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How can the “strengths” of risk factors, in the sense of howwell they discriminate cases from controls, be compared

when they are measured on different scales such as continuous, binary, and integer? Given that risk estimates take

into account other fitted and design-related factors—and that is how risk gradients are interpreted—so should the pre-

sentation of risk gradients. Therefore, for each risk factor X0, I propose using appropriate regression techniques to

derive fromappropriate population data the best fitting relationship between themean ofX0 and all the other covariates

fitted in the model or adjusted for by design (X1, X2, . . . , Xn). The odds per adjusted standard deviation (OPERA)

presents the risk association for X0 in terms of the change in risk per s = standard deviation of X0 adjusted for X1,

X2, . . . , Xn, rather than the unadjusted standard deviation of X0 itself. If the increased risk is relative risk (RR)-fold

overA adjusted standard deviations, thenOPERA = exp[ln(RR)/A] = RRs. This unifying approach is illustrated by con-

sidering breast cancer and published risk estimates.OPERAestimates are by definition independent and can be used

to compare the predictive strengths of risk factors across diseases and populations.

breast cancer; relative risk; risk factor; standard deviation; strength of association

Abbreviations: BMI, body mass index; BRCA1 and BRCA2, breast and ovarian cancer susceptibility genes; DA, dense area;

OPERA, odds per adjusted standard deviation; PDA, percent dense area; RR, relative risk.

Comparing the “strengths” of risk factors in the sense of
howwell they discriminate cases from controls is problematic
when they aremeasured on different scales. For example, how
does one compare mammographic density and breast and
ovarian cancer susceptibility gene (BRCA1)mutation status as
risk factors for breast cancer, and how do these compare with
number of livebirths as a protective factor? The first is mea-
sured on a continuous scale, the second is binary, and the third
is on an integer scale.

First, we need to think about what is meant by “strength.”
While carrying aBRCA1mutationhas a substantial influenceon
individual risk, carriers are rare. A binary risk factor with the
same influence on risk but that is more common in the popu-
lation will better discriminate cases from controls. Therefore,
for a binary risk factor, the prevalence (and not just the relative
risk) plays a role in defining strength in the sense above.

When it comes to comparing strengths across continuousmea-
sures, one approach is to consider categories defined by the per-
centiles of the risk factor for the controls and then to estimate the

ratio of risks across extreme but arbitrary categories (e.g., inter-
quartile risk ratio estimates). Another is to fit a log-linear associ-
ation (refer to the Appendix) and to present it in terms of the
(unadjusted) cross-sectional standard deviation of the risk factor.

Neither of those 2 approaches, however, takes into account
that the estimated risk gradient for a given factor is the risk
gradient for people of the same status for the other factors
that are in the fitted model, as well as for the factors that
have been matched on or controlled for by design. The stan-
dard approach of using the cross-sectional distribution to de-
termine the standard deviation can be deceptive.

A SOLUTION

The scale on which the risk gradient is judged, and there-
fore its standard deviation, should be relevant to both the fit-
ted model and the study design because that is how the risk
gradients are interpreted. Furthermore, because every random
variable has a standard deviation, this concept can be applied
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to continuous, binary, and ordered categorical variables, in-
cluding integer scales.
For each risk factor, one can apply to appropriate popula-

tion data an appropriate regression technique, with careful at-
tention to outliers, goodness of fit, and model assumptions, to
derive the best fitting relationship between the mean of that
risk factor (X0) in terms of all the other covariates fitted in
the risk analysis and the covariates implicitly adjusted for
by design (X1, X2, . . . , Xn). The risk association for factor
X0 should be presented in terms of the absolute change in
risk per standard deviation of the residuals of X0 after adjust-
ing for X1, X2, . . . , Xn, rather than the unadjusted standard
deviation of X0 itself. I refer to this as the odds per adjusted
standard deviation (OPERA).
For binary and ordered categorical variables, including in-

teger scales, adjustment of the means of these risk factors for
the relevant covariates can be done using, for example, logis-
tic or Poisson regression. The adjusted standard deviation can
then be derived from these regression analyses and used to
calculate OPERA.
If s is the adjusted standard deviation and the increased risk

is relative risk (RR)-fold over A = 1/s adjusted standard devi-
ations, then RR = OPERAA, so

OPERA ¼ exp½lnðRRÞ=A� ¼ RRs: ð1Þ

Note that, in using OPERA to measure discrimination be-
tween cases and controls and to compare across risk factors
(irrespective of the direction of their associations), by defini-
tion RR > 1 in the above formula.
The example of published associations of relevant risk fac-

tors with breast cancer and of their distributions in a given
population will be used below to illustrate this concept and
how it applies to different types of risk factors. For simplicity,
I have assumed various values of the population parameters p
and μ, but in practice they would be estimated for the popu-
lation about which the study is making inference.

APPLICATION TO BINARY RISK FACTORS

For a binary factor with prevalence p, the standard devia-
tion is s = [p(1 − p)]0.5, so the number of standard deviations
between the 2 values of the binary factor is A = 1/s.
Consider breast cancer and sex and, for simplicity, assume

that women are at RR = 100 times the risk of men. This risk fac-
tor is a binaryvariable (0 =male, 1 = female), and theprobability
of each category is p = 0.5. The standard deviation s is [p(1−
p)]0.5 = 0.5 (i.e., A = 2), and from equation 1 it is seen that
OPERA = exp [ln(100)/2)] = 1000.5 = 10. That is, the change
from 0 to 1 is A = 2 standard deviations, and given that the odds
increase by 100 over 2 standard deviations, under a multiplica-
tive model theymust increase 10-fold over 1 standard deviation.
Next consider family history as a binary variable, such as

having an affectedfirst-degree relative (0 = no, 1 = yes). For sim-
plicity, assume that p = 0.1 and that there is a 2-fold increased
risk for having such a family history. The standard deviation is
then s = 0.3 and RR = 2, so from equation 1, OPERA= 1.23.
For BRCA1 and BRCA2, the probability of being a mu-

tation carrier for either gene has been estimated to be about
1 in 600 (1), though it can be as high as 1 in 40 for some

populations such as Ashkenazi Jewish women. The increased
risk for mutation carriers is about 10-fold, though it can be
considerably higher for BRCA1 carriers at a young age, for
example, 30-fold at age 30 years (1). Therefore, if p = 1/
600, OPERA = 1.10 if RR = 10 and 1.15 if RR = 30, while
if p =1/40, OPERA = 1.43 if RR = 10 and 1.70 if RR = 30.

APPLICATION TO COMBINED FAMILIAL AND

POLYGENIC RISK FACTORS

Consider now the multitude of familial factors that must
exist so as to explain the 2-fold increased breast cancer risk
for having an affected first-degree relative. Under a multipli-
cative polygenic model in which the polygenic risk score is
assumed to be normally distributed, the correlation in “poly-
gene” between first-degree relatives is 0.5, and as the risk in-
creases exponentially across the polygene, it has been shown
that the interquartile risk ratio across those underlying factors
must be about 20-fold (2, 3). Given that the mean of the upper
quartile of a normal distribution is 1.27 standard deviations,
there is a 20-fold increased risk across 2.54 standard devia-
tions, so the OPERA must be 3.25.

APPLICATION TO MEASURED COMMON GENETIC

RISK-ASSOCIATED VARIANTS

The currently 70 or so independent common genetic mark-
ers found to predict breast cancer risk have been found, from
analysis of a very large genome-wide association study, to
explain approximately 14% of the familial aggregation of
breast cancer. From creating a polygenic risk score based
on the study findings, Mavaddat et al. (4) estimated that the
OPERA is about 1.55.

APPLICATION TO CONTINUOUS RISK FACTORS

Mammographic density, the white or bright areas on a
mammogram, is an established risk factor for breast cancer.
For women of the same age, body mass index (BMI), and
other breast cancer risk factor profiles, those with greater
amounts of either absolute dense area (DA) or percent dense
area (PDA) are at greater risk. Taking age andBMI into account
is important; for the age range in which women are having
mammograms, as these factors increase so does breast cancer
risk, but both DA and PDA decrease, and this negative con-
founding is especially strong for PDA. Moreover, after adjust-
ment for age and BMI, the residuals in DA and PDA are highly
correlated at about 0.9. Observations show that the OPERA is
about 1.40 for both DA and PDA (5), while crude comparisons
of the extreme (and unadjusted) quartiles would have suggested
(inappropriately) that PDA was the “stronger” risk factor.
To date, comparisons of the relative strengths of these 2

risk factors have been based on the cross-sectional standard
deviation, and when viewed this way PDA appears to have a
stronger risk gradient. However, this is deceptive. Because age
and BMI explain about 29% of the variance of unadjusted
PDA (6), the adjusted standard deviation is (1− 0.29)0.5 =
0.85 times the cross-sectional standard deviation. Hence, the
logarithm of OPERA = 0.85 times the logarithm of the odds
ratio per cross-sectional standard deviation, which is a 15%
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decrease. In contrast, for the dense area, only 5% of the var-
iance is explained by age andBMI, so the logarithmofOPERA
is 0.975 times the logarithm of the odds ratio per cross-
sectional standard deviation, only a 2.5% decrease. Therefore,
mammographic density is an important example of why
OPERA is the appropriate way to compare risk factors.

OPERA has been applied to measures of bone mineral den-
sity adjusted for age andmenopausal status and estimated to be
1.35, with a wide confidence interval, for Korean women (7).

APPLICATION TO ORDINAL RISK FACTORS

Increasing number of childbirths is associated with a de-
crease in risk. Number of births has an approximate Poisson
distribution, so the standard deviation, s, is approximately
equal to the square root of the mean, μ0.5. Suppose that wom-
en have, on average, μ = 2 children and that each successive
child is associated with an x = 7% reduction in risk (8), so that
risk is decreased by RR = (1 + x)-fold over A = 1/20.5 standard
deviations. Therefore, from equation 1, OPERA= exp [ln(1 +
x)/A] = 1.071.41 = 1.10. Note that although number of children
is protective, OPERA is >1 (refer to the definition above).

For a single common genetic marker (e.g., minor allele fre-
quency of 0.3–0.5) that can take 3 values (so that s ≈ 0.5)
weakly associated with risk (e.g., RR = 1.1 per allele), then
risk is increased by RR = 1.1-fold over A = 1/2 standard devi-
ation, so OPERA = 1.05.

TAKING INTOACCOUNTVARIATION INRISKGRADIENTS

WITH OTHER COVARIATES FOR BINARY OR ORDINAL

RISK FACTORS

For unaffected women (controls), the probability of having a
family history, p, or the average number of children, N, could
depend on age and perhaps other measured factors (X1,
X2, . . . , Xn). These associations can be fitted by using logistic
or Poisson regression, respectively. The adjusted standard de-
viation for a given set of (X1, X2, . . . , Xn) is therefore {p(X1,
X2, . . . , Xn)[1 − p(X1, X2, . . . , Xn)]}

0.5 or N(X1, X2, . . . ,
Xn)

0.5, respectively. In these instances, OPERA is a function
of X1, X2, . . . , and Xn. That is, the “strength” of a risk factor
can be presented, appropriately, in terms of the age of the at-
risk woman and her other measured characteristics.

TAKING INTO ACCOUNT INTERACTIONS BETWEEN

RISK FACTORS

The concept of OPERA can also be applied when there are
interactions between 2 risk factors in the sense that the risk
gradient for one factor (and therefore its OPERA estimate)
depends on the levels of the other risk factor. This would re-
quire estimating the standard deviation of each risk factor as a
function of the other risk factor, as well as other factors in the
model and design. In this context, OPERA would be inter-
preted in terms of the levels of each risk factor.

PRACTICAL CONSIDERATIONS

In practice, one can perform model fitting using whatever
scale one likes to derive the relative risk estimates on that

scale, but to derive and therefore present the OPERA esti-
mates, the scale needs to be adjusted as described above to
take into account the other relevant covariates adjusted for
by design or analysis to derive the adjusted standard devia-
tion, s. As the interpretation of an estimate in a fitted model
is conditional on all the other factors in the model and design,
they should all be considered in deriving these adjusted stan-
dard deviations. In addition, care must be taken in deriving
these adjusted standard deviations by checking the goodness
of fit of the relationship, addressing outliers and influential
points, testing model assumptions, and if necessary transform-
ing data. Choice of an appropriate sample is critical as well.

Given that both presentations are informative, one could
present the different estimates together, that is, the relative
risk estimate on the original scale and OPERA = RRs. An-
other approach is to first derive the adjusted covariates (i.e.,
each covariate adjusted for the other relevant covariates) and
to standardize (i.e., to have unit standard deviation) and then
fit these derived measures to give the independent OPERA
estimates directly. The 2 approaches above are not guaranteed
to give exactly the same results for a given data set, in part
because of the different approaches taken to “adjustment,”
but they are essentially addressing the same concept.

The data used to derive the adjusted standard deviation
should be relevant to the population about whom the risk es-
timates are being made. Note that the OPERA estimates, like
all other estimates, are strictly valid only for the population
from which the study sample has been obtained. The issue
of generalizability applies to all estimates, irrespective of
the scale on which they are presented. The relative risk per
unadjusted standard deviation, however, suffers from being
also dependent on the sample characteristics, such as the
age range, so it is less generalizable than OPERA.

PUTTING RISK FACTORS FOR A GIVEN DISEASE INTO

PERSPECTIVE

Table 1 displays, for breast cancer, how the strengths of
different risk factors can be compared with one another, and
it highlights issues in the comments column. Clearly sex is
paramount.Age could also be important, but it depends entire-
ly on the age range and its distribution in the population and,
hence, is deliberately left unstated. In their totality, familial
factors rank highly, but the currently known “high-risk” genes
and the established common markers of risk account for
about half of this gradient in risk and less for early onset dis-
ease despite its having a stronger familial risk component.
Within aWestern population, the number of childbirths is not
strong, but as OPERA increases exponentially with the aver-
age number of children per woman, this risk factor would be
more important in some other populations. The currently
known common genetic markers rank on a par with the cur-
rent measures of mammographic density (adjusted for age,
BMI, and other risk factors). The risk gradient with measured
genetic risk factors will likely increase as new markers are
discovered and better and more sophisticated risk prediction
models are developed that take into account measured genetic
factors, unmeasured major genes, and “polygenes” and use age
at diagnosis and other risk-predicting features of family cancer
histories. It will be interesting to see where new measures of
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risk, such as markers of methylation and novel approaches to
extracting information on risk from mammograms and other
screening modalities, fit into the picture.

PUTTING A GIVEN RISK FACTOR INTO PERSPECTIVE

ACROSS DISEASES, POPULATIONS, AND SETTINGS

With OPERA, an appropriate measure of the strength of a
risk factor—adjusted for the other risk factors—can be com-
pared across diseases, across subsets of a disease (e.g., based
on age at onset or subtype), and across populations and dif-
ferent environmental settings.
Therefore, for any given risk factor, one can rank the dis-

eases to which a risk factor predisposes on the basis of its
strength as measured by OPERA. This would be important
for determining how changes in a risk factor might impact on
multiple diseases. It could be important in trying to work out
for which disease(s) a particular intervention might have the
most impact and put these impacts into perspective. By tak-
ing into account the benefits per disease, some of which
might be negative, the overall impact of the intervention
could be assessed.

DISCUSSION

First, given that risk estimates take into account other fitted
and design-related factors, so should the presentation of their
risk gradients. Second, presenting risk gradients as a function
of the “adjusted” standard deviation (the standard deviation
after adjusting for other relevant factors) is a unifying ap-
proach, because it can be applied irrespective of the distribu-
tion of the (ordered) risk factor (continuous, binary, ordered
categorical, integer, etc.). This general concept could also be
adapted and applied to hazard ratio estimates from cohort
studies. OPERA scores across risk factors for a given disease
are also, by definition, independent of one another. The strengths

of risk factors—in the sense of their ability to discriminate cases
from controls within a given population—can then be compared
with one another and across diseases, categories of disease, pop-
ulations, and even subpopulations.
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APPENDIX

For a continuous or ordered categorical risk factor, X, it
is convenient to be able to describe the risk gradient by 1
parameter when fitting a log-linear association. To do so

Table 1. For Breast Cancer, Approximate OPERA Scores for Some

Established Risk Factors in Western Countriesa

Risk Factor OPERA Comment

Sex 10

Age ? Depends on age range and
distribution

All familial causes 3 Known and unknown factors

Mammographic density 1.4 Likely to increase with new
measures

Known polygenic
markers

1.6 Likely to increase with new
studies

Known gene mutations 1.2–1.7 Depends on age at diagnosis
and ethnicity

Family history 1.2 First-degree only; yes/no

No. of childbirths 1.1 Greater for countries with
more births

Abbreviation: OPERA, odds per adjusted standard deviation.
a This paper is illustrative and about a (new) concept; the table is

intended as a description of general results when applying the

concept to breast cancer.
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requires finding the most appropriate scale for X. This can be
done by applying the Box-Cox power transformation f (X) =
(Xλ− 1)/λ if λ≠ 0, else ln(X) if λ = 0, fitting risk as a function

of the covariate f (X) across a range of values for λ and choos-
ing the transformation that gives the maximum log-likelihood
of the fitted models (9).
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