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ABSTRACT In previous papers we have shown that the
elimination of the resonance divergences in large Poincaré
systems leads to complex irreducible spectral representations
for the Liouville-~von Neumann operator. Complex means that
time symmetry is broken and irreducibility means that this
representation is implementable only by statistical ensembles
and not by trajectories. We consider in this paper classical
potential scattering. Our theory applies to persistent scattering.
Numerical simulations show quantitative agreement with our
predictions.

Section 1. Introduction

A basic problem in modern physics is the elucidation of the
time paradox. On all levels in nature, we find evolutionary
patterns. In contrast, the traditional formulation of laws of
nature does not distinguish past from future. Our goal has,
therefore, been to formulate laws of physics that include time
symmetry breaking. This goal has been realized for classes of
dynamical systems such as chaotic maps or large Poincaré
systems (LPS) (1-6). For these systems, the Brussels—Austin
group derived a complex irreducible spectral representation
for the operators associated to their time evolution (such as
the Liouville operator or the Perron-Frobenius operator).
Here, complex means that time symmetry is broken, and
irreducible means that we deal with a statistical description
that cannot be reduced to trajectories in classical dynamics
(or to wave functions in quantum mechanics). The irreduc-
ibility of the spectral representation leading to a probabilistic
theory can be considered as the signature of chaos. LPS
(classical or quantum) are chaotic systems in this generalized
sense. Here chaos is due to Poincaré resonances that lead to
diffusive processes. Such a formulation is only possible in
generalized function spaces in which unitary operators may
admit eigenvalues of modulo different from unity. In addi-
tion, our formulation unifies fields of physics that appear
quite separate in the usual presentation: dynamics (leading to
the evolution of ensembles), statistical mechanics character-
ized by the introduction of ‘‘collision operators,’’ and ther-
modynamics (microcanonical distribution).

To clarify the meaning of our approach, we consider in this
paper the simple case of potential scattering. Scattering
corresponds to a dynamical process. Still scattering is also
the basic mechanism through which irreversibility appears in
statistical mechanics (Fokker-Planck or Boltzmann equa-
tions) (7). We shall show that dissipative effects arise for
persistent scattering, where we have to go beyond the
traditional S-matrix-type approach. Classical scattering can
be described in terms of Méller *‘states’” |®y,) constructed in
complete analogy with quantum theory [this method was
introduced by Résibois (8) and extensively used by one of the
authors (9)]. More precisely, we deal here with Moller
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operators, as they are defined here in phase space and not in
the Hilbert space of quantum theory. Of special interest are
the Méller states |®g,), corresponding to the value k = 0 of
the Fourier index k. A close relation exists between |®¢ ) and
the invariants of motion for scattering systems. We stress that
these invariants are asymptotic invariants, valid only in the
limit of large volumes L3 — «, where the scattering process
occurs. We next consider ensemble averages of Poincaré
invariants and their time derivatives. We show that the
ensemble averages associated to delocalized distributions
(independent of x) decay through diffusive processes and that
this decay is linear in time. These processes are not included
in trajectory dynamics.

We come, therefore, to a most exciting situation, as we
may test the existence of diffusive processes for LPS in the
frame of classical dynamics but beyond the trajectory for-
mulation. Numerical simulations quantitatively confirm our
predictions. This result shows that classical dynamics must
be reformulated on the level of ensembles when extended to
LPS.

Let us first indicate the difference between ‘‘transient’’ and
‘“‘persistent’’ scattering. For transient scattering the distri-
bution function p(x, p, ¢) is localized in the configuration
space and can be normalized to one,

f dp f dx p(x, p, 1) = 2m)*? f dp f dkpi(p, 1)8(k) =1, [1]

where pi(p) is the Fourier transform of p(x, p).

We then consider the situation where p(x, p, ?) has a finite
limit for |[x| — . The interaction with the potential is
therefore persistent. For this situation the Fourier compo-
nent of the distribution function is singular function atk = 0
with a delta function singularity (9-11).

(21

where pi is the nonsingular part of the distribution function
at k = 0. The distribution function cannot be normalized to
unity, as a square of the delta function appears in Eq. 1. For
box normalization, the delta function can be understood as a
weighted Kronecker symbol 8q(k) = 8k, where ) =
(L/2#)? with volume L3. The square of the delta function is
then 84(k) = Q8q(k), which diverges in the limit of large
volumes ) — . We shall use this interpretation in Section
3. The nonnormalizable situation can be realized, for exam-
ple, by considering potential scattering involving many in-
dependent identical particles that interact only with a single
potential. We then consider the so-called ‘‘thermodynamic
limit*’ corresponding to a finite concentration ¢ = N/L3 with
an infinite number of incident particles N — » and L3 — =
and consider a reduced distribution function.

pu(@» 1) = plp, D8(K) + pi(p, 1),

Abbreviations: SPI, singular Poincaré invariants; LPS, large Poin-
caré systems.
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Note that observables such as the Hamiltonian also have a
delta singularity in the Fourier representation (see Eq. 3). It
is therefore natural to include distribution functions that are
also singular functions. The eigenvalue problem of the Li-
ouville operator Ly involving singular functions has quite
specific features. There appears a nonunitary similitude
between Ly and the “‘collision operator’’ 6 (2) which has a
complex spectrum. We recover in this special case the result
of our general theory associated to ‘‘subdynamics’’ (12-15).
The singular part of the eigenfunctions satisfies a closed
eigenvalue problem associated to 6 (in the lowest order it is
precisely the well-known Fokker-Planck operator), while the
regular part becomes a functional of the singular part.

The method given here can be easily extended to the
problems studied in statistical mechanics. An example is the
well-known Lorentz model in which a light particle interacts
with an ensemble of heavy masses. We shall study this
example as well as the extension of our results to quantum
mechanics in subsequent papers (T.P., D. Driebe, and Z. L.
Zhang, unpublished work). The aim of this paper is to give an
overall view of our results. Proofs and details will be pub-
lished separately.

Section 2. Classical Méller States and Singular
Poincaré Invariants (SPI)

Let us consider classical potential scattering for a unit mass
m = 1. We assume that the Hamiltonian is given by

2
H(x, p) = Hy(p) + AV(x) = f dk (% (k) + AVk)e"‘". [31

The parameter A is a dimensionless coupling constant. For
simplicity we assume short-range repulsive forces (i.e., no
bounded motion).

The Liouvillian is given by the Poisson bracket Ly f = i{H,
f} and generates the evolution of the probability distribution
function p(x, p, ¢) of ensembles in phase space,

p() = e~ Lp(0). 4

The Liouvillian is a hermitian operator in the Liouville space
(9). In this space the inner product of phase functions {x, p| g)
= g(x, p) and (f|x, p) = f-<(x, p) is defined in the *‘bra-ket”
notation (9) by (flg) = [ dx [ dp (fIx, pXx, p|g).

For the unperturbed Liouvillian Ly = Ly, = —ip-d/dx the
spectrum is given by ref. 9:

Lok, v) = (kv)|k, v), 151

where (x, plk, v) = 2m)~3/28(p — v)exp(ik'x). For k = 0 we
have the invariants of motion Lo|0, v) = 0.
The completeness and orthonormality relations are

f dv f dkk, vXk, v| = 1, (K, vK’, v} = 8(k — k")8(v — v'). [6]

The perturbed Liouvillian Ly is given in ref. 9;

Ad(v' —v)

(k’ VlLVIk', V'> = Vk—k'(k - k')' v’

71

The matrix element is a ‘‘distribution” (as it contains a
derivative of the §-function).

Let us consider the eigenvalue problem for the total
Liouvillian L. To this end we introduce classical ‘‘off-shell”’
Moller states in analogy with Moller’s scattering states for the
Hamiltonian in quantum scattering theory (16-18)
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1
| Dy v(2)) = |k, v) + L Tk, v), (8]

z-

where z is a complex number with Imz # 0. The ‘‘off-shell”
T-matrix is defined by

1 ,
L T(z). 91

T(z) = ALy + ALy

We also have
U, u|Lg|®y v (kv + 2)) = (kv){l, ulDy (kv + 2))

4

+ —T, kv + 2), 10
kv+z-lu l,u.k,v( v+ 2) [10]
where Ty gy = {1, u|Tk, v).
Let us consider the ‘‘on-shell’’ limits z— *i0 of the Méller
states, |®g,) = [Py (kv * i0)). The phase functions ®j (x,
p) are well defined (as velocity distributions):

O (x, p) = 2m) 32 ’k*5(p — v)

Tl,l,;k,,,(k-v *i 0)

-3/2 it bl
+ (2m) fdl e'™ kv —Ip =0 [11]

Then the Moller states become the eigenstates of the Liou-
villian:

(x, plLAI®L,) = (kv)(x, p|®y,). (12]

For this case we have also the usual completeness and
orthonormality conditions for the on-shell Méller states.

Of special interest are the Moéller states for k = 0 that are
related to invariants of motion. As mentioned, (@ v(z*)|x, p)
is still a distribution involving the velocity. Therefore, we
consider the phase-space quantity Ir(z),

Ii(x, p; 2) = 2m)*? f av flv) (®o,(z*)x, p)

AV
kp+z

. )
=f(p) + f dk e'** k°£ fip) + 0. [13]

In the limit of z — *i0, Ir(z) are invariants of motion,
I;(x(2), p(t); %i0) = 0. [14]

The standard perturbation analysis for the Hamilton- Ja-
cobi equation using the generating function F(P, x) shows (19)
that the new momenta P* coincide with Ip(x, p; +i0) for f(p)
= p (unpublished work). We call Ir(+i0) ‘‘singular Poincaré
invariants’’ (SPI), as the Fourier components of the invari-
ants are singular at resonances k-p = 0 (refs. 9 and 20; see also
refs. 21 and 22).

In the above construction of SPI we have considered a
scattering process that occurs in infinitely large space. We
can obtain the same result, starting with the standard box
normalization approach and taking the limit of large volumes
) — «, It is important to stress that the invariants Ir are
asymptotic invariants valid only in this limit.

Section 3. Limits of Trajectory Dynamics and
Numerical Simulations

In the previous section we have constructed SPI through the
on-shell Moller states in the phase-space representation. As
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SPI are singular at the resonances, we want to see the
influence of resonances on the invariants in more detail.
From Eq. 10 we have (for k = 0)

Z
qQ, “|LH|¢0,V(Z)> = Tl.n;o,v(z)~ [15]
z— I

In the (1, u) representation the on-shell Moéller states are
distributions in wave vectors 1, as well as in velocities. The
distributions in 1 are usually handled by introducing localized
test functions (the wave packets of traditional quantum
scattering theory). However, we want to go here beyond the
usual S-matrix theory. In Eq. 15 a discontinuity appears at 1
= 0. For 1 # 0 we obtain zero in the limit z — +i0. On the
contrary for1 = 0 we have a nonvanishing contribution for the
on-shell Moller states. As this effect appears only for 1 = 0,
it is of the order 1/} and can only be observed when
associated to delocalized situations (see below). We verified
this result by numerical simulations.

Let us consider in more detail the effect of the time
variation of ®g,(z) on the Poincaré invariant Is(x, p; +i0). To
do so we introduce the integral of Ir(z) over the phase space
with a weight function g(x, p),

U (t; 2], = f dx dp [e" "I Is(x, p; 2)]g(x, p).  [16]

The application of trajectory dynamics (Eq. 14) would lead to

d
lim _t [Is(t; 2)] = 0. 7

z—>+i0 d

However, Eq. 17 is correct only if gy(p) has no delta
function singularity as in Eq. 2; this corresponds to the
situation where the function g(x, p) is a localized function in
configuration space. In contrast, if g does not depend on x,
e.g., g = go(p), then the time derivative (Eq. 17) does not
vanish due to the resonances. To see this, we first note that
(®q,| exp(—iLy)Ly = (®g,,| Lv because we can apply Eq. 12
for a localized interaction V(x). Therefore, also taking into
account Eq. 15, we have for all times ¢

d
lim —[I(t; 2)]
z—>+i0 dt 4 &

= —i lim f dk f du f aAvf(v){(Do,,(z*)|L gk, u)d(k)go(u)

= +i0

=—j f du f dvf(v)(0, v|T(+i0)]0, u)go(uw) [18]

d ) d
= f dpfip) f dk|VyJ’k — md(k-p)k- — go(p) + O(A3).
p ap

We obtain a diffusion process breaking time symmetry. (The
right-hand side is even in the momentum p, the equation is
therefore not invariant for t — —¢ and p — —p.) [We consid-
ered here z— +i0. We have a similar equation for z— —i0 but
with the opposite sign. This corresponds to the existence of
two semi-groups. This situation has been discussed in our
paper on the Friedrichs model (1)]. This effect is a nonlocal
effect requiring therefore an extended formulation of classical
dynamics involving ensembles. The origin of this effect is the
role of resonances that lead to singularities.

As seen from Eq. 18, Ty v;0,u(+i0) is in the lowest approx-
imation in A, a second-order derivative operator in the
momentum. The time evolution of [Is(t; z)l,0 cannot be
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expressed by trajectory dynamics but only as the result of
diffusive processes in momentum space, as described by the
Fokker-Planck operator. Following kinetic theory we shall
also call this matrix the ‘‘collision operator’’ 6 (2), which is
related to the Liouvillian by

6o,v:0,u = To,v;0,u(+i0) = <q)(;,v|,LH|0’ u)
=0, v|Lyl®q ,)- (9]

The collision operator acts only on the subspace of the
delocalized states with k = 0. Eq. 19 is the basic formula
which relates dynamics of LPS to nonequilibrium statistical
machanics.

A close relation exists between the evolution of [I(¢;
+i0)],, in Eq. 18 and the evolution of the ensemble average
(f(p)) of quantity f(p) for a given initial distribution function
p(x, p, 0) = go(p). Indeed, they coincide in the asymptotic
time limit (unpublished work). As the right-hand side of Eq.
18 is constant, the delocalized superposition of the singular
invariants varies strictly linearly in time. Remarkably, the
dissipative evolution associated with this linear ¢ contribution
already starts from ¢ = 0 [because the singular invariants Ir

©
belongs to IT subdynamics in our complex spectral represen-
tation (unpublished data)]. In contrast, the time evolution of
the ensemble average (f(p)) starts with r2, as easily under-
stood using a short time expansion.

We have done numerical simulations for potential scatter-
ing. [We thank K. H. Wen and Z. L. Zhang for the numerical
simulations and will present more details about the simula-
tions (T.P., I.P., K. H. Wen, and Z. L. Zhang, unpublished
work).] We have solved the Hamilton equations of motion for
trajectories and also the Liouville equation for ensembles.
Thus we have calculated the evolution of the singular invari-
ants (Eqgs. 13 and 16) both for trajectories and for delocalized
ensembles. We have approximated the singular invariants to
first order in A. This leads to an error of order A2. Also we
have approximated the Fourier integral by Fourier series, by
putting the system into a large box of volume L? with the
usual periodic boundary conditions. The Fourier spectrum is
therefore discrete; i.e., k = nAk, wheren = (n,, . . ., ng) is
an integer-vector, and Ak = 27/L. We have also replaced the
integration of the wave vectors and the Dirac delta function,
respectively, by a weighted sum [y = Q~1Z; and a weighted
Kronecker symbol 8g(k) = Q& [for Q = L¢/(2m)?]. In the
limit of large volumes the spectrum becomes continuous and
they reduce respectively to the integration [dk and to the
delta function 8(k) (23).

There is a characteristic time scale #, = (Jv|Ak)~l. We
impose the condition: ¢+ << ¢,. We may then consider the
spectrum as continuous. We also replace the infinitesimal
quantity z = +i0 by z = +ie, where ¢is a finite small positive
number. As the result the delta function w8(w) is approx-
imated by the Lorentzian distribution &/(w};- + €?). To obtain
a consistent approximation of the delta function, there should
have enough number of discrete states around the peak of the .
Lorentzian. Therefore, our expressions have to be under-
stood in the continuous limit Ak — 0 and ¢ — 0+ with the
condition for the small parameters: £ >> |v|Ak.

Numerical simulations for scattering in a two-dimensional
configuration space, i.e., d = 2, were completed. We then
compared the numerical results to our theoretical predictions
for increasing values of the volume.

The Hamilton equations of motion have been solved by the
standard fourth-order Runge—Kutta method. We have chosen
a Gaussian potential given by AV(x, y) = AVeexp[—(x? +
y?)/4a?] with a = 1. A typical time step was Ar = 0.01, and
AV, = 1073 was chosen for this simulation. We also chose the
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FiG.1. Time variation of the singular invariant AI, = I«(t) — Ir(0)
vs. L2,

ratio &/(jv|Ak) = 10. We have verified that the energy of the
system is conserved up to 12 digits.

In Fig. 1 we plot the numerical results for the time variation
of the singular invariant Al; = Is(t) — I(0) for f(v) = v, in Eq.
13 vs. L2, This figure corresponds to the case of the initial
condition (x, y; px, py) = (0.4, 1.41; —0.45, —1.40) and to time
t = 5.0. For small volumes the error involved in the numerical
simulations exceeds the theoretically predicted error (AVy)?
= 10~6. By increasing the volume, the numerical error due to
the volume dependence decreases, and AI, reaches the
predicted order of magnitude. This result shows that the
singular invariant is indeed an asymptotic invariant.

We have next numerically solved the Liouville equation for
delocalized ensembles go(v) and calculated the time evolution
of the ensemble average of the singular invariant in Eq. 16 in
the (k, v) representation. As the Liouville equation is a partial
differential equation, the numerical integration is more dif-
ficult. In the numerical integration we have to deal with
four-dimensional discretized variables (kx, kg, vx, vy), Which
requires a large memory.

In Fig. 2 we plot the time evolution of A[lg, = [Ir(t)], —
[I;(0)], in Eq. 16 for f(v) = v, and for the delocalized
distribution g = go(u), given by

(2 —2 L 2
SE A Vs I e e R

We chose the parameters, 1 = 0.5, (#x0, uyo) = (0.5, 0.5), AV,
= 0.1 and the volume L2 = (37n)2 The time step of the
integration is At = 0.001. The numerical simulations show
that it changes linearly in time. As the ensemble theory
predicts, the linear dependence starts at ¢ = 0.

In Fig. 3 we plot the rate of change A[I/],/At at the first step
of the iteration of the numerical integration vs. L~2, By
increasing the volume size, the numerical value approaches

0

—2.50 x 1077

—5.00 x 10~7

Ally (0)l

—7.50 x 1077

—~1.00 x 10~¢

~1.25 x 10~¢
0 0.001 0.002 0.003 0.004
t

FiG. 2. Time evolution of A[I(#)], = [Ix(1)]; — [Ir(0)]; in Eq. 16
for f(v) = v, and the delocalized distribution (Eq. 20).
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F1G. 3. Change of A[I«(#)]./At at the vﬁrst step of the iteration of
the numerical integration vs. L 2.

the limiting value = —4.0 x 10~4. The theoretical value of the
rate of change can be estimated by the right-hand side of Eq.
18, which gives the value —(6.0 +0.1) x 10~4. Taking into
account the discretization procedure, this agreement is quite
satisfactory.

In conclusion these simulations prove the existence of
diffusive effects in the frame of classical dynamics but which
can only be observed in conjunction with delocalized ensem-
bles.

Section 4. Complex Irreducible Spectral Representation

Our principal conclusion is that the Méller states @, are no
more zero eigenstates of the Liouvillian for persistent scat-
tering. We therefore must reconsider the eigenvalue problem

Ly|F (a)) = z,|F (a)). [21]

We sketch here only the main results; details will be forth-
coming. .

To solve the eigenvalue problem, let us first note the
relation that can also be derived from Eq. 8,

(Po,u(z*)| Ly ®Po,v(2)) = (0, u|T(2)[0, v)

Z

Ly T@)|0, V>.

+ <0, u|T(z)
[22]

In the on-shell limit this gives (see Eq. 19),
lim (®o,u(z*)|LalPo,(2)) = (ool Lrl®s,) = (0, ul6j0, v). [23]

z—>+i0

This expression leads to a ‘‘similarity’’ relation between Ly
and @ involving the transformation A,

(0, u]AILLA|0, v) = (0, u|60, v). [24]

A and its inverse operator connect the unperturbed states to
the Moller states as |®g,) = A|0, v) and (®g,| = (0, v|A~L,
respectively. (To introduce A and the inverse operator A1,
some care is required to deal with the resonance divergence,
as well as the normalization of the Moller states.) The
operator A is a nonunitary operator, as it transforms the
hermitian operator Ly into the disipative operator 6, which
has a complex spectrum. The nonunitarity comes from the
same mechanism of the discontinuity at 1 = 0 in Eq. 15 due
to the resonance singularity. The relation (Eq. 24) is in
agreement with our previous approach through the subdy-
namics theory (2). The similitude between Ly and #involving
the nonunitary operator A expresses the relation between
dynamics and probabilistic processes in a striking way.
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We also have
Ly A0, v) = A6l0, v), [25]

leading to the relation between the eigenstates | f(a)) of the
collision operator 6| f(a)) = z.| Aa)) and the eigenstates |[F(a))
of the Liouvillian (Eq. 21):

|fl@) = J dul0, wF{(u; ), and

[F(a)) = Alf(a)) = f dul®g F§(u; a), [26]

where F§(u; a) satisfies the eigenvalue equation (with &, =

za0),
f du 6y,.0.F3(u; @) = £, F{(v; ). [27]

[To obtain these relations, we have used the relation A9 =
© ©
AP 0, where P = Q7! [ dul|0, u)0, u| is a projection operator
© ')

for the delocarized component, (P)?2 = P, in the box nor-
malization formalism.] As the collision operator 6 v,y is well
defined in the limit of large volumes, &, and Fg(v; a) are also
well defined in this limit.

Since |®g,,) have a delta function singularity, the eigen-
states |F(a)) also have a delta function singularity:

(k, V|[F(a)) = F(v; 0)8(k) + Fi(v; a). (28]

Moreover, the nonsingular part Fy is a functional of the
singular component F§, as one can see from Eq. 26.

For weak-coupling interactions the eigenvalue problem
(Eq. 27) of the collision operator reduces to the eigenvalue
problem for the Fokker-Planck operator in Eq. 18. It is well
know that the Fokker-Planck operator for central forces for
three-dimensional case has the same structure as the orbital
angular momentum operator in quantum mechanics (11).
Therefore, the eigenstates of the Fokker-Planck operator are
given in terms of the spherical harmonics Fd(v; a) = w=18(|v|
- w)Y7(6, ¢) for a = (w, I, m). The eigenvalues are then
given by &, = —iA2Aw=3l(l + 1), where A = 475 [§ dg ¢*|V |2
Forl = m = 0, Eq. 26 leads to the microcanonical distribution
for the equilibrium mode of the Liouvillian. We also see that
the eigenstates of the Liouvillian break the time symmetry, as
the nonvanishing eigenvalues are imaginary numbers. [The
solution of our eigenvalue problem can also be tested by
computer simulations. This has already been done for the
quantum case which is numerically easier to handle (T.P.,
L.P., K. H. Wen, and Z. L. Zhang, unpublished data).]

For the class of delta singular functions the only possible
invariant of the motion is the microcanonical distribution. All
other invariants are destroyed due to the resonances. There-
fore, potential scattering is nonintegrable in conjunction with
persistent scattering.

As ¢, is a well-defined finite number in the continuous limit
Q) — =, the eigenvalue z, is an infinitesimal quantity. We have
verified the relation z, = Q~1£, by numerical simulation; the
volume dependence corresponds to the fact that the system
cannot reach equilibrium over a finite time scale because of
a single scattering. We need repeated scattering. We have
verified this statement for a simple model of a many-body
system—i.e., the Lorentz gas. We then obtain a finite eigen-
value for the Liouvillian that is proportional to the concen-
tration c of the scatterers (unpublished data).
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Section 5. Concluding Remarks

For a long time, classical dynamics appeared a closed sub-
ject. This, however, is no more so when nonintegrable
systems in the sense of Poincaré are considered. We can now
go beyond Poincaré’s negative statement (nonexistence of
invariants analytic in the coupling constant) for classes of
dynamical systems, such as LPS. For these systems, we have
constructed singular Poincaré invariants (which are analytic
in the coupling constant but involve distributions). They are
however only asymptotic invariants. In conjunction with
delocalized distributions they decay according to diffusive
modes. That shows that there exist nonlocal effects in
classical mechanics which can only be described on the level
of ensembles. These effects can be studied by computer
simulations. They show that a more general formulation of
classical mechanics is needed when dealing with LPS. This
signals the appearance of another form of chaos as we have
to go beyond the trajectory description.

For persistent scattering that corresponds already to a LPS,
there appear specific singularities in the distribution functions
(see Eq. 2). The appearance of such singularities is quite
general. They appear as well in quantum theory and in
statistical mechanics, where they lead to the existence of
reduced distribution functions in the thermodynamic limit (9).
For this type of distribution functions we must consider other
solutions of the Liouville equation that are not reducible to
trajectory dynamics (or to wave functions in quantum me-
chanics). For this class of situations we obtain a unified
formulation of laws of physics that is intrinsically statistical
and irreversible. In contrast to the traditional perspective, the
laws of physics express ‘‘possibilities,”” rather than ‘‘certi-
tudes.”’
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interesting remarks. We also acknowledge U.S. Department of
Energy Grant DE-FG05-88ER13897, Robert A. Welch Foundation
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