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Abstract

Recent advances in laboratory sciences hold a promise for a ‘leap forward’ in understanding the 
aetiology of complex human diseases, notably cancer, potentially providing an evidence base for 
prevention. For example, remarkable advances in epigenomics have an important impact on our 
understanding of biological phenomena and importance of environmental stressors in complex 
diseases. Environmental and lifestyle factors are thought to be implicated in the development of a 
wide range of human cancers by eliciting changes in the epigenome. These changes, thus, represent 
attractive targets for biomarker discovery intended for the improvement of exposure and risk 
assessment, diagnosis and prognosis and provision of short-term outcomes in intervention studies. 
The epigenome can be viewed as an interface between the genome and the environment; therefore, 
aberrant epigenetic events associated with environmental exposures are likely to play an important 
role in the onset and progression of different human diseases. The advent of powerful technologies 
for analysing epigenetic patterns in both cancer tissues and normal cells holds promise that the 
next few years will be fundamental for the identification of critical cancer- and exposure-associated 
epigenetic changes and for their evaluation as new generation of biomarkers. Here, we discuss new 
opportunities in the current age of ‘omics’ technologies for studies with prospective design and 
associated biospecimens that represent exciting potential for characterising the epigenome as a key 
component of the fetal exposome and for understanding causal pathways and robust predictors of 
cancer risk and associated environmental determinants during in utero life. Such studies should 
improve our knowledge concerning the aetiology of childhood cancer and identify both novel 
biomarkers and clues to causation, thus, providing an evidence base for cancer prevention.

Introduction

With an annual incidence rate ~150 per million children in developed 
countries and supposedly lower rates in developing countries, child-
hood cancer (CC) is relatively rare. In addition, for some common 
cancer types, such as acute lymphoblastic leukaemia, survival rates 
have dramatically improved in developed countries. However, over-
all incidence of cancer in children and adolescents has been stead-
ily increasing in most countries, and the burden of disease in many 

countries is substantial (1), particularly that it is still the leading 
cause of disease-related death among children and adolescents (ages 
1–19 years) in many countries. In addition, among cancer survivors, 
several disease-related late effects have been described, including an 
increased risk of secondary malignancy and social disadvantages. 
Therefore, despite the successes in treatment, identification of pre-
ventable risk factors and high risk groups as well as understanding 
the natural history of CC remain the preferred options for successful 
prevention.
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About 5% of all CCs are caused by an inherited mutation and 
even in subtypes like retinoblastoma (a cancer of the eye that devel-
ops mainly in children) or acute lymphoblastic leukaemia, in which 
genetic factors attribute to higher risks, only 25–40% of cases would 
exhibit genetic alterations (NCI, USA). For example, retinoblastoma 
is associated with an inherited mutation in the RB1 tumour suppres-
sor gene (2) in 25–30% of cases, and retinoblastoma accounts for 
only ~3% of all cancers in children. Genetic mutations that cause 
cancer can arise during the development of a foetus in the womb. For 
example, one in every 100 children is born with a genetic abnormal-
ity that increases risk for leukaemia, although only one child in 8000 
with that abnormality actually develops leukaemia (3,4).

A number of modifiable risk factors have been linked with 
CC. It is likely that the effects of these risk factors are mediated 
through gene regulatory pathways including epigenetic mechanisms. 
Adaptive responses during in utero life may also include epigenetic 
changes (including DNA methylation) in different developmental 
pathways (such as production and expansion of somatic stem/pro-
genitor cells, metabolic changes and production of and sensitivity to 
hormones), a combination of which may alter normal development 
of tissues and organs. These epigenetic changes and other related 
molecular alterations may be evident at birth and thus could consti-
tute powerful mechanism-based biomarkers that could be exploited 
in epigenetic-based interventions (5). For example, the epigenetic 
mechanisms could provide attractive targets for prenatal modula-
tion of different processes related to disease risk in childhood and 
adulthood (6). Furthermore, with the development of epigenomic 
high-throughput arrays and deep sequencing-based profiling, it is 
now possible to perform comprehensive analysis of the epigenome 
and other ‘omes’ of cord blood samples collected prospectively at 
birth and analysed later in life after cancers developed and explore 
potential links between ‘omics’ measures, exposures and CC. These 
technologies together with robust protocols to analyse the blood epi-
genome offer new avenues to conduct epigenome-wide association 
studies (EWAS), either alone or as a part of the ‘exposome’ charac-
terisation (7), in a similar way to genome-wide studies. Association 
studies in humans between early-life environmental exposures and 
epigenome-wide changes in DNA methylation are summarised in 
Table 1.

In addition, there is accumulating evidence that fetal life and early 
childhood might have an important effect on health in adulthood, 
too. Early exposure to poor diet, lack of physical activity, tobacco 
smoke and other environmental exposures can alter child’s growth 
pattern and may result in altered metabolism, obesity and risk of 
chronic disease in adulthood. Epigenetic changes in the regulation of 
genes have been evoked as important mechanisms and could condi-
tion rapid growth and childhood obesity through premature changes 
in hormonal profiles and early maturation. However, the role of spe-
cific nutrients and environmental exposure during fetal life and early 
childhood on epigenetic changes remain unclear. New developments 
in epigenomics and exposomics can be applied in well-characterised 
ongoing birth cohorts to evaluate the impact of early exposure on 
intermediate markers of cancer.

Evidence for prenatal origin of CC

Despite the fact that overall incidence of cancer in children and 
adolescents has been steadily increasing worldwide (1,16), there 
have been limited advances in our understanding of the causes and 
molecular mechanism underlying these malignancies. Evidence from 
epidemiological studies suggests that environmental ‘exposures’ 

experienced in utero may influence the risk of developing diseases in 
childhood (17). Various studies have linked, though with insufficient 
evidence, exposure to infectious agents, parental smoking, pesticides 
and maternal folic acid intake to CC aetiology (3,4). Compelling 
evidence also suggests a link between high birth weight and early-life 
neoplasia. Most of this evidence relates to childhood leukaemia, the 
largest subgroup of CC (3,4). That the relevant timing for the effect 
of these exposures on CC includes fetal life is supported by data from 
neonatal blood spots, which show that the initiating events for leu-
kaemia occur during fetal development (18,19). However, despite the 
potential importance of ascertaining whether these exposures might 
truly be preventable causes of CC, the evidence base remains fairly 
weak. Apart from the reproducible association of high birth weight 
with leukaemia in children, for which prospective evidence exists, 
the majority of associations in observational studies have relied on 
retrospective evidence, often linked to recall bias, and attributing 
risks to rare genetic events in only few CC subtypes. Furthermore, 
the mechanisms by which such exposures might predispose to CC 
are not well understood. As for prospectively designed cohorts, 
particularly those involving follow-up on environmental data, they 
have often been restricted to statistically underpowered sample sizes. 
Similarly, for disease aetiology, evidence linking environmental fac-
tors to CC is lacking or conflicting, apart from the effect of ionis-
ing radiation that was based on incidental findings from World War 
II atomic bombs and accidents at nuclear power plants. Therefore, 
studying CC in multiple cohorts worldwide is crucial to reach suf-
ficient sample sizes and data on environmental causes. If coupled to 
prospective designs with available biospecimens and questionnaire 
data and other ‘physical’ metrics, such studies afford new opportuni-
ties for taking a ‘leap forward’ in understanding causal pathways in 
the current age of ‘omics’ technologies to identify robust predictors 
of cancer risk.

Changes in the epigenome during in utero life 
and predisposition to CC

Epigenetic mechanisms play the key role in the establishment and 
stable propagation of gene activity states over cell generations. 
Epigenetic mechanisms are believed to play a critical role in modulat-
ing the gene expression programme in response to endogenous cues 
and environmental exposures (20,21). In contrast to the genome, the 
epigenome is dynamic owing to its plasticity and altered epigenetic 
states may represent stable fingerprints of environmental exposure. 
Experimental and epidemiological studies provided the evidence of 
the effects of environmental exposures on the epigenome (20,21). 
DNA methylation, histone modifications and non-coding RNAs 
are the main epigenetic mechanisms that control the gene expres-
sion programme during development and cell differentiation. DNA 
methylation is the most extensively studied epigenetic mark in both 
normal and cancer cells and a profound deregulation of the methyl-
ome is a common event in human malignancies (22).

Previous studies suggested that a ‘window of vulnerability’ exists 
during in utero development, within which maternal factors and 
exposures may alter the fetal epigenome, increasing susceptibil-
ity to childhood diseases. Interestingly, the frequent chromosomal 
rearrangements and their fusion proteins in childhood leukaemia 
usually target or recruit epigenetic modifiers, such as histone acetyl 
transferases, histone deacetylases and DNA methyltransferases 
(23). Additionally, chromosomal translocations, the most consist-
ent abnormality in acute lymphoblastic leukaemia (24), may them-
selves be induced by epigenetic changes, particularly alterations in 
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methylation of CpG-rich areas (hot spots), which increase suscep-
tibility to DNA breaks (25). In this sense, methylome deregulation 
may act as an early step in leukaemogenesis and may cause per-
sistent chromatin alterations that provoke long-lasting effects (26). 
Furthermore, if alteration in the methylome occurs in stem/progeni-
tor cells, the epigenetic deregulation would be predicted to be carried 
across cell generations with the potential to be manifested later as 
disease in a manner consistent with the epigenetic progenitor model 
of cancer progression (27).

Aberrant DNA methylation and cancer

Aberrant DNA methylation is observed in virtually all types of can-
cer and involved in various steps of tumour development (22); there-
fore, a precise map and eventual understanding of the methylome 
changes associated with cancer onset and progression are funda-
mental to improving our abilities to successfully diagnose, treat and 
prevent CC. The molecular mechanisms involving DNA methylation 
may modulate the gene expression programme in response to envi-
ronmental exposures, and it has been suggested that the epigenome 
functions as an interface between the genome and the environment 
(21,28,29). The effects of environmental agents on the methylome 
have been either demonstrated experimentally using different ani-
mal and cellular models or inferred from epidemiological studies. 
Although the epigenome is dynamic owing to the reversible and plas-
tic nature of epigenetic states (30–32), an altered methylome may 
represent a stable signature of environmental exposure (21,33). In 
addition, recent studies indicate that blood-based DNA methyla-
tion testing may provide a potentially useful biomarker for cancer 
diagnostics. This can be explained by two alternative rationales, 
which are not mutually exclusive: (i) DNA methylation alterations 

can be induced during in utero development (by environmental fac-
tors), and that these changes may be propagated as constitutional 
epimutations in all tissues, although they may constitute the basis 
for increased cancer risk later in life only in certain tissues and (ii) 
DNA methylation patterns in blood cells (as a surrogate tissue) may 
reflect epigenome alterations induced by environmental stimuli that 
constitute cancer risk factors in other tissues.

Analysing the methylome of cord blood cells 
using prospective birth cohorts

Changes in the epigenome during in utero life (either as a result of 
maternal exposure or stochastic events) may be at the heart of devel-
opmental programming of CC (Figure 1). Accepting the limitations 
afforded by the incidence of CC, this can best be tested by investigat-
ing the epigenetic profile of an infant’s cord blood in existing studies 
with (i) clinically defined incidence of CC and (ii) data on maternal 
environmental exposures in utero (Figure 1). Such associations have 
not been studied previously because both biospecimens collected at 
birth and follow-up for CC among those sampled are necessary. This 
material can only be provided by prospective cohort studies of suf-
ficient size that have collected biospecimens on a large fraction of 
subjects at birth. Such studies are extremely rare and in isolation 
are generally underpowered to examine associations of this nature.

While there has been research on the association of maternal 
exposures with epigenetic signatures (9) (Table I), no study has 
extended this to obtain evidence on CC occurrence in the infants of 
these mothers. This is because to date there has been no prospective 
cohort large enough to provide a meaningful number of incident 
CCs that could be included in such an examination. Only with the 
recent establishment of the International Childhood Cancer Cohort 

Figure 1. In utero exposures and the concept of a developmental origin of CC. This concept suggests that susceptibility to childhood and adult diseases is 
strongly influenced through adaptive responses, including the deregulation of the epigenome, to in utero conditions. These responses may include changes in 
different developmental pathways (such as production and expansion of somatic stem/progenitor cells, metabolic changes and production of and sensitivity to 
hormones), a combination of which may alter normal development of tissues and organs. These changes could persist throughout postnatal life and constitute 
the bases for differential susceptibility to disease.
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Consortium (I4C), which combines the efforts of a growing number 
of mother/child cohorts internationally (34), has such a possibility 
existed. Currently, there are ~500 000 births in the I4C database for 
which data have been collected on maternal exposures during preg-
nancy, biospecimens collected at birth and incident CC ascertained 
during early life (Table 2) (www.mcri.edu.au/research/research-pro-
jects/i4c/). With ~800 CC cases (including ~250 leukaemias), I4C is 
uniquely positioned to investigate the link between early-life expo-
sures, neonatal epigenetic profile and development of CC.

CC heterogeneity is an important consideration in these studies 
and may weaken some correlations between epigenetic signatures 
and cancer predisposition but may itself be an important criterion 
allowing the identification (if existing) of epigenetic signatures com-
mon across some CC subtypes but not others. For example, such sig-
natures may be associated with birth weight pathways, particularly 
considering that increased birth weight associates with increased 
risk for many CC types (our unpublished data). Large-scale prospec-
tive studies offer the opportunity of investigating such possibilities, 
especially that causal evidence for CC is minimal. Importantly, the 
heterogeneous CC design allows some cancer types to serve as posi-
tive controls for some signatures and negative controls for others, 
relative to other tumour categories, as we have recently observed 
(our unpublished data). Hence, it is equally important to know, e.g. 
whether some biomarkers specific for childhood leukaemia would 
also be associated or not with central nervous system tumours, and a 
heterogenous CC design of samples (altogether homogeneously ana-
lysed for methylation biomarkers) would serve as a good strategy 
to address such questions. A  recent study suggested that common 

mutations could be observed among childhood diseases of intrinsi-
cally different origins, such as fibrodysplasia ossificans, which turns 
a child’s muscle into bone, and diffuse intrinsic pontine glioma, an 
incurable paediatric brainstem tumour, which exhibits an epigenetic 
mutation in histone H3 in 90% of patients (35). The early onset 
of CC in life allows much less time for accumulating mutations 
than is the case of adult tumours and, hence, childhood tumours 
and diseases may be less divergent mechanistically than their adult 
equivalents. Moreover, different CC subtypes may cluster together 
not necessarily because of common epigenetic mechanisms but due 
to common environmental causes. It is well established that some 
exposure factors, such as radiation or smoking, associate with sev-
eral distinct tumour types even in adulthood, and thus, a large-scale 
heterogeneous CC approach offers an opportunity to test whether 
similar scenarios could exist across different tumour types in chil-
dren. Therefore, considering CC heterogeneity as a limitation is 
arguable in such studies, and this heterogeneity can instead be con-
sidered as an advantage, specifically if the study is well designed and 
sufficiently powered.

Power calculation and statistical analysis in 
prospective epigenomic studies of CC

The recent availability of high-throughput epigenomic analyses 
offers new possibilities to address previously untested hypothesis on 
the link between DNA methylation variation and disease susceptibil-
ity. Specifically, bead array epigenomic analyses of cord blood sam-
ples and neonatal blood spots have shown that DNA methylation 

Table 2. Maternal factors and risk exposures during pregnancy for six I4C cohorts that are currently participating in data sharing and pooling

Variable ALSPAC CPP DNBC JPS MoBa TIHS

Age ✓ ✓ ✓ ✓ ✓ ✓
 Maternal age ✓ ✓ ✓ ✓ ✓ ✓
 Paternal age, years ✓ ✓ ✓ ✓ ✓ ✓
Education
 Maternal education, years ✓ ✓ ✓ ✓ ✓ ✓
 Paternal education, years ✓ ✓ ✓ ✓ ✓ ✓
Marital Status
 Single, married, divorced, living together… ✓ ✓ ✓ ✓ ✓ ✓
Occupation
 Maternal occupation ✓ ✓ ✓ ✓ ✓ ✓
 Paternal occupation ✓ ✓ ✓ ✓ ✓ ✓
Smoking
 Maternal, prenatal smoking ✓ ✓ ✓ ✓ ✓ ✓
 Passive smoking, prenatal ✓ ✖ ✓ ✓ ✓ ✓
Alcohol
 Maternal, prenatal alcohol consumption ✓ ✖ ✓ ✖ ✓ ✓
Maternal Adiposity
 Maternal prepregnancy body mass index, kg/m2 ✓ ✓ ✓ ✓ ✓ ✓
 Maternal pregnancy weight gain, kg ✓ ✓ ✓ ✓ ✓ ✓
Diabetes
 Maternal diabetes mellitus (DM) ✓ ✓ ✓ ✓ ✓ ✖
 Paternal DM ✓ ✓ ✓ ✓ ✓ ✖
Reproductive History
 Parity (number of prior live births) ✓ ✓ ✓ ✓ ✓ ✖
 Prior miscarriages ✓ ✓ ✓ ? ✓ ✖
Radiation Exposure
 X-ray exposure, prenatal ✓ ✓ ✖ ✓ ✓ ✖

ALSPAC, The Avon Longitudinal Study of Parents and Children, UK; CPP, The Collaborative Perinatal Project cohort, USA; DNBC, The Danish National Birth 
Cohort, Denmark; JPS, The Jerusalem Perinatal Study, Israel; MoBa, The Norwegian Mother & Child Cohort Study, Norway; TIHS, The Tasmanian Infant Health 
Survey, Australia.
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variation can be reliably detected at birth (9,36). Such studies allow 
the evaluation of associations between levels of methylation in a very 
large number of loci and the risk of CC and/or exposures. However, 
the large number of tested loci (p) in methylome-wide technologies 
and the constrained number of prospective samples available for 
analysis (n) oblige the use of less direct approaches than the simple 
site-by-site methods used in GWAS. Strategic choices are necessary 
to extract value from the available samples.

Methods of dealing with the n < p situation in omics have been 
surveyed (37). They note in particular the highly correlated nature 
of this data, which makes the use of variable selection techniques 
less suitable. It should be noted that this is not purely the result of 
common biological pathways or functions but is also a result of finite 
sample size: it is not possible to have more than n uncorrelated vari-
ables in a sample of size n. Dimensional reduction techniques are well 
adapted to extracting simpler structure from such data, but one is 
forced to choose between unsupervised (principal component analy-
sis [PCA] related) and supervised (partial least squares [PLS] related) 
approaches. Using an unsupervised method will extract the most 
important sources of variation, but these may not be related to disease 
status. Supervised methods can detect which components of variation 
are associated with case status but introduce a difficult multiple com-
parison problem (not discussed in ref. 37), which needs to be corrected 
for by Bonferroni or false discovery rate (FDR) methods, for example. 
Evaluating significance levels using PLS-type methods can only be per-
formed by computationally intensive permutation or bootstrapping 
methods, which must be repeated for all outcomes tested. In contrast, 
PCA-type reductions are blind to case status and, therefore, do not 
result in any increased multiple testing burden beyond that associ-
ated with the number of retained components. A further advantage of 
unsupervised methods is that the definition of principal components 
can be based on control subjects alone: controls are far more plentiful 
in a CC cohort and their biological samples can be more readily used 
for exploratory analyses. Furthermore, many of the control-based 
methylome clusters may often be embedded in cases, with only their 
magnitudes of variation being different in the diseased tissues. This 
is particularly prominent in prospectively designed studies, in which 
cases, similar to controls, also represent normal tissues.

As an example of power calculations, we consider the association 
of CC with the ~485 000 methylation sites analysed by HM450K bead 
array (Illumina), comparing 250 prospective cases to 500 controls. 
Using continuously valued predictors, the power is strongly affected by 
the variability across controls. Using pilot data from I4C cord blood 
samples assayed via the Illumina bead array technology, we found 
that the beta values (log-odds of methylation) had standard deviations 
(SDs) approximately independent of means. The 75th, 90th, 95th and 
99th centiles of SD across the sites were estimated at 0.355, 0.443, 
0.530 and 0.971, respectively (our unpublished data), lower than that 
found in healthy adult samples. With an FDR of 5%, testing each site 
for association, effect sizes (difference in beta) needed for minimum 
80% power to find a single associated site would be, respectively, 0.17, 
0.21, 0.25 and 0.46 depending on the level of noise at the site.

In contrast, given n samples, there are at most n independent 
linear combinations of methylation sites, and these explain 100% 
of the variance in the samples. So if we restrict to 250 components 
in the above comparison, the multiple comparison penalty is far 
smaller and, hence, the power is considerably enhanced: the same 
expected differences in beta would give > 99% power, or 80% 
power would be obtained with differences of 0.125, 0.156, 0.187 
and 0.342. In particular, one avoids redundant tests of correlated 
variables. Similar arguments can be made for diet or other question-
naire-based exposures.

Methylation marks can also be biologically clustered, e.g. by pro-
moter region and by gene. This has the advantage of being more 
easily interpreted than a principal component, but the disadvan-
tage is that the number of genes is larger and there will be corre-
lation between gene-average methylation values. Proper statistical 
analysis, covering early phases of study design to more downstream 
stages after data acquisition, is crucial, particularly in prospectively 
designed studies in which small-to-moderate effect sizes are expected 
and/or in which cancer heterogeneity is an important factor.

DNA methylome profiling suitable for  
large-scale studies

To characterise the methylome in neonatal blood samples, methyl-
ome profiling in blood samples of CC cases and controls using a large 
sample of subjects from prospective cohorts needs to be performed. 
A wide range of approaches is now available for assessing patterns 
of DNA methylation in normal and cancer cells. With the advent of 
high-throughput and genome-wide profiling technologies, it is now 
possible to study methylation profiles at both genome-wide scale 
and high resolution. All methods for DNA methylation analysis are 
based on one of three techniques: bisulfite conversion, affinity enrich-
ment of methylated DNA and digestion with methylation-sensitive 
restriction enzymes (38–43). Combining these techniques with DNA 
microarrays and high-throughput sequencing has made the mapping 
of DNA methylation feasible on a genome-wide scale (41,42).

The large number of CpG sites to be studied in the large sample 
set in this study means that a fast, parallel, relatively inexpensive tech-
nology for DNA methylation analysis with high degree of automa-
tion is necessary. The most high-resolution and scalable protocols use 
bisulfite conversion of unmethylated DNA in combination with high-
throughput sequencing or microarray analysis as the read-out (44). 
Epigenomic approaches involving microarrays fulfil these conditions. 
Among the major microarray-based methods is BeadArray/Infinium 
chemistry (Illumina) that allows for genome-wide analysis of meth-
ylation at single-base resolution (45,46). This versatile approach 
can be applied to a modest number of loci (multiples of 96) up to a 
whole-genome array with the 450K Infinium Methylation BeadChip. 
A strength of the technique is that it provides quantitative evaluation 
of specific cytosines and can process many samples in parallel (45,47). 
The 450K Methylation BeadChip allows the simultaneous interro-
gation of >450 000 CpG sites, spanning all RefSeq genes (including 
micro RNA genes). Accurately identifying aberrant methylation using 
the Infinium 450K technology requires the establishment of a reliable 
preprocessing procedure to lower measurement errors and the devel-
opment of advanced computational and statistical methods that can 
cope with the large number of measurements. Despite the availability 
of a large set of processing methods, accurate processing of Infinium 
450K data remains difficult due to the lack of a reference method and 
because of several underestimated confounding parameters such as 
cross-reactive probes, probes containing common single nucleotide 
polymorphism or differences between the Infinium I and Infinium II 
probe types. To eliminate measurement variations due to different 
types of external parameters, including ‘batch effects’, various nor-
malisation methods have been developed and compared (48).

In addition to the microarray-based assays, whole-genome 
bisulfite sequencing (WGBS) and reduced representation bisulfite 
sequencing (RRBS) provide comparable accuracy but differ substan-
tially in terms of their genome-wide coverage, robustness towards 
quality samples, susceptibility to batch effects and cost (45,49). 
WGBS covers the vast majority of CpGs in the human genome, mak-
ing it the technology of choice for large-scale reference epigenome 
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projects such as BLUEPRINT (50) and IHEC (51). However, costs 
per sample makes WGBS currently unfeasible for large cohort stud-
ies (and will for the foreseeable future remain limited to relatively 
small sample numbers). In contrast, the Illumina Infinium 450K 
microarray is relatively affordable and widely used for measuring 
DNA methylation in large sample cohorts. However, because of the 
hybridisation step, the assay is much more susceptible to batch effects 
than ‘digital’ sequencing-based methods such as WGBS and RRBS.

RRBS provides a promising alternative to both WGBS and the 
Infinium assay, as it combines the robustness of bisulfite sequencing 
with a selection step that restricts the analysis on some of the most 
‘informative’ CpGs in the genome. RRBS covers 5–10% of all CpGs by 
sequencing only a defined 1% of the human genome. Thus, the statisti-
cal power for detecting small differences in DNA methylation is sub-
stantially improved compared with both WGBS and the Infinium assay 
because the deeper coverage per CpG directly translates into higher 
quantitative accuracy of the measurement. Despite the enrichment for 
CpG-rich regions, the relatively short recognition motif CCGG results 
in significant coverage of genomic regions that are not particularly 
CpG-rich, including introns and gene deserts. Finally, RRBS also pro-
vides extensive information on non-CpG methylation (52), and it can 
be combined with additional preprocessing steps in order to measure 
5-hydroxymethylation alongside the more classical DNA methylation 
patterns (53). Therefore, RRBS appears to be the suitable assay for 
studying DNA methylation in a large cohort of samples, some of which 
are available only as  formalin-fixed paraffin-embedded tissue blocks.

Challenges associated with epigenomic 
analysis of neonatal blood samples

Blood samples obtained at birth (cord blood or neonatal blood spots) 
represent an attractive material for characterising the fetal exposome; 
however, the reliable profiling of DNA methylome in these samples 
(particularly blood spots) has proven to be technically challeng-
ing (54). In particular, the amount and quality of DNA in archived 
blood spots is limited and, therefore, requires considerable efforts to 
develop a reliable and robust methodology that would allow sensitive 
detection of genome-wide DNA methylome changes in blood sam-
ples collected at birth. I4C allows analysis of methylome using DNA 
obtained from cord blood samples and blood spots collected within 
I4C cohorts. As DNA from blood spots is available in limited quanti-
ties, it is important to optimise DNA extraction methods from these 
samples. We have recently tested several DNA extraction protocols 
and optimised the methods that yield optimal quantity and quality 
of DNA, particularly suited for methylome-wide studies. The opti-
mised strategies were successfully tested on blood spots from several 
cohorts with satisfactory results (55); therefore, our protocols may 
prove highly useful in DNA methylome analyses.

Integrative biostatistics and identification of 
biomarker candidates of CC and associated in 
utero factors

Using the DNA methylation data generated in the methylome-wide 
screens, it is possible to identify methylation markers significantly 
and consistently associated with CC. Furthermore, statistical analy-
ses need to be refined to explore possible biological links of these 
markers to known cancer risk factors and to explore the use of these 
markers for the purpose of CC risk prediction. A variety of statisti-
cal approaches, including multiple regression models, can be applied 
to interrogate risk factor variables and their role in determining 

methylation status. In all analyses, careful control of type I  error 
and FDR need to be implemented. These analyses should (i) identify 
methylation markers that can be measured in cord blood and blood 
spot DNA and are significantly associated with CC risk, overall or 
by CC subtype; (ii) identify plausible mechanisms underlying disease 
development, by inferences about specific gene loci involved, and 
through analyses of methylation markers in blood samples taken 
at birth as potential intermediates between CC risk factors (includ-
ing parental smoking, infections during first trimester of pregnancy, 
pesticides, herbicides, alcohol, diet, demographic data, data on the 
pregnancy and data on the baby) and CC as an outcome, overall and 
by cancer subtype and (iii) examine the use of blood-based methyla-
tion markers for improvement of CC risk prediction models (by CC 
subtype) based on standard epidemiologic risk factor information.

Using bioinformatics and high-throughput procedures to analyse 
the methylome data of DNA from cord blood samples, a selection 
can be made of candidate methylation markers that are measurable 
in blood samples and have the highest likelihood of being related to 
CC. Conditional logistic regression models may be used, testing for 
the association of CC risk to each of the markers individually and 
accounting for the case–control matching by cohort centre. Further 
models can incorporate additional CC risk factors and/or their 
interaction terms with methylation markers to explore possible con-
founding or effect modification. I4C provides the following data that 
may be quantified in the form of total environmental load score in 
utero to enable quantitative correlations (Table 2): (i) Environmental 
exposure: parental smoking, infections during first trimester of preg-
nancy, pesticides, herbicides, alcohol, diet (folic acid, vitamins, bio-
flavonoids, phytoestrogens) and ionising radiation; (ii) Demographic 
data: socioeconomic status, parental age and parental occupation; 
(iii) Data on the pregnancy: gestational age, mother’s parity, pla-
centa weight, obstetric variables (gestational diabetes, preeclampsia, 
abruptio placentae) and (iv) Data on the baby: gender, birth weight 
and birth length. For children who developed acute lymphoblastic 
leukaemia, data on immune-phenotyping and karyotyping may be 
retrieved.

Comprehensive statistical models could be also used to exam-
ine the overall risk prediction potential by the methylation markers 
combined, using selected statistical procedures for inclusion of only 
those markers that contribute significantly to risk prediction. Overall 
model performance for CC risk prediction could be expressed in 
terms of increments in the C-statistic (area under the receiver operat-
ing characteristic curve) and integrated discrimination improvement 
statistics. Statistical overfitting may be adjusted for by N-fold cross-
validation. Finally, the incremental risk discrimination by methyla-
tion markers can be examined in a statistical prediction model that 
includes classical epidemiological risk factor information (as in the 
well-known model by Gail (56), plus a predefined score based on 
genetic polymorphisms) (57).

Cross-omics approaches to characterise the 
fetal exposome

The exposome refers to the totality of exposures to which an individual 
is subjected, from conception onwards (7,58,59). By performing the 
simultaneous and comprehensive search of large numbers of potential 
targets without prior hypotheses, omics technologies provide opportu-
nities for the discovery of a new generation of biomarkers of exposure 
and disease risk, potentially linked to mechanistic pathways (7,60). 
Therefore, methylome analysis of neonatal blood samples of large 
mother:child cohorts may be combined with other ‘omics’ analyses in 
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the context of multidisciplinary initiative aiming to characterise the 
fetal exposome. Other omics may include those devised to analyse 
small molecules, reactive electrophiles, and large molecules derived 
from both exogenous and endogenous exposures. These methods have 
not yet been applied to characterise the fetal exposome, although cord 
blood specimens should provide a suitable vehicle for doing so and also 
for interrogating other components of the exposome (transcriptomic, 
epigenomics and proteomic changes) in the same samples.

The efforts aimed at characterising the fetal exposome could 
be based on prospectively collected cord blood samples (including 
DNA, RNA and plasma/serum) of CC cases and controls from the 
I4C cohorts for which high-quality epidemiological and clinical data 
are available. In addition to the methylome profiling based on DNA, 
the fetal exposome characterisation may take advantage of other 
new powerful technologies for analysis in an integrated manner of 
the transcriptome (based on RNA), metabolome and adductome 
(using plasma or serum, whichever is available) and infectome (rely-
ing on DNA to check for the ‘presence’ of viral genes and RNA to 
assess whether identified viruses are transcriptionally ‘active’).

The fetal exposome data inevitably consist of very high-dimen-
sional intercorrelated explanatory variables. A priori knowledge of 
interesting groups of markers (like gene sets, biochemical pathways) 
is sparse, so data reduction must be data-driven, and can be done by 
using a cross-validation-based methodology (61). The exposome con-
cept is relatively new, and deciphering its molecular components may 
very likely be feasible with the current age of omics but remains an 
interesting challenge requiring the close collaboration among epidemi-
ologists, biostatisticians/bioinformaticians and laboratory scientists.

Conclusions and perspectives

Building on materials obtained from a consortium of the largest birth 
cohorts globally, it is now possible to test the association between 
prospectively collected exposure data and exposome measures 
obtained from biospecimens collected at birth and subsequent inci-
dent CC. Using both the exposure and exposome measures, the asso-
ciations for those risk factors for which some evidence has already 
emerged from previous case–control and biological studies can now 
be explored in detail, but also new risk factors may be identified. 
The identification of an exposome features at birth associated with 
CC risk and their in utero determinants may change our paradigm 
of tumourigenesis and increase our knowledge about the underly-
ing mechanisms and potential developmental origins of CC. This 
may also allow us to evaluate identified novel biomarkers in new 
longitudinal mother:child cohorts that facilitate studying molecular 
changes and cancer risk throughout the life course from birth up 
to adulthood (7,14,62 –64). This should also provide opportunities 
for additional mechanistic studies that may provide insights into the 
development of malignancies and other diseases later in life. A high-
resolution characterisation of the fetal methylome and the early-life 
exposome should improve our knowledge concerning the aetiology 
of CC and identify both novel biomarkers and clues to causation, 
thus, providing an evidence base for cancer prevention.
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