the corresponding command is
given in Quick Manual (http://compgenome.org/lochap/
code_release/QuickManual-LocHap-release-v1.0.pdf).
Note that the LHVs are shown by red bars and non
variants are shown by blue bars.

RESULTS AND DISCUSSION
Simulation

We first demonstrate the utility of the proposed statistical
model using simulated data. In all of the following examples
we used ¢; = 0.001 as the default value and FDR threshold
was set at fo = 0.01. Also we assumed that the probability
of observing more than two different alleles at a particu-
lar locus in a genome was considered rare. This is assumed
because of the small chance of having a point mutation oc-
curring twice at the same nucleotide (33-35). All of the sim-
ulation examples were based on short reads data generated
for a single segment. Also, we only show examples with a
small number of short reads. When a large number of reads
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were simulated, the proposed models performed very well,
easily recovering the simulation truth. Tabulated posterior
probabilities for all the scenarios are provided in the Sup-
plementary Tables S1-S9.

Simulation Scenario 1. We generated eight short reads
covering two SNVs. Assuming at each SNV that only two
alleles could be observed, there were 2> = 4 possible haplo-
types. The simulated short reads had genotypes

D={GA,GA,GA,GA, GC, GC, AC, AC}.

Applying LocHap, we inferred three significant haplotypes
with the following sequences and posterior probabilities.

{GA:1.00, GC:>0.99, AC: > 0.99}

Simulation Scenario 2. In this scenario, we generated eight
short reads, each of which only covered one of the two
SNVs.

D={4-,-4,6G—-,G—, -G, -G, -G, -G}.

Here the read labeled ‘4 —’ indicated that the first SNV po-
sition had a readout A4 and the read did not cover the second
SNV position. Hence, we used ‘—’ sign to represent a miss-
ing genotype. Using LocHap, no haplotypes can be inferred
to be present based on the FDR threshold f) = 0.01.

Simulation Scenario 3. 1In this scenario, we simulated five
short reads covering three SN'Vs with genotypes given by

D ={AGA, AGA, AGC, AGC, GAC}.

LocHap called three significant haplotypes {AGA, AGC,
GAC?} with posterior probabilities all >0.99.

Simulation Scenario 4.  In this scenario, we generated eight
short reads covering three SN'Vs, given by

D ={AAA, AAT, ACA, ACT, GAA, GAT, GCA, GCT}.

LocHap did not identify any significant haplotypes. This is
due to the lack of strong evidence for any of the haplotypes
as each of them is supported by only one read. The proposed
model correctly recognized the uncertainty in the data and
did not provide statistical significance for any haplotypes.

Simulation Scenario 5. This scenario is similar to scenario
4 but here we generated five short reads each for the haplo-
types AAA, AAT and ACA. The data is given by,

D=
{AAAXS, AAT x5, ACAxS, ACT, GAA, GAT, GCA, GCT}.

Although LocHap did not find any significant haplotypes in
the previous scenario, LocHap called three significant hap-
lotypes {4A4A, AAT, ACA} with posterior probabilities all
equal to 1.00 because of more reads are generated for these
three haplotypes. It is easy to see that with more number of
reads our inference model would work more accurately.

Simulation Scenario 6. This scenario is similar to scenario
1 but here we generated five times more number of short
reads for every categories. The data is given by,

D ={GAx20, GCx10, ACx10}.


http://compgenome.org/lochap/code_release/QuickManual-LocHap-release-v1.0.pdf
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Applying LocHap, we again inferred three significant hap-
lotypes with posterior probabilities all equal to 1.00.

Simulation Scenario 7. This scenario is same as the real-
life data in Figure 1A. The data is given by

D=

{GGx23, GCx10, AGx9, —Gx43, G — x26, A— x13, —Cx11}.

Applying LocHap, we inferred three significant haplotypes
{GG, GC, AG}with posterior probabilities all equal to1.00.

Simulation Scenario 8. This scenario is same as the real-
life data Figure 1B. The data is given by,

D=

{TTx22, CGx14, CTx13, —Tx46, —Gx46, C — x34, T — x12}.

Applying LocHap, we again inferred three significant hap-
lotypes {TT, CG, CT} with posterior probabilities all equal
to 1.00.

All eight scenarios show that LocHap performs well.
When the number of reads increases, the confidence in the
statistical inference also increases.

Three DNA-seq datasets

We applied LocHap to three different datasets, among
which two were public and one from our own in-house vali-
dation experiments. We provide main findings next and put
analysis details in the Supplementary Data.

Head and neck cancer (HNC) data. We analyzed whole
exome sequencing (WES) data of 30 matched tumor and
blood sample pairs (total 60 samples) from patients with
head and neck cancer (HNC) (36). Whole exome Sequence
Read Archive (SRA) files of matched tumor and normal
samples were downloaded from the SRA (http://www.ncbi.
nlm.nih.gov/sra). Standard bioinformatics analyses were
performed to extract fast-g sequences, map short reads and

call SN'Vs. We generated bam files (one per sample) and a vef’

file for all the samples. The bam files contained short read
sequences and alignments and the vcf file contained SNV
calls of all the samples. The bam files with associated bai
and vef files were provided to the LocHap pipeline, which
subsequently generated 60 /cf files, one for each sample.
Figure 5A shows a circos plot (37) of the called LHVs.
Most LHVs are located in different genomic regions across
patients, suggesting somatic mutations occurred randomly
across the genome. Also, the fact that called LHVs are
mostly different between patients indirectly shows that
LHYV calling is not driven by artifact and noise in the NGS
data. The reported LHVs all passed the aforementioned
noise filtering with stringent criteria. Read depth of one ex-
ome of a normal sample is shown in Figure 5B. A few LHVs
are mapped with large numbers of reads but overall the read
depths between LHVs and non-variant regions are compa-
rable. Most LHs are not LHVs, having no more than two
genotypes and most LHVs possess three genotypes (Fig-
ure 5C). Tumors in general possess more LHVs than cor-
responding normal samples (Figure 5D) and chromosomes
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9, 14 and 17 are ‘hotspots’ for LHVs exhibiting higher fre-
quencies in tumors than blood samples (Figure SE). Tran-
sitions are more frequent than transversions (Figure 5F),
as expected. Finally, overlapping LHVs are present in both
tumor and the matched blood samples for each of the 30
patients (Figure 6), while the tumor and blood samples also
possess unique LHVs of their own.

Table 1 summarizes the statistics from the unfiltered /cf
file from one particular normal blood sample.

CEU-TRIO data from 1000-genomes project. We applied
LocHap to whole genome sequencing (WGS) data of
a CEU TRIO family of father, mother and child from
the 1000-Genomes project (http://www.1000genomes.org/).
The analysis procedure was identical to the HNC data, ex-
cept here we have WGS data from three members of a fam-
ily. Genome-wide LHVs (Figure 7A) are found in all three
individuals with father having the largest number of LHVs
and daughter the smallest (Figure 7B). This reflects the evo-
lutionary conjecture that somatic mutations emerge over
time as a result of accumulating mitotic errors and that
the longer an individual lives, the more likely somatic mo-
saicism is seen on the genome (18). Similar to the results
obtained in the previous analysis of cancer WES data, most
LHs are not LHVs and most LHVs possess three genotypes
(Figure 7C). Most LHVs reside in intergenic and intronic
regions with less than 1% in exons (Figure 7D). Here again
transitions are more prevalent than transversions (Figure
7E). We called copy number variations (CNVs) using CN-
Vnator (38). Convincingly, CNVs are not observed for most
LHVs regions, suggesting that the LHVs are not associated
with CNVs, a potential confounder for LHV calling. There
are almost no overlapping LHVs across the three family
members. This is expected since LHVs are results of somatic
mutations, which do not usually re-occur in different indi-
viduals. Under the most stringent filter, on average 400-500
LHVs are reported per genome using the WGS data in CEU
trio compared with 4-5 per exome using the WES data from
the HNC sample.

Table 2 summarizes the statistics from the unfiltered /icf
file from one particular sample (NA12891) in this dataset.

Validation. 1In order to validate our results, we sequenced
whole blood DNA from three members of a parent—child
trio using two different sequencing platforms, Complete
Genomics, Inc. (CGI) (http://www.completegenomics.com/
documents/DataFileFormats_Standard_Pipeline_2.5.pdf,
http://cgatools.sourceforge.net/docs/1.8.0/cgatools-user-
guide.pdf) and [llumina whole genome sequencing (ILMN)
(http://www.illumina.com/applications/sequencing.html).
All members of the trio were healthy. Their blood samples
were collected between 2007 and 2012 and sequenced by
CGI in 2012 (39). We also sequenced DNA from the same
three samples using the ILMN platform in 2014. Because
ILMN and CGI utilized different sequencing technologies
and the sequencing experiments were performed at separate
times by more than 2 years apart, results from the two
sequencing experiments serve to validate each other.

NGS data produced by both technologies were analyzed
using the LocHap pipeline. At the end, for each of the
two datasets we generated a list of LHV. We then over-


http://www.ncbi.nlm.nih.gov/sra
http://www.1000genomes.org/
http://www.completegenomics.com/documents/DataFileFormats_Standard_Pipeline_2.5.pdf
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Figure 5. LHYV calling for a head and neck cancer (HNC) WES dataset with 30 pairs of matched tumor and normal samples. (A) A circos plot of prevalence
of LHVs for five arbitrarily selected sample pairs. Each red dot indicates the existence of at least one LHV in the corresponding exonic region of 1M bps.
The height of a red dot indicates the number of LHVs present in the segment of 1M bps long. A pair of matched tumor and normal samples are arranged as
adjacent circles with grey and blue color, respectively. (B) Comparison of read depth for genome regions with and without LHVs. No apparent difference
is observed. (C) Histogram showing the frequencies of DNA segments (vertical axis) with different numbers of haplotype calls (horizontal axis). Most
regions have up to two haplotypes, i.e., no variants. Regions with greater than two haplotypes are variants implying genome mosaicism. (D) A total of
30 line plots, one for each pair of matched tumor (red) and normal (blue) samples from an individual patient. The number of LHVs is shown for each
chromosome for each patient. In general, tumors exhibit more LHVs implying more mosaicism. (E) Summary of (D). For each chromosome, a blue dot is
the median of the difference in the number of LHVs between tumor and its matched normal sample across 30 patients; point-wise confidence intervals are
shown as purple bands. Tumors show much higher frequencies of LHVs on chromosomes 9, 14 and 17, indicating potential disease-related variations on
these regions. (F) Summary of sequence mutations for the SNVs within called LHVs. Transitions are much more prevalent than transversions.
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Figure 6. Venn diagrams showing the overlap of LHV calling for a HNC WES dataset with 30 pairs of matched tumor and normal samples. For each pair,
LHYV counts for tumor and the matched normal sample are shown in red and blue color, respectively. In most of the samples, number of LHVs in tumor is
greater than that of the matched normal except for the last five samples where the numbers are comparable or number of LHVs found in the tumor sample
is less the corresponding number in the matched normal sample.

Sample 20

Sample 21 Sample 25

Sample 30

Table 1. Statistics from /cf file of a sample from HNC dataset

No. of Segments with more
variants Segments with no. of significant haplotypes than three variants
(Ir)2-10 0 1 2 3 4 5 6 7 8 (Not analyzed)
137886 460 85 2070 90 11 0 0 0 0 457

Table 2. Statistics from /i¢f file of a sample from CEU trio dataset

No. of Segments with more
variants Segments with no. of significant haplotypes than three variants
(Ir)2-10 0 1 2 3 4 5 6 7 8 (Not analyzed)

6378548 43322 17216 232750 22839 1430 54 2

o
S
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Figure 7. LHYV calls for normal samples from a CEU trio of father, mother and daughter in the 1000 genome project based on WGS data. (A) A circos plot
of prevalence of LHVs. Outer three arcs and inner three arcs represent results of TRIO samples filtered by type III filter and type I filter, respectively. See
‘Materials and Methods’ section for details of the filters. Each red dot indicates the existence of at least one LHV in the corresponding genomic region of
IM bp. The height of a red dot indicates the number of LHVs present in the region. (B) Comparison of the three family members in the number of LHVs
per chromosome. The daughter has the smallest and the father has the largest number of LHVs in all chromosomes (autosome). (C) Histogram showing
the frequencies of DNA segments (vertical axis) with different numbers of haplotype calls (horizontal axis). Most segments have up to two haplotypes
indicating no variant. Segments with greater than two haplotypes are variants implying genome mosaicism. (D) Functional annotations of the genome
regions where LHVs are found. Most are intergenic and intronic, with <1% LHVs in exons. (E) Summary of sequence mutations for the SNVs within
called LHVs. Transitions are much more prevalent than transversions. (F) Copy number calls based on CNVnator (38) are directly compared with LHVs
for all three family members. In most cases, there are no copy number variations on genome regions where LHVs are found. Copy numbers are represented
in the outer arc and LHVs are shown in the adjacent inner arc in the same color for each sample.



PAGE 11 OF 14 Nucleic Acids Research, 2016, Vol. 44, No. 3 e25

v
4
v
v
» B
s
E
»
[
13
|
I
£5)
.
.
P
i
-
o & e P 4
»
J
J
<
! »
b
1
“
i > I3
4 ‘ 4 # R 13
‘
i
1‘ Ly
A
>
©
&

Figure 8. Summary of the LHVs found in the father, mother and daughter of a family based on both Illumina (ILMN) and CGI data. The ages are 57,
47 and 22, respectively. Top panel: A circos plot of prevalence of LHVs for ILMN data. The three colored rings describe the genome-wide prevalence and
locations of the LHVs for the three family members. Each red triangle dot indicates the existence of at least one LHV in the corresponding genomic region
of 1M bp. The higher a red dot resides, the larger number of LHVs present in the region. Bottom panel: a circos plot of prevalence of LHVs for CGI data.

The plot follows the same arrangement as in the top panel.
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Figure 9. Two examples of LHVs that overlap between CGI and ILMN data. LHV1 consists of two single nucleotide variants (SN'Vs) separated by 26
bps on Chromosome 10. For the ILMN data (top tables), among all the short reads mapped to this region, 9, 12 and 6 short reads are mapped to both
SNVs and exhibit genotypes CC, GC and GT, respectively. For the CGI data (bottom tables), those numbers are 3, 9 and 2 respectively. Also, many other
reads are mapped to one of the SNVs for both data, which reinforces the finding. Statistical inference shows high significance supporting more than two
haplotypes in the region. LHV 2 consists of two SNVs separated by 30 bp. For the ILMN data, 7, 4 and 3 reads are mapped to both SNVs with genotypes

CA, CG and TA, respectively. Those numbers are 4, 4 and 4 for the CGI data.

lapped the two lists of LHVs, and identified shared LHVs
between both datasets. Nine LHVs overlapped between the
two datasets in the child; 10 LHVs overlapped in the mother
and 15 LHVs overlapped in the father. We applied highly
stringent filtering rules (Supplemental Data) to ensure high
quality of the reported LHVs, although such filtering could
also remove true LHVs with weak confidence. Also, many
LHVs were excluded due to insufficient evidence from the
CGI data. Figure 8 shows the locations of LHVs for the
CGl and ILMN data. Figure 9 presents two LHV examples
that are shared between CGI and ILMN data. For these two
LHYVs, the short reads provide direct evidence of somatic
mosaicism—the reads suggest that at least three LHs must
be present.

These analyses provide evidence supporting our hypothe-
sis that normal cells in a healthy person could be genetically
heterogeneous and possess distinct populations of somatic
cells, a phenomenon also observed in (5). Specifically, in all
three individuals there are LHVs that are discovered by in-
dependent sequencing platforms from different experimen-
talists at different times.

DISCUSSION

Through a novel means of analyzing NGS data, LocHap
attempts to reveal potential somatic mosaicism in the form
of LHVs. We implement Bayesian hierarchical models that
borrow strength from the mapped short reads to infer the
number and sequences of LHVs genome-wide. In applica-
tions of LocHap using deep-sequencing data, we provide
evidence that supports the existence of normal somatic mo-
saicism (NSM) and tumor somatic mosaicism (TSM) at
single-nucleotide level. Applying LocHap to 30 matched
blood and tumor samples, we find LHVs in exomes of nor-
mal blood and tumor samples. The frequencies of LHVs are
in general higher in tumor samples (one-sided paired z-test,
P-value < 0.0001). Performing the analysis on CEU trio
from the 1000-genome project, we confirm the findings of
genome-wide LHVs and also identify an increasing trend
of LHV occurrences with aging (chi-squared test (40) for
trend, P-value < 0.0001). Based on our results, we propose
three hypotheses that deserve future investigation.

(1) Similar to cancer cells, non-cancer cells undergo random
mutation events that could potentially lead to subclonal
cell populations, resulting in genome-wide somatic mo-
saicism within individuals.
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(i1) The probability of acquiring NSM increases with the age
of an individual, owning to accumulating mutation bur-
den.

(iii) In general, TSM is more prevalent than NSM.

LocHap is different from existing subclonal callers
(35,41-47) in a fundamentally distinct way. LocHap pro-
vides direct evidence (e.g., examples in Figure 1) of genome
mosaicism in both non-cancer and cancer cells. The units
of analysis under LocHap are haplotypes, each as a scaf-
fold of SN'Vs. In contrast, most subclone callers in the liter-
ature analyze allelic fractions of individual SNVs. We argue
that LocHap provides a more direct view on genome mo-
saicism for somatic samples. The power of detecting LHVs
is affected by the length of paired-end reads and coverage.
In this context, it is important to note that an unexpected
insert size in a paired-end read is handled by either initial
choice of the value K (if it is too large) or by using a post-
processing filter (if it is too small). In addition, our analy-
sis does not include paired-end reads that are not properly
mapped since these reads do not provide reliable informa-
tion about LHVs.

Naturally, sequencing coverage, quality and read length
affect the performance of LocHap. Deeper coverage allows
LHVs with small population frequencies in the sample to
be detected. Longer read length (and/or insert length) al-
lows SNVs that are farther apart to be phased and there-
fore improve the chance of detecting LHVs. In our WES
data our coverage was about 30x with read length 75 bps
and in WGS data we have about 60x coverage with read
length 100 bps. We found that our LocHap performed well
in reporting LHVs under these conditions. For detail of all
the bioinformatics pipelines, filters and parameters, we refer
the readers to the Supplemental Data.

Our main purpose is not to identify all the LHVs in the
genome. Instead, we aim to utilize existing short-read NGS
data and provide a new method for detecting sample hetero-
geneity and mosaicism based on LHVs. Presence of LHVs
itself supports mosaicism since a homogeneous human bi-
ological sample cannot harbor LHVs.

LocHap is available at http://www.compgenome.org/
lochap/ for free download. A manual is provided along with
the software. It is ultrafast in calling LHVs. For one WES
sample with about 30x depth of coverage, whole-exome
LHV calling by LocHap took about 11 s on a Macbook
Pro (2.8GHZ Intel Core i7 and 16GB 1600 MHz DDR3
memory). For each WGS dataset with about 60x depth of
coverage the analysis took about 47 s.

Cellular mosaicism based on LHVs would facilitate stud-
ies on heterogeneity of cell populations. Availability of NGS
data allows for more powerful investigation of somatic cell
subpopulations. The resolution of analysis can be at single
nucleotide level, as opposed to mega-bases for microarray
data. Further validation of somatic mosaicism and its rela-
tionship to aging and diseases is needed using much bigger
sample sizes. Such effort could help us reveal and quantify
heterogeneity in non-cancer and cancer samples, potentially
affecting cancer diagnosis and prognosis.

Nucleic Acids Research, 2016, Vol. 44, No. 3 e25

CONCLUSION

Through LocHap we provide a new approach to extract in-
formation of LHs from NGS data for a single sample. We
found wide-spread LHVs across genome in both tumor and
non-tumor samples. These results and software tools can be
used for further investigation of somatic mosaicism in hu-
man samples, helping investigators to understand the fre-
quency and genome locations of mosaic events. Thanks to
the ultrafast speed of LocHap, it can be used to analyze a
large number of samples using a single computer or a small
cluster. The newly developed /cffiles follow the existing for-
mat standards for veffiles and can be visualized in the pop-
ular tool IGV.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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