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Abstract

Motivation: Designing an RNA-seq study depends critically on its specific goals, technology and

underlying biology, which renders general guidelines inadequate. We propose a Bayesian frame-

work to customize experiments so that goals can be attained and resources are not wasted, with a

focus on alternative splicing.

Results: We studied how read length, sequencing depth, library preparation and the number of

replicates affects cost-effectiveness of single-sample and group comparison studies. Optimal set-

tings varied strongly according to the target organism or tissue (potential 50–500% cost cuts) and,

interestingly, short reads outperformed long reads for standard analyses. Our framework learns

key characteristics for study design from the data, and predicts if and how to continue experimen-

tation. These predictions matched several follow-up experimental datasets that were used for

validation. We provide default pipelines, but the framework can be combined with other data ana-

lysis methods and can help assess their relative merits.

Availability and implementation: casper package at www.bioconductor.org/packages/release/bioc/

html/casper.html, Supplementary Manual by typing casperDesign() at the R prompt.

Contact: rosselldavid@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The design of an RNA-seq experiment is crucial for its validity and

an adequate use of resources but is typically not assessed in detail.

General guidelines ignore critical aspects such as the specific

research goals or the nature of the studied phenomenon, e.g.

ENCODE guidelines recommend 30 million (m) paired-end reads of

>30 base pairs (bp) for expression estimation and 200 m read

pairs of >76 bp for novel transcript discovery [ENCODE Project

Consortium, 2012 (encodeproject.org/ENCODE/protocols/

dataStandards/ENCODE\_RNAseq\_Standards\_V1.0.pdf)]. As we

show below the adequacy of such guidelines can change signifi-

cantly between studies. Several experimental design strategies were

recently proposed. Grant et al. (2011) and Li and Dewey (2011)

developed an RNA-seq simulator for single sample studies,

considering mapping issues and situations where a reference tran-

scriptome is unavailable, respectively. Given a series of experimen-

tal protocols, the simulation pipeline of Griebel et al. (2012) can

explore the potential effects of various biases and settings. Busby et

al. (2013) and Rossell and Müller (2013) proposed sample size cal-

culations to compare overall gene expression across two groups,

where interestingly these can be based on pilot or public data and

hence incorporate some of the characteristics of this study. These

strategies focus mostly on specific settings such as one sample stud-

ies, a given data analysis or technology (e.g. short reads). Here we

propose a general framework for either single- or multi-sample

studies targeting gene or isoform expression that is flexible to

accommodate any goal, technology (including long reads) and data

analysis. The approach is guided by Bayesian decision theory, where
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key characteristics of the phenomenon under study or the technol-

ogy are learnt as data become available and, importantly, the uncer-

tainty associated to these unknown characteristics is formally taken

into account in a mathematically coherent manner. The goal is to

provide recommendations tailored to each study, such as sequenc-

ing settings, the potential benefits of conducting further experimen-

tation or the relative merits of different data analysis strategies.

Additionally, the framework can also pinpoint general principles

such as the balance between increasing sample size versus sequenc-

ing depth or assess the cost-effectiveness of short reads versus long

reads from the latest sequencing technologies.

2 Approach

A main difficulty to design RNA-seq or similar high-throughput

studies is the substantial uncertainty regarding its biological back-

ground (e.g. variability, actual expression levels, extent of differ-

ences between groups) and the sequencing process itself (e.g.

distribution of reads or insert sizes, mappability). We refer to the

collection of these unknown characteristics as the state of nature N .

Bayesian predictive simulation reflects this uncertainty by generating

various possible values of N according to their probability given

current knowledge K, and subsequently generating future experi-

mental data y that could be obtained under a given experimental de-

sign e and associated analysis results d. Figure 1 gives a schematic

representation. Ideally K contains pilot data from the same or a

similar study, but we provide default human and mice samples and a

strategy for other tissues and species (Supplementary Section 6). The

simulation results can guide the design of a single-stage study where

all samples are collected simultaneously or a two- or multi-stage

study that collects data batches in a sequential fashion. We empha-

size that each of such batches should contain samples from all the

groups under comparison, else artifacts such as batch effects can

render the data useless. Given that deciding the sequencing settings

and number of replicates upfront can be challenging, K can be a first

data batch that is used to guide the simulation and assess the bene-

fits of collecting further data. Upon obtaining any further additional

data one may add it to K and repeat the simulation using the

updated knowledge. For simplicity in our examples we consider

one- or two-stage designs.

Formally, simulations are based on a probability model for ðN ; yÞ
given K (Section 3) and, after they are obtained, they can be

analysed with any user-specified strategy to make decisions d (e.g.

expression estimates, differential expression calls). Simulations for

individual samples are based on casper (Rossell et al., 2014), which

extends a standard RNA-seq probabilistic representation (Salzman

et al., 2011), and multiple samples are linked via the LogNormal-

Normal with Modified Variance (LNNMV) model (Yuan and

Kendziorski, 2006), or alternatively the GaGa model (Rossell,

2009). Briefly, casper records the full exon path visited by each read

to avoid the loss of information from counting single exons or exon

pairs (in particular rendering it applicable to short and long reads

alike) and does not impose parametric assumptions on read and in-

sert size distributions (e.g. uniform reads, Normal or Poisson in-

serts). Further, being a count-based model renders it

computationally efficient, which is critical to simulate many datasets

under potentially numerous experimental settings. Regarding

LNNMV and GaGa, they appealingly do not impose any relation-

ship between mean and variance and, while strictly models for con-

tinuous data, as discussed below after an adequate transformation

(essentially, log-fragments per kilobase per million [FPKM]) we

found that they can provide a better fit to experimental data than

count-based distributions (e.g. Poisson or Negative Binomial). See

Section 3.5 for a discussion of preprocessing and goodness-of-fit.

Once simulations have been obtained one can report any sensible

criteria related to the study goals such as the error in estimating

isoform expression, false discoveries or statistical power, and the

experimenter can informally decide which design offers a better

trade-off between accuracy and the cost of the experiment.

Alternatively, one may formally define a utility function u that com-

bines these competing goals (accuracy versus cost) into a single sum-

mary and adopt Bayesian decision theory to optimize the expected

value of u (Berger, 1985). The approach is flexible in that the utility

can incorporate any criteria reflecting the experimenter’s prefer-

ences, and is straightforward to implement using our posterior simu-

lation approach. To facilitate the use of our framework we provide

two default utilities. For single-sample studies, the utility considers

the mean absolute error (MAE) in estimating isoform (or gene) ex-

pression and a cost term that depends on the chosen sequencing

depth. MAE is a measure of overall estimation precision that is ro-

bust to outliers, e.g. preventing a few isoforms from having an un-

duly large effect on the final design, but naturally other choices are

possible. We also illustrate an alternative based on the proportion of

correctly identified dominant isoforms (with highest relative expres-

sion within a gene). For multi-sample studies, the utility considers

the statistical power to find isoforms that are differentially expressed

(DE) by a user-defined relevant margin (e.g. 2-fold), false discoveries

and a cost that depends on the sample size and sequencing depth. In

principle these utilities require setting certain parameters, but these

have a simple interpretation and inverse decision theory (Swartz

et al., 2006) bypasses the need to specify a single parameter value

(Section 3.2, Supplementary Section 3). So far we kept technical dis-

cussion to a minimum, Section 3 outlines the methods, data prepro-

cessing and model goodness-of-fit (see also Supplementary Sections

1–4). The Supplementary Material contains a summary of our math-

ematical notation.

3 Methods

3.1 Probability model
The basis for individual samples is casper. Let G be the number of

genes of interest and ~ngj be the read count for gene g ¼ 1; . . . ;G in

Fig. 1. Representing uncertainty via simulation. States of nature N ð1Þ; . . . ;N ðBÞ

are probabilistically generated given current knowledge K. N ðbÞ includes isoform

expression, insert sizes, read distribution along transcripts and mappability. Given

N ðbÞ and an experiment design, future data yðbÞ are generated and data analysis

decisions dðbÞ are made. The utility uðbÞ measures how good decisions were and

any incurred costs. The expected utility is estimated with Û ¼ B�1
XB

b¼1
uðbÞ
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sample j, then ~n j ¼ ð~n1j; . . . ; ~nGjÞ �Multinomialð ~Nj; hjÞ, where hj ¼
ðh1j; . . . ; hGjÞ are the true proportions of molecules from each gene

and ~Nj the total aligned reads. ~Nj is the number of reads in single-end

experiments and read pairs in paired-end experiments. We assume

that gene g has Ig isoforms (from genome annotations or de novo pre-

dictions) and that reads come from each isoform with probabilities

pgj ¼ ðpg1j; . . . ;pgIgjÞ. That is, pgj are relative expressions of all

known or predicted isoforms of gene g for sample j. The distribution

of reads along a transcript is estimated non-parametrically from the

data, and likewise for the distribution of insert sizes (length of RNA

molecules after fragmentation). We set default symmetric Dirichlet

priors hj � Dirð2Þ; pgj � Dirð2Þ which, while being non-informative,

induce a mild form of shrinkage to improve parameter estimates

(Rossell et al., 2014). The extension to multiple samples uses

LNNMV model. Let ĝgij be any expression estimate of interest for iso-

form i in sample j, e.g. log-FPKM ĝgij ¼ logð109pgijhgj=wgiÞ where wgi

is the isoform length (bp). Then ĝgij � Nðlgik;/giÞ with group mean

lgik � Nðl0; s
2
0Þ and /�1

gi � Gammað�0=2;r2
0=2Þ, where ðl0; s

2
0; �0;

r2
0Þ are estimated via empirical Bayes (Yuan and Kendziorski, 2006).

We note that /gi models flexibly isoform-specific variance, as it does

not impose any relationship with the mean lgik, and that VarðĝgijÞ in-

cludes the true variability in expression ggij across samples and that

due to estimation error of ĝgij given ggij. Alternatively, GaGa assumes

ĝgij � Gammaðagi; agi=lgikÞ with hierarchical Gamma distributions

on agi and lgik (Supplementary Section 1.2). Both casper, LNNMV

and GaGa lead to computationally tractable model fitting and poster-

ior simulation, rendering the approach practical.

3.2 Default utilities
We consider utility functions u ¼ uðe; c;ĉÞ that measure usefulness of

a design e based on its cost, a (unknown) characteristic c of interest

related to gene/isoform expression and its estimate ĉ based on data

eventually produced by e. We use the generic notation c to emphasize

that this can be any quantity deemed relevant by the researcher, but as

shown below c will often be a simple function of p or h (e.g. relative

expression, differences across groups). We propose default uðe; c;ĉÞ
but the user can easily incorporate alternatives. In studies with a single

sample j we let c ¼ pj be the vector with genome-wide relative expres-

sions for that sample. Denote the read length by r and the desired

number of reads by N (i.e. as indicated to the sequencing facility),

which is different from the eventually mapped reads ~Nj, then our de-

fault utility is uðe; ĉ; cÞ ¼ �c0 � c12Nr�MAE for paired-end experi-

ments (for single-ends replace 2 N by N), where the fixed cost c0 does

not depend on the design and can be ignored, c1 is a cost per base

sequenced to be defined and

MAE ¼ 1

G

XG

g¼1

1

Ig

XIg

i¼1
jp̂gij � pgijj

is the MAE in estimating pj. To help the experimenter set c1 we note

that it has a simple interpretation. Setting c1 ¼ 0:01=ð2rDNÞ means

that the experimenter is willing to pay for DN extra reads to reduce

MAE by �0.01. The quotes given by sequencing facilities usually

depend on the number of reads N, hence c1 can be easily translated

to money. As an alternative we consider studies that aim to identify

the dominant isoform cgj ¼ argmaxipgij across i ¼ 1; . . . ; Ig, in

which case we set uðe; ĉ; cÞ ¼ �c0 � c12rNþD, where

D ¼ G�1
PG

g¼1 Iðĉgj ¼ cgjÞ is the proportion of genes for which we

correctly identified the dominant isoform, Ið�Þ is the indicator func-

tion and c1 ¼ 0:01=ð2rDNÞ means that the experimenter will pay for

DN extra reads to increase D by �0:01.

In multi-sample studies we let cgi ¼ 1 if isoform i is truly DE across

K groups by a user-defined margin (else cgi ¼ 0) and ĉgi are DE calls

obtained from any desired data analysis method. For instance, for

K¼2 groups we may set cgi ¼ Iðjlgi1 � lgi2j > logðtÞÞ where t is the

minimal fold change (FC) between groups that the experimenter

deems to be relevant. We introduce t rather than testing strict equality

across groups (lgi1 ¼ lgi2) to reflect the custom in the field of not re-

porting FCs below a certain threshold t. In our examples we use t¼2

and t¼3 and set DE calls ĉgi ¼ 1 when LNNMV posterior probabil-

ities (PP) of cgi ¼ 1 were > 1� a or alternatively when TREAT

Benjamini-Hochberg (BH) adjusted P-values (McCarthy and Smyth,

2009; Benjamini and Hochberg, 1995) were � a, where a is the

desired false discovery proportion (FDP). Both LNNMV-PP and

TREAT-BH test the equivalence null hypothesis jlgi1 � lgi2j � logðtÞ
versus the alternative jlgi1 � lgi2j > logðtÞ. The cutoff PP> 1� a en-

sures that the posterior expected FDP � a, whereas TREAT-BH tar-

gets the usual frequentist FDR control. As a technical comment,

according to decision theory one should set ĉgi to maximize posterior

expected utility, but instead we adopt a pragmatic standpoint and ac-

knowledge that the data analyst may have other preferred data ana-

lysis strategies. See Supplementary Section 2 for further discussion. Let

Sk be the sample size (number of replicates) in group k ¼ 1; . . . ;K

and S ¼
PK

k¼1 Sk the total sample size. The default utility for multi-

sample studies is uðe; ĉ; cÞ ¼ �ðc0 þ c12rNÞSþ
P

g;iĉgi, which re-

wards having a larger number of DE calls
P

g;iĉgi. This utility does not

explicitly include a penalty for false positives but recall that ĉgi are set

to control the FDP � a, and incorporates a sampling cost

ðc0 þ c12rNÞS. Setting c0 þ c12rN ¼ DDE=DS means the experimenter

would pay for DS more samples if she were to obtain �DDE new DE

calls (Supplementary Table S4 has an example). As shown in our ex-

amples, often we do not need to set c0, c1 as it is clear from the context

whether the increase in DE calls offsets the cost of additional samples.

3.3 Simulation
The utility uðe; c;ĉÞ obtained from conducting a study with design e is a

random variable that depends on the unknown state of nature c and de-

cisions ĉ based on the eventual data (also unknown at the time of study

design). Following certain axioms, Bayesian decision theory dictates

that one should choose the design e maximizing UðeÞ ¼ Eðuðe; c;ĉÞjKÞ,
the expected utility with respect to ðc;ĉÞ given current knowledge K
Algorithms 1 and 2 below simulate B realizations of ðc;ĉÞ and thus of u

ðe; c; ĉÞ from their distribution given K for single- and multi-sample

studies, respectively. In Algorithm 1 the user specifies a read length r,

target number of reads N, mean insert size f (bp) and, optionally, pilot

data consisting of a vector with exon path counts y0 and total reads ~n0

for each gene. Long single-end reads (e.g. r ¼1500 bp) are simulated as

two paired-ends of length r=2 with insert size f¼ r, which gives rise to

the same exon path that would be observed with a single read of length

r. Although we recommend using pilot data whenever possible, and in

the absence of related RNA-seq data it could come from microarrays or

some other technology (see the Supplementary Manual for an example),

if no pilot data are available one may conduct prior predictive simula-

tion in Step 1 of Algorithm 1 (i.e. set ~n ¼ ð0; . . . ; 0Þ, draw

p
ðbÞ
j � Dirð2Þ). We now outline the algorithms and give them in full de-

tail in Supplementary Section 3.

Algorithm 1. Simulation of one RNA-seq sample j. For

b ¼ 1; . . . ;B

1. Simulate gene expressions h
ðbÞ
j � Dirð2þ ~n0Þ and relative

isoform expressions p
ðbÞ
j given ð~n0; y0Þ via Metropolis-

Hastings (Rossell et al., 2014). Find c
ðbÞ
j associated to

ðhðbÞj ;p
ðbÞ
j Þ.
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2. Simulate ~N
ðbÞ
j ¼ Nprmy reads, where pr is a known pro-

portion of uniquely mappable r-long reads (Li et al.,

2014), m � Unifð0:6; 0:9Þ that of actually aligned reads

and y � Unifð0:8;1:2Þ a 620% random read yield. See

Supplementary Section 1.4 for details.

3. Simulate future data ðyðbÞj ; ~n
ðbÞ
j Þ given p

ðbÞ
j ; h

ðbÞ
j , i.e.

~n
ðbÞ
j �Multinomialð ~Nj; h

ðbÞ
j Þ, reads per isoform

�Multinomialð~nðbÞj ;p
ðbÞ
j Þ. Get expression estimates ĉ

ðbÞ
j

(by default using casper, but BAM files Li et al. (2009)

can be generated for combination with other software).

4. Record uðbÞ ¼ uðe; cðbÞj ;ĉ
ðbÞ
j Þ.

Algorithm 1 can be used either in single-stage studies where we

consider a single sequencing experiment and in multi-stage studies

where we consider sequencing a sample of interest multiple times to

increase precision. In single-stage studies ĉ
ðbÞ
j in Step 3 is based only

on the new data ðyðbÞj ; ~n
ðbÞ
j Þ, whereas as in multi-stage studies ĉ

ðbÞ
j

also uses the pilot data ðy0; ~n0Þ as these came from the sample of

interest.

Algorithm 2 below requires setting (r, N, f) and the number of rep-

licates Sk in each group k ¼ 1; . . . ;K, where K is the number of

groups that one wishes to compare expression across. To estimate

statistical power accurately we recommend that Algorithm 2 uses

pilot data from the groups of interest, given that power depends critic-

ally on the size of the differences between groups relative to the

within-groups variance (pooled variance when variability is different

in each group). Although using pilot data from a different study is

also possible, this may lead to under-estimating the number of DE

calls (i.e. sequence too many samples) or over-estimating them (i.e. se-

quence too few samples). Hence we envision a use of Algorithm 2 in

two- or multi-stage studies, where batches are collected sequentially

and become the pilot data to decide if further replicates are needed.

Algorithm 2. Simulation of multiple samples. For

b ¼ 1; . . . ;B

1. Draw lðbÞgik � Nðmgik; vgikÞ, 1=/ðbÞgi � Gammaðagi; bgiÞ for

all g, i, k, where ðmgik; vgik; agi; bgiÞ depend on the pilot

data and are given in Supplementary Section 1.2.

Compute cðbÞ.

2. Draw gðbÞgij � NðlðbÞgik;/
ðbÞ
gi Þ for all g, i, k, j ¼ 1; . . . ; Sk.

Find corresponding p
ðbÞ
j ; h

ðbÞ
j (Supplementary Section 1.2).

3. Use Steps 2 and 3 in Algorithm 1 to obtain ĝðbÞgij for all g,

i, j.

4. Obtain DE calls ĉðbÞ, record uðbÞ ¼ uðe; ĉðbÞ; cðbÞÞ

From Algorithms 1-2 we obtain the Monte Carlo estimate ÛðeÞ
¼
PB

b¼1 uðbÞ=B for any given design e. To choose amongst several

possible designs e one can apply Algorithms 1 and 2 for each of

them and choose that maximizing ÛðeÞ. An advantage of these

simulation-based algorithms is that one may easily evaluate ÛðeÞ for

all values of the utility coefficients (c0, c1). That is, one may report

the optimal e for each (c0, c1) to find the best design for the range of

(c0, c1) values deemed reasonable, which avoids the need to set a sin-

gle (c0, c1) (Swartz et al., 2006). Another advantage is that one may

examine the distribution of the individual components in uðe; c;ĉÞ
for various e, e.g. the MAE in single-sample studies or DE calls and

FDP in multi-sample studies, as illustrated in our examples.

Algorithm 1 is implemented in the casper function simMAE and

Algorithm 2 in simMultSamples (Supplementary Manual).

3.4 Data
The FASTQ files for the K549 cell line and mouse bladder tissue

used as pilot data in Section 4 were obtained from the ENCODE

Project Consortium (2012), samples wgEncodeEH002625 and

wgEncodeEM003062, respectively. The human lymphoblastoids

sample was from the 1000 genomes project (Lappalainen et al.,

2013), sample ERS185276. For the multi-sample example we ob-

tained GSE37704 SRA files from ncbi.nlm.nih.gov/

sra?term¼SRP012607, converted them to FASTQ format with

SRA toolkit 2.2.2 (eutils.ncbi.nih.gov/Traces/sra) com-

mand fastq-dump –split-3 filename.sra, and aligned to the

human genome hg19 with Tophat2 version 2.0.2 (Trapnell et al.,

2012) (default parameters and -a 5). GSE49712 SRA files

(ncbi.nlm.nih.gov/sra?term¼SRP028705) were aligned

to hg19 with STAR 2.3.0 (Dobin et al., 2013) (default parameters).

We imporated the GENCODE v18 (Engström et al., 2013) iso-

forms.gtf file into Bioconductor and used casper function wrap

Known to import the data and obtain isoform expression estimates

(Supplementary Manual).

3.5 Preprocessing and goodness-of-fit
Our multi-sample model assumes that data are preprocessed to re-

move systematic differences between samples and potential biases

due to batches or other covariates. We used quantile normalization,

which Bullard et al. (2010) found useful for RNA-seq data, followed

by the linear model adjustment ĝgij ¼ ~ggij � xjb̂gi, where ~ggij are raw

expression estimates, xj a covariate vector (e.g. batches) and b̂gi the

least-squares estimate from regressing ~ggij on xj and the group indi-

cator. ĝgij are the adjusted expression estimates fed into LNNMV or

GaGa (for the latter we add an offset to guarantee ĝgij > 0). We

used casper function mergeExp to quantile-normalize and

mergeBatches for batch effect adjustment. We emphasize the im-

portance of an adequate normalization, e.g. if it cannot be safely

assumed that differences between samples are solely due to artifacts

one may consider alternatives such as quantro (Hicks and Irizarry,

2015).

Another important point is to assess that the assumptions

posed by our model are reasonable, as these drive the simulation.

For the multi-sample LNNMV/GaGa models we implemented

genome-wide residual quantile–quantile plots and asymmetry

checks for ĝgij, i.e. the first hierarchical level of the model. The

LNNMV assumptions for log-FPKM held fairly well in datasets

GSE37704 and GSE49712, whereas GaGa had a slightly worse fit

and Poisson or Negative binomial qq-plots revealed a substan-

tially poorer fit to the aligned read counts (Supplementary

Sections 4.2 and 4.3). These checks include the hierarchical level

that isoform means lgik arise from a common Normal (LNNMV)

or inverse Gamma (GaGa) distribution. Usually the fit was satis-

factory for genes with aligned read count above a certain min-

imum (roughly >10). For our single-sample model we compared

the number of mapped reads ~n with posterior predictive simula-

tions, again finding a good fit (Supplementary Section 4.1). As

further validation, the examples in Section 4.2 compare observed

DE calls with out-of-sample predictions in GSE37704 and

GSE49712, finding a reasonably good agreement. For further de-

tails see Supplementary Sections 4–5. We note that while the

main role of LNNMV/GaGa for us is as a simulation engine, an

interesting side implication is that data analysis strategies devised

for continuous data often remain reasonable for RNA-seq. See

also Law et al. (2014) for the more advanced voom strategy based

on incorporating weights to consider that measurement precision

increases with read count.
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4 Results

4.1 Single-sample studies
As a first example we consider single sample-studies that aim to esti-

mate relative isoform expression and measure the MAE in (1). The

characteristics of the design to be decided are the number of reads N,

read length r and average insert size f (bp). N and r depend on the

sequencing settings and f on the fragmentation protocol used to pre-

process the sample. We consider r¼76, 101 short reads with either

f¼200 or 300, and also r¼1500 long reads (e.g. as arising from mod-

ern sequencing technologies). For each of these settings we consider a

total of 2–12 sequenced gigabases (Gb) and compare several organisms

and cell types. We used pilot data from the ENCODE Project

Consortium (2012) to design studies for UCSC hg19 isoform expres-

sion in the human K549 cell line and mouse mm10 isoforms in bladder

tissue. Figure 2 summarizes the results. Both for human (black) and

mouse (red), for any fixed total sequenced Gb the lowest MAE is given

by r¼76, f¼300 and the largest by r¼1500. A potential reason is

that the proportion of non-mappable paired-end reads changes little

for r>76, e.g. from 2.1% for r¼76 to 2.4% for r¼101 according to

the piecewise-linear power law of Li et al. (2014) (Supplementary

Section 1.4), hence for fixed fragment length and total sequenced Gb

shorter reads may imply sampling more molecules and estimating low

expression isoforms better. Indeed, we observed largest differences be-

tween experimental settings for low-FPKM isoforms (Supplementary

Figs S16b and S18b). Note that non-mappability can be substantially

higher with shorter or single-end reads, e.g. 12.8% for single-end

36 bp reads. Although this is taken into account by parameter pr in

Algorithm 1, one may also consider more advanced strategies to reflect

mappability (e.g. gene-specific). We view our global mappability par-

ameter pr as a reasonable computationally tractable compromise.

Regarding r¼1500 long reads, if one also considers that they

currently have a higher cost per sequenced bp than short reads

(Quail et al., 2012), these results strongly suggest that the latter are

more efficient in terms of genome-wide estimation of isoform abun-

dance. However, we also found that long reads can be beneficial for

complex genes such as those with overlapping transcripts in oppos-

ite strands (Supplementary Fig. S18), and may also be the more nat-

ural choice for other analysis goals (e.g. validation of de novo

isoform discovery). Because of its lower transcriptome complexity

mouse isoform estimates were substantially more precise than for

human, e.g. a MAE¼0.05 (65% error in relative expression)

required 3.24 Gb for human but only 0.67 Gb for mouse, which can

allow to cut costs by �500%. Although it may not be surprising

that different organisms require distinct sequencing depths, the ob-

servation also applies to different tissues from the same organism.

For instance, in human lymphoblastoids MAE¼0.05 requires 1.8

Gb, which is only 55.6% of the 3.24 Gb for K549. This can be ex-

plained by K549 isoform expression being more asymmetric than in

lymphoblastoids (Supplementary Fig. S15, bottom), which causes a

higher representation of certain molecules in the RNA library and

makes it harder to sample lowly-expressed isoforms. Even within

K549, r ¼ 76; f ¼ 300 achieves MAE¼0.058 with 2� 109 total

sequenced bp whereas r ¼ 101; f ¼ 200 requires > 3� 109,

a>50% increase in cost. As another example, consider that the goal

is to determine the dominant isoform of each gene in K549. The pro-

portion of correctly identified major isoforms increases with number

of sequenced bp (Supplementary Fig. S19). As before, sequencing

shorter reads and longer fragment sizes gives better results and inter-

estingly even with low coverage we expect to achieve >90% correct

detections.

These examples show the importance of considering individual

characteristics of each study such as the target transcriptome, distri-

bution of expression levels and sample preparation, which can all

have a non-negligible effect on expression estimates.

4.2 Multi-sample studies
We now consider differential expression studies. Akin to sequential

clinical trials, rather than spending all resources upfront we consider

starting with a pilot study and collecting data incrementally.

Additionally to (r, f, N) here we need to set the number of samples

Sk per group. We consider the pilot MiSeq study in GSE37704

(Trapnell et al., 2013), which has 3 HOXA1 knock-down and 3

scramble samples (roughly 2.5 m aligned reads per sample). As a

preliminary exploration, we used the LNNMV-PP >0.95 rule

(Section 3.2) to find hg19 isoforms that were DE by >3-folds, ob-

taining 640 significant calls (Fig. 3, top). These findings suggest that

even based on relatively low-yield MiSeq data there are noticeable

differences in isoform expression between the two groups, which is

further confirmed by a Principal Components plot (Supplementary

Fig. 3). Next we used Algorithm 2 to design a follow-up study with

either 3 or 6 more samples per group for a total of Sk¼6 or Sk¼9,

respectively. We considered a HiSeq experiment with either N¼16

or 32 m short reads (r¼101), and also long reads (r¼1, 500) with

the equivalent number of total sequenced bp (N¼2.1 m). The com-

binations of ðSk;N; rÞ gave eight possible experimental designs.

Figure 3 (top) shows the predicted number of DE calls (gray) under

six of those designs and Supplementary Table S2 gives DE calls,

average FDP and power for all eight designs. For instance, we pre-

dicted that Sk¼6 with r¼101 and N¼16 m (9.7–18.2 m actual

alignments) would increase DE calls from 640 to 884.5 (970 for

Sk¼9). As a validation, GSE37704 has three HiSeq samples with

r¼101 and 10.9–16.4 m aligned reads each. These gave 870 DE

calls (Fig. 3, top), in close agreement with the predicted 884.5. The

results also suggest that doubling the number of new replicates

(Sk¼6–9) improves statistical power to a much larger extent than

doubling sequencing depth (N¼16–32 m), consistently with previ-

ous findings [e.g. Rapaport et al. (2013); Busby et al. (2013)]. We

note that the LNNMV-PP rule adequately controlled the average

FDP below the target 0.05. Interestingly, we also found that long

r¼1, 500 bp reads offer a very limited increase in the ability to find

DE isoforms, again likely due to the fact that for a fixed total

sequenced bp longer reads sample much fewer molecules and hence

cannot estimate expression so accurately. In practice long reads are

more costly than short reads [e.g. per bp cost with Pacbio RS is>4

than for MiSeq/HiSeq (Quail et al., 2012)], so a more realistic

Fig. 2. Evaluating single-sample designs. Relative isoform expression MAE

versus total sequenced bp for r¼76, 101 short reads with insert sizes f¼200,

300 and r¼1, 500 long reads. Grey: human K549 cell line (hg19). Red: mouse

bladder tissue (mm10)
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cost-equivalent of N¼16 m, r¼101 bp short reads is N ¼ 2:1=4

¼ 0:52 m long reads, which gives even lower power (Supplementary

Tables S2 and S3). To assess robustness we repeated the simulations

under the GaGa model, obtaining very similar results

(Supplementary Figs S21 and S22, Supplementary Table S5).

Given the simulation output it is straightforward to evaluate

other FC cutoffs and analyses, which can be useful to further assess

robustness and also to compare the performance of several analysis

methods. We considered lowering the FC threshold to >2 and also

using TREAT-BH (Section 3.2) instead of LNNMV-PP to make DE

calls. LNNMV-PP with the >2 cutoff gave a higher number of DE

calls than for the more stringent >3, but results were analogous in

terms of the optimal design (Supplementary Table S2). Regarding

TREAT-BH for >3 and >2 cutoffs we again found that adding in-

dependent replicates was preferable to increasing sequencing depth

and that long reads were not cost-effective (Supplementary Fig. S20,

Supplementary Tables S2 and S3). The predicted number of DE calls

in the simulations matched those in the validation HiSeq data also

for TREAT-BH. The FDP was adequately controlled but relative to

LNNMV-PP there was a sharp decrease in DE calls. This is not sur-

prising given that equivalence testing P-values control false positives

under the worst possible case that the FC lies at the boundary jlgi1

�lgi2j ¼ logðtÞ for all genes g, which results in a conservative behav-

ior when many FCs truly are of a smaller magnitude. So far our dis-

cussion was informal, but these results are easily integrated with

decision theory (Supplementary Section 5). For instance, Sk¼9

would only be preferable to Sk¼6 if the experimenter believed that

as few as 14 new DE calls already make it worth sequencing one

extra sample. That is, for most experimenters the decision Sk¼6 has

higher expected utility than Sk¼9.

The previous example illustrates a situation where continuation

beyond the pilot (Sk > 3) clearly improves statistical power, and that

this can be detected even when using MiSeq pilot data to assess a

HiSeq follow-up. It is equally important to detect situations where lit-

tle benefits are expected beyond the pilot, as then one can stop experi-

mentation. To illustrate this we selected 2 of the 5 universal human

and 5 brain reference samples from GSE49712 (Rapaport et al.,

2013) as pilot data and used Algorithm 2 to predict the number of DE

calls when increasing the sample size to Sk¼3,4,5. GSE49712 is a dis-

tinct example from GSE37704 due to having higher read yield

(roughly 61m aligned reads per sample) and that here we considered

194 820 isoforms from GENCODE v18 (Engström et al., 2013) rather

than the 40892 UCSC hg19 isoforms studied in GSE37704. Further,

the Principal Components plot reveals the existence of stronger differ-

ences between groups (Supplementary Fig. S11). In fact, 32596 DE

calls were found by LNNMV-PP with a fold-change>3 based only

on the Sk¼2 pilot samples per group. Figure 3 (bottom),

Supplementary Table S6 and Supplementary Figure S23 show that lit-

tle benefits were predicted for increasing Sk further. For instance the

32596 LNNMV-PP calls were predicted to only increase to 35 037

for Sk¼5, a prediction that was confirmed when analysing the five

available experimental samples per group, where in fact even slightly

fewer DE calls were made (33 595). Analogous results were found for

a >2 cutoff and when making DE calls with TREAT-BH.

Interestingly, for a >3 cutoff LNNMV-PP offered better statistical

power than TREAT-BH at a low FDP but for a >2 cutoff LNNMV-

PP was overly liberal with an FDP around 0.12–0.13, whereas

TREAT-BH showed an FDP¼0.05–0.06 much closer to the target

0.05. This example shows that, beyond choosing an experimental de-

sign, the simulations can help assess which amongst various analysis

strategies may be more appropriate for the problem at hand.

5 Discussion

In an era when high-throughput technologies and Big Data are hav-

ing a profound impact on biomedical research, experimental design

continues to be critical for the validity of science. Unfortunately de-

sign considerations are often overlooked, perhaps encouraged partly

by a naive feeling that with good enough technology design consid-

erations are less important and partly by practical difficulties such

as the lack of available tools. To address these challenges, we pro-

posed a general framework for RNA-seq experiments firmly

grounded in Bayesian decision theory and statistical design of ex-

periments. We focused on RNA-seq, but the framework can serve as

a basis to design other experiments, e.g. proteomics, genome-wide

association studies etc. The key components for such extensions are

a model that offers a good probabilistic representation of the data-

generating process, a utility function or multiple criteria that assess

cost-effectiveness taking into account the characteristics of the prob-

lem at hand and a computational strategy that produces answers
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GSE47912 (black) and simulations based on Sk¼2 (grey)
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within a practical time frame. Although there are other possible

routes to specify these components, Bayesian models equipped with

posterior and posterior predictive sampling algorithms become a

convenient choice that allow implementing our framework in a

straightforward manner.

Our results indicate that it is important to go beyond default guide-

lines to consider each individual study, i.e. to customize the design. By

taking into account the target organism or likely expression levels for

the tissue of interest one may cut sequencing costs by a factor of 2–5

and still estimate expression at a good precision. Similarly for multi-

sample studies, where the ability to find differential expression depends

critically on between-groups differences relative to within-groups vari-

ability and other characteristics. For instance, the contrast between

GSE37704 and GSE49712 resembles differences between studies en-

countered in practice in the underlying biology, technology used or

even the target transcriptome that one wishes to make inference for. By

adapting to such context-specific characteristics, customized designs

are a promising and currently under-explored framework to help re-

searchers decide if and how to conduct high-throughput studies in a

statistically principled manner. The associated savings in time and ex-

perimentation are not only ethical, but also help focus research efforts

where they are more likely to yield useful results.
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