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Abstract

Motivation: Most RNA-seq data analysis software packages are not designed to handle the

complexities involved in properly apportioning short sequencing reads to highly repetitive regions

of the genome. These regions are often occupied by transposable elements (TEs), which make up

between 20 and 80% of eukaryotic genomes. They can contribute a substantial portion of transcrip-

tomic and genomic sequence reads, but are typically ignored in most analyses.

Results: Here, we present a method and software package for including both gene- and TE-associated

ambiguously mapped reads in differential expression analysis. Our method shows improved recovery

of TE transcripts over other published expression analysis methods, in both synthetic data and qPCR/

NanoString-validated published datasets.

Availability and implementation: The source code, associated GTF files for TE annotation, and test-

ing data are freely available at http://hammelllab.labsites.cshl.edu/software.

Contact: mhammell@cshl.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transposable elements are mobile DNA elements that constitute a

large fraction of most eukaryotic genomes. These parasitic genetic

elements propagate by multiplying within the genomes of host cells

and can be passed from generation to generation through the germline

lineage. Although the majority of TE copies are non-functional, a sub-

set has retained the ability to transcribe and mobilize (Beck et al.,

2010; Bennett et al., 2008; Hancks and Kazazian, 2012; Honma

et al., 1993; Huang et al., 2012; Kano et al., 2009; Mills et al., 2007).

Although retrotransposons require an RNA intermediate to transpose,

both DNA and RNA transposons are transcribed from the genome,

and they can accumulate in conditions such as cancer (Criscione

et al., 2014; Lamprecht et al., 2012; Lee et al., 2012; Sciamanna et

al., 2013; Sciamanna et al., 2014; Shukla et al., 2013; Tubio et al.,

2014), neurodegenerative diseases (Bundo et al., 2014; Li et al., 2013;

Reilly et al., 2013), as well as during embryogenesis (Fadloun et al.,

2013; Macia et al., 2011; Peaston et al., 2004), neural development

(Coufal et al., 2009; Coufal et al., 2011; Faulkner et al., 2009; Muotri

et al., 2005; Perrat et al., 2013; Thomas et al., 2012) and aging

(De Cecco et al., 2013; Li et al., 2013; Sedivy et al., 2013). However,

TE-associated reads are often discarded in sequencing data analyses

because of the uncertainty in attributing ambiguously mapped reads

to these regions, despite some previous attempts to integrate them in

downstream analyses (Chung et al., 2011; Day et al., 2010; Rosenfeld

et al., 2009; Treangen and Salzberg, 2011; Tucker et al., 2011; Wang

et al., 2010). Here, we present a program called TEtranscripts that

allows users to analyze both gene- and TE-associated reads concur-

rently in one simplified workflow.

2 Input data

The input data for TEtranscripts consists of alignment files in either

the SAM or BAM format (Li et al., 2009), and two annotation files in

the General Transfer Format (GTF) (http://mblab.wustl.edu/GTF22.
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html) for genes and TEs, respectively. For the purposes of this article,

we will use the terms, unique-reads and multi-reads, to designate the

reads that have a unique alignment in the genome or map to multiple

loci with equal quality, respectively. The utilization of multi-reads for

TE quantification is critical, as a read originating from a TE could

align to multiple instances (insertions) of that element in the genome.

Many aligners support multi-reads alignments, and provide limits for

the maximum number of multiple alignments per reads to output, e.g.

bowtie -m (Langmead et al., 2009). To optimally set this parameter,

we recommend a saturation analysis on the multi-read alignments as

described in the Supplementary Materials (Supplementary Fig. S1).

TEtranscripts also supports strand-specific read counting, and applies

it to both genes and TEs. GTF files of transposable element annota-

tions were generated from the RepeatMasker (Smit et al., 1996,

http://www.repeatmasker.org) tables obtained from the UCSC gen-

ome database (Karolchik et al., 2003), or from annotations provided

by the maize MIPS (Nussbaumer et al., 2013) and MTEC databases

(http://maizetedb.org/�maize/). The annotation tables were parsed to

filter out low complexity and simple repeats, rRNA, scRNA, snRNA,

srpRNA and tRNA. Each TE insertion in the table was given a unique

identifier. The genomic location, element name, as well as family and

class information were also extracted from the table and included in

the GTF file. TEtranscripts can also utilize custom TE annotations,

such as those generated from de novo TE insertion analysis, as long as

they conform to the format described earlier and are consistent with

the genome sequencing files used for the alignment.

3 Methods

TEtranscripts estimates both gene and TE transcript abundances in

RNA-seq data and conducts differential expression analysis on the

resultant count tables. The general workflow of TEtranscripts is

given in Figure 1. Read assignment and statistical modeling is dis-

cussed in detail in this section.

3.1 Index genomic features
To quickly find all genes/TEs that overlap with any given read align-

ment, TEtranscripts builds two independent index structures on

gene and TE annotations, respectively. The gene/TE index structure

consists of a hash table with reference sequence names and a list of

interval trees as key-value pairs. For each chromosome, there is an

interval tree generated based on gene/TE insertions annotated on

that chromosome. It allows the SAM/BAM read alignment to be

rapidly matched with the genome intervals in GTF annotations, es-

pecially when there are a large number of TE insertions.

3.2 Read assignment
The next step involves distributing the mapped reads among the

annotated genes and TEs that overlap those genomic alignments.

Unique-reads, which represent most gene-associated reads, but only

a subset of TE-associated reads, are comparatively simple to distrib-

ute. For a multi-read, the task is more difficult. TEtranscripts takes

advantage of the sequence similarities at the different levels of the

hierarchy of TEs in order to optimally distribute reads amongst

closely related TE sequences. Based on the definitions and nomen-

clature provided by RepBase (Jurka et al., 2005), TE ‘insertions’

(loci within the genome) are grouped into ‘elements’, which are sub-

families of TEs that are highly related at the sequence level and rela-

tively distinct from other elements. For example, Repbase and

RepeatMasker report 16 293 insertions for the L1Md_A element in

the mouse reference genome (mm9), all of which are more similar to

each other than they are to other elements of the L1 family (such as

L1Md_T). By estimating combined abundances for all insertions of

an element, we obtain more reliable and reproducible results than

analyses that attempt to pin down the exact genomic instance of the

TE being transcribed. Thus, TEtranscripts performs estimation of

expression abundances on the element level by default, which is the

recommended setting. TEtranscripts parses the alignment file only

once, processing genes and TEs at the same time. Given a uniquely

mappable read, the algorithm first searches for overlapping gene

exons; if it is a multi-read, overlap with TEs will be first computed.

For TE-associated reads, the user can choose whether to count only

unique-reads or all reads, i.e. uniq mode and multi mode.

Under multi mode, it is important to assign weight to the contri-

bution of the ambiguously mapped reads at each mapped locus, so

that no double counting of reads occurs. Given all available align-

ments of a read, every alignment is assigned a weight of 1=n, where

n is the number of alignments. Therefore, the total contribution of a

multi-read to the library size is the same as a unique-read. This is im-

portant in maintaining the library size for each sample (calculated

based on the total number of mapped reads), as it is heavily utilized

for normalization when comparing between multiple libraries.

3.3 TE transcript estimation
After the read assignment step, an expectation-maximization (EM)

algorithm is used to determine the maximum-likelihood estimates of

multi-reads assignments to all TE transcripts. The unique-reads are

not used as a prior for the initial abundance estimates in the EM

procedure to reduce potential bias to certain TEs. Specifically, active

TEs, which tend to be younger elements, have accumulated far fewer

polymorphisms than older TEs, and thus have far fewer reads map-

ping uniquely to these elements. Using uniquely mapped TE reads in

the optimization step will bias read assignment away from the

youngest TE sub-families and toward the older related TE subfami-

lies with higher uniquely mappable content.

3.3.1 Expectation maximization

The EM algorithm alternates between computing the fractional dis-

tribution of each multi-read to each mapped TE instance (E-step)

and estimating the relative abundances of all TE transcripts (M-

step), until the estimated relative abundances converge. The initial
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Fig. 1. TEtranscripts flow chart. Reads mapping to TEs are assigned in two dif-

ferent modes: uniq (reads mapping uniquely in the genome), and multi (reads

mapping to multiple insertions of TEs). In the multi mode, an iterative algo-

rithm is used to optimally distribute ambiguously mapped reads
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estimation of relative abundance on multi-reads, q, of each TE tran-

script, t, is computed by Equation (1).

q0
t ¼

Ft
~l~tX

s2T

Fs
~l~s

(1)

T is the set of all TE transcripts; Ft is the set of multi-reads assigned

to t; ~l~t denotes the effective length of transcript t, ~l~t ¼ lt �mþ 1,

where m is the fragment length and lt is the length of transcript t.

The fragment length is calculated from the paired-end alignment in-

put file, or provided as a parameter by the user for single-end

samples.

The E-step computes the fraction of each multi-read allocated to

each TE transcript. Suppose that a multi-read f maps to a set of TE

transcripts Ti. According to the initial assignment, the fraction of

f attributed to any TE transcript t in Ti, a0ðf ; tÞ, is the relative abun-

dance of t over the sum of relative abundance of all TE transcripts in

Ti, a0ðf ; tÞ ¼ q0
tP

t02Ti
q0

t0
. This allocation will then be used in the M-step

of the algorithm to compute the relative abundance of each TE tran-

script. As described in Equations (2) and (3), these two steps will

run alternatively for a specified number of iterations, k, until the

program converges or as set by the user.

akðf ; tÞ ¼ qðk�1Þ
tX

t02Ti

qðk�1Þ
t0

(2)

qk
t ¼

X

8f!t

akðf ;tÞ
~l~t

X

s2T

X

8f 0!s

akðf 0 ;sÞ

~l~s

(3)

After the EM procedure, the estimated relative abundance of

each TE transcript from the multi-reads is integrated with the

unique-read counts to compute the total relative abundance. The

element level abundances are then computed by summing up all in-

stances of each TE subfamily.

3.4 Differential analysis
Following the generation of a count table for gene and TE tran-

scripts, the differential expression analysis closely follows the DESeq

package (Anders and Huber, 2010) for modeling the counts data

with a negative binomial distribution and computing adjusted

P-values. In addition to the standard transcript abundance normal-

ization approach used by the DESeq package, TEtranscripts offers

two additional options, reads per mapped million (RPM) and

Quantile normalization. All other procedures exactly follow the

DESeq method. TEtranscripts runs the DESeq method with a default

set of general parameters. When there are no (or very few) repli-

cates, we use the blind method for variance estimation and fit-only

for SharingMode. Otherwise, we use pooled or per-condition meth-

ods and maximum SharingMode, as suggested by the DESeq pack-

age. In all scenarios, we use the parametric fitting model (fitType).

The R code used for differential expression analysis is generated as

part of the output to allow users to further customize the DESeq

parameters and re-calculate differential expression statistics.

3.5 Implementation
TEtranscripts is written in Python. The SQUAREM (Varadhan and

Roland, 2008) procedure is used during EM iterations to improve

the convergence speed. TEtranscripts is available as an open-source

program under a standard GPLv3 open source license and has been

developed and tested on Linux and Macintosh OSX. The software

package and associated TE GTF files can be found at http://ham-

melllab.labsites.cshl.edu/software. The TE GTF files currently in-

clude chimpanzee (panTro4), fly (dm3), maize (Zea mays RefGen

v2), mouse (mm9 and mm10), rat (rn5 and rn6) and human (hg18,

hg19/GRCh37, and hg38/GRCh38).

4 Results

To examine the accuracy and performance of TEtranscripts, we

compared it with HTSeq-count version 0.5.4p3 (Anders et al.,

2014), Cufflinks version v2.1.1 (Trapnell et al., 2010, 2012) and

RepEnrich (Criscione et al., 2014) on both synthetic and real data.

HTSeq-count was chosen as a standard method that counts only

uniquely mapped reads and is nearly identical to the uniq mode in

TEtranscripts. Cufflinks was chosen as a popular method for gene

abundance estimation that works from pre-mapped BAM files and

includes options to handle multi-reads, but is not specifically de-

signed for TEs. To the best of our knowledge, only one other pub-

lished method has been designed for TE expression analysis from

RNA-seq data, RepEnrich, but this method does not work with pre-

mapped BAM files. There is a recently published pipeline set piPipes

(Han et al., 2015) to study piRNAs and TE-derived RNAs. Because

it uses HTSeq-count and Cufflinks for quantification and Cuffdiff

for differential analysis, we did not include comparisons to piPipes

separately.

For all comparisons, TE abundance measurements were given at

the resolution of the element level (e.g. L1Md_A). For the synthetic

datasets, accuracy was quantified as the proportion of abundances

accurately recovered by each method for each TE element. For pub-

lished datasets, accuracy was determined by agreement between the

quantitative validation measurements (e.g. Q-PCR, NanoString) and

the expression estimations computed by each software package.

4.1 TE recovery in synthetic data
Simulated datasets were used to investigate the TE abundance recov-

ery rate by each approach, paying particular attention to the recov-

ery of TEs known to be active in the mouse genome, obtained from

a study by Molaro et al. (2014). FluxSimulator v1.2.1 (Griebel et

al., 2012) was used to generate multiple RNA-seq datasets from the

mouse genome (mm9), consisting of 76 bp single-end reads from

transcripts that include both annotated genes and TEs (see

Supplementary Table S1 for parameters used). Each dataset con-

sisted of 24 million reads in total, with 17% of all transcripts

derived from TEs of varying abundances. STAR (Dobin et al., 2012)

was used to map the simulated reads with maximum multiple

alignments of no more than 100, using the variables –

winAnchorMultimapNmax 100 and –outFilterMultimapNmax 100.

Based on these parameters, we found that 87% of the reads were

mapped onto the mouse genome, while TE reads had an average

mappability of 70%. Furthermore, roughly half of the TE reads gen-

erated were uniquely mappable, comparable to what is observed in

published transcriptome datasets. The simulated TE reads had a

smaller mappability rate than gene-associated reads largely due to

reads aligning to more than 100 genomic locations.

The aligned read files were then used as input for the four abun-

dance estimation approaches used in this study: HTSeq-count,

Cufflinks, RepEnrich, and TEtranscipts. HTSeq-count was run in

intersection-nonempty mode, and using a GTF file that contains

TEtranscripts 3595
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both TE and gene annotations for abundance estimation. Because

HTSeq-count considers only uniquely mapped reads, any multi-

mapped TE reads will be discarded by this approach. Cufflinks was

run with the settings of rescue method for multi-reads (�u), which

takes into account both unique-reads and multi-reads, and uni-

formly divide each multi-read to all the positions initially. When

multi-read correction is enabled, Cufflinks will reassign each multi-

mapped read probabilistically based on the initial abundance esti-

mations, with the uniquely mapping reads used to inform the likely

distribution of the multi-reads (Trapnell et al., 2010, 2012). To run

RepEnrich, we built the peseudogenome of TEs using the

RepeatMasker file on mm9 as described in the RepEnrich tutorial.

Unique-reads and multi-reads were derived based on the STAR out-

put. TEtranscripts was run in multi mode with EM optimization

invoked. The accuracy of each method in estimating abundances of

TE expression was computed and displayed as the frequencies of the

rate of recovered abundances (Fig. 2; Supplementary Fig. S2).

In general, TEtransctripts outperforms HTSeq-count, Cufflinks

and RepEnrich in terms of abundance recovery rate, both for non-

functional and active TEs. The overall average recovery rate for

TEtranscripts was 88.84%, with 53.74% for HTSeq-count, 43.72%

for Cufflinks and 59.8% for RepEnrich. The fraction of TEs for

which the estimated abundance is within 15% of the true abundance

was: 41.7% for TEtranscripts, 14.4% for HTSeq-count, 9.3% for

RepEnrich and 16.8% for Cufflinks. In this dataset, 14.5% of the

detected TEs are active TEs, and all three approaches were able to

capture some of them. TEtranscripts was able to recover >80% of

the reads for 77% of the active TEs; HTSeq-count was not able to

recover >80% of the reads for any of the active elements; Cufflinks

recovered at least 80% of the reads for 8% of the active TEs;

RepEnrich recovered >80% of reads for 75% of the active TEs, but

over-counted 57.69% of the active TEs. The fraction of active TEs

for which the estimated abundance is within 15% of the true abun-

dance was: 61.5% for TEtranscripts, 0% for HTSeq-count, 23.1%

for RepEnrich, and 3.8% for Cufflinks. TEtranscripts and

RepEnrich over-counted some TEs, which is displayed as the 15%

of elements whose abundances were estimated to be >100% of their

actual values at the far right of Figure 2. Please refer to

Supplementary Figure S4 for recovery rates with and without the

EM optimization option in TEtranscripts.

Figure 3 shows the abundances of active TEs estimated by each

software package as compared with the ground truth (denoted with

red dots). In most cases, TEtranscripts (green dots) is within 90% of

the actual value, while the other two methods, HTSeq-count and

Cufflinks, frequently under-estimate the abundance of TE transcripts

for young, active TEs. RepEnrich (purple dots) shows more vari-

ations, nearly 30% under-estimation and 40% over-estimation.

HTSeq-count (light blue dots) was expected to underestimate the

counts, since the discarded multi-reads often constitute nearly 50% of

the TE-associated reads. Surprisingly, Cufflinks also under-estimates

the abundances for many active TEs, despite incorporating multi-

reads in its analysis. Both under- and over-estimating the TE tran-

script abundances will affect both the ability to accurately calculate

fold changes between samples and the power with which to calculate

P-values for any associated changes. Please refer to Supplementary

Figure S3 for the distribution of abundance recovery rates on active

TEs of four approaches. In the next section, we assess the ability of

these methods to return accurate fold changes and significant P-values

for TEs known to have altered expression in published datasets that

used a quantitative validation of their RNA-seq data.

4.2 TE recovery in published data
To determine the usefulness of our algorithm on experimentally gen-

erated results, we tested TEtranscripts on previously published

RNA-seq datasets of Drosophila and mouse transcriptomes. We

then compared TEtranscripts to other approaches, such as HTSeq-

count, Cufflinks and RepEnrich, each combined with DESeq. We

applied DESeq for differential expression analysis on the outputs of

the three approaches to directly compare the effects of quantifica-

tion on P-value estimation. Both HTSeq-count and RepEnrich out-

put raw counts that can be input to DESeq without transformation.

The output of Cufflinks has to be converted to raw counts before

running DESeq. To convert Cufflinks output, we first calculated

raw counts assigned to each isoform by multiplying the length over
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mapped (FPKM) value of each isoform, and then summarized them

on genes or transposable elements.

Although the Cufflinks package includes its own differential ex-

pression analysis software, Cuffdiff, it required at least 550 GB of

memory to run on these datasets, and performed no better in terms

of fold change estimation or P-value concordance than the results

displayed below (Supplementary Fig. S5).

4.2.1 Drosophila melanogaster transcriptome

The Drosophila dataset comes from a study by Ohtani et al. (2013)

that observed the de-repression of transposable elements upon alter-

ation of DmGTSF1, which works with the Piwi-associated silencing

complex (piRISC) to silence TEs in the Drosophila ovary. This dataset

was chosen because they assessed TE expression levels with RNA-seq,

followed by validation through Q-PCR. This will allow us to compare

the estimated fold changes from the four approaches, HTSeq-count,

Cufflinks, RepEnrich, and TEtranscripts, with their Q-PCR results.

We obtained the raw FASTQ data from Gene Expression Omnibus

(accession no. GSE47006) and mapped with STAR, as described ear-

lier, onto the D. melanogaster genome (dm3). Although

TEtranscripts, HTSeq-count and Cufflinks were able to perform

quantification directly from the BAM alignment output, RepEnrich

requires independent alignment and TE quantification. We built a

pseudogenome for dm3 TEs using the RepeatMasker open-4.0.5 re-

lease file (Smit et al., 1996) download from the following link: http://

www.repeatmasker.org/species/dm.html.

Figure 4 shows the TE expression changes between Piwi knock-

down and wild type. The log2 fold change (log2FC) calculated by

TEtranscripts in multi mode closely resembles the Q-PCR results in

most of the TEs interrogated. HTSeq-count performs well on most

elements, but not as well as TEtranscripts on others (e.g. mdg1).

Cufflinks reports similar values to HTSeq-count for most TEs, but

performs better than TEtranscripts and HTSeq-count on the roo

element. Surprisingly, RepEnrich deviates substantially from the

qPCR validation results, and DESeq identified no differentially ex-

pressed TEs.

4.2.2 Mouse transcriptome

In order to evaluate the utility of TEtranscripts on a mammalian

genome with higher TE content, we selected a recently published

study in mouse from Gnanakkan et al. (2013). In this study, they

provided NanoString quantification of several TEs, comparing a

previously published RNA-seq dataset (GEO accession number

GSE30352) (Brawand et al., 2011), to their microarray-based tool,

TE-array. We performed similar analyses as described in the previ-

ous section, except that we map the reads to the mouse genome

(mm10) and mouse TE pseudogenome (for RepEnrich).

Figure 5 shows the comparison between TEtranscripts with

multi mode and other quantification approaches. Similar to the re-

sults on Drosophila data, TEtranscripts outperforms HTSeq-count

on many TEs (e.g. L1Mm, ERBV4, MMVL30 and ERVB2).

Cufflinks (in multi-reads rescue mode) performs comparably with

TEtranscripts on some TEs, but often fails to return abundance

counts on others (as indicated by ‘NA’ in the plot). RepEnrich again

deviates from the expected values (nanoString), and fails to identify

any differentially expressed TEs from its quantification results.

4.2.3 TEtranscripts quantification in other published studies

Finally, the methodology utilized in TEtranscripts has also been

applied in studying transposable elements mis-regulation in TDP-

43-mediated neurodenerative disorders (Li et al., 2013) and the roles

of Piwi in the piRNA pathway and transposon repression (Rozhkov

et al., 2013). In both studies, we were able to demonstrate signifi-

cant differential expression of TEs that was consistent with the bio-

logical phenotypes and with the set of TEs altered in independent

experiments for those studies.

4.3 Running time and memory usage
We tested the running time and memory usage of TEtranscripts on

simulated RNA-seq data. A variety of library sizes ranging from 20

to 100 M reads were generated based on the mouse genome (mm9),

with each sample having 10% of the reads coming from TEs.

Although TEtranscripts takes additional time and memory to dis-

tribute reads between the millions of TE instances in the genome as

compared with other gene expression analysis packages, it is still

relatively efficient, with a typical memory requirement of 8 GB and

run times on the order of 1–2.5 h for datasets with 20–100 million

reads per sample (Fig. 6). All the experiments were run on a server

with 128 GB memory and Xeon E5-2665 processors running at
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stances where expression could not be estimated. The asterisk symbol repre-

sents the level of significances, ‘***’ adjusted P-value< 1e � 5, ‘**’ adjusted

P-value<0.01, ‘*’ adjusted P-value<0.05
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Fig. 5. Comparing mouse TE expression estimation. We selected TEs that

show significant differential expression between testis and somatic tissues.
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organs: liver, heart, brain and kidney. The same figure legend was used as

Figure 4

TEtranscripts 3597

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv422/-/DC1
http://www.repeatmasker.org/species/dm.html
http://www.repeatmasker.org/species/dm.html


2.40 GHz (16 cores). The running time was measured using the

built-in bash date command.

5 Discussion

Transcripts derived from TEs form a small but important subset of

all transcriptomic datasets. Often thought of as junk transcripts

with little importance for biological phenotypes, TEs can play a

large and unexpected role in important processes such as stem cell

identity and reprogramming (Kelley and Rinn, 2012; Lu et al.,

2014; Ohnuki et al., 2014; Wang et al., 2014), and in human dis-

eases (Bundo et al., 2014; Lamprecht et al., 2012; Li et al., 2013;

Reilly et al., 2013; Sciamanna et al., 2013, 2014; Shukla et al.,

2013; Tucker et al., 2011). Although TE-derived transcripts should

be included as part of standard expression analyses, there have pre-

viously been few tools that allow the easy inclusion of TE-associated

reads. TEtranscripts allows users to simultaneously analyze gene-

and TE-derived transcripts in a simple expression analysis frame-

work that works with aligned (BAM) files and annotation files

(GTF).

Using simulated reads as well as published datasets that include

independent validations, we have shown that TEtranscripts outper-

forms all other published methods in abundance estimation, and

concordance between statistical significance estimation and vali-

dated alterations in expression. In simulated datasets, we show that

TEtranscripts performs particularly well at estimating the abun-

dance of young TEs, which are more likely to be mobile and active

in cells. In published datasets for both fly and mouse genomes, we

show that alterations in TE expression estimated from RNA-seq

data by TEtranscripts show better overall concordance with exter-

nal validation data. TEtranscripts particularly outperforms other

methods for complex mammalian genomes, such as the mouse,

which has many more insertions per TE than flies, and a larger di-

versity in TE families.

As with all approaches that quantify RNA expression from

alignment data, TEtranscripts is highly dependent on the quality of

the genomic alignment and annotation data (for genes and transpos-

able elements). This is especially problematic when working with

strains or cultivars whose DNA sequences and transposable element

content have diverged significantly from the ‘reference’ genome and

annotations. TEtranscripts mitigates this limitation by providing

flexibility in the input files provided by the user. Our software is ag-

nostic to the genomic aligner and mapping parameters used to

generate the input alignment files, as long as it complies with the

SAM/BAM format. This enables users to optimize genome align-

ment parameters according to the characteristics of their experimen-

tal system before analysis with TEtranscripts. TEtranscripts can also

utilize user-defined annotations for both gene and transposable

elements during quantification. Although we have provided trans-

posable element annotation files for a few common genomes, our

software will process any TE annotations in the GTF format

described earlier. These could include TE annotations that have

been manually curated for a specific strain, or those identified by

bioinformatics tools searching for de-novo transposable elements.

This will allow users to provide the best annotation data suitable for

their experiment, and maximizes the quality of analysis produced by

TEtranscripts.
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