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ABSTRACT
Generation of the primate cortex is characterized by

the diversity of cortical precursors and the complexity

of their lineage relationships. Recent studies have

reported miscellaneous precursor types based on

observer classification of cell biology features including

morphology, stemness, and proliferative behavior. Here

we use an unsupervised machine learning method for

Hidden Markov Trees (HMTs), which can be applied to

large datasets to classify precursors on the basis of

morphology, cell-cycle length, and behavior during mito-

sis. The unbiased lineage analysis automatically identi-

fies cell types by applying a lineage-based clustering

and model-learning algorithm to a macaque corticogen-

esis dataset. The algorithmic results validate previously

reported observer classification of precursor types and

show numerous advantages: It predicts a higher diver-

sity of progenitors and numerous potential transitions

between precursor types. The HMT model can be initial-

ized to learn a user-defined number of distinct classes

of precursors. This makes it possible to 1) reveal as yet

undetected precursor types in view of exploring the sig-

nificant features of precursors with respect to specific

cellular processes; and 2) explore specific lineage fea-

tures. For example, most precursors in the experimen-

tal dataset exhibit bidirectional transitions. Constraining

the directionality in the HMT model leads to a reduction

in precursor diversity following multiple divisions,

thereby suggesting that one impact of bidirectionality in

corticogenesis is to maintain precursor diversity. In this

way we show that unsupervised lineage analysis pro-

vides a valuable methodology for investigating funda-

mental features of corticogenesis. J. Comp. Neurol.

524:535–563, 2016.
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During evolution the cerebral cortex has undergone tan-

gential expansion accompanied by an increase in the num-

ber of cortical areas. In addition, in both human and

nonhuman primate cortex there has been a selective

enlargement of the supragranular layer compartment

(Mar�ın-Padilla, 1992), which has an important role in the

computational processes of the brain (reviewed in Douglas

and Martin, 2004; Kennedy et al., 2007). The enlarged

supragranular layers of the primates arise from a special-

ized precursor pool, the outer subventricular zone (OSVZ)

(Smart et al., 2002; Lukaszewicz et al., 2005). The OSVZ is

the major germinal zone of the developing primate cerebral

cortex and harbors the bulk of cortical progenitors from

midcorticogenesis onward (Smart et al., 2002; Lukaszewicz
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et al., 2005; Fietz et al., 2010; Hansen et al., 2010; Fietz

and Huttner, 2011; Lui et al., 2011; Reillo and Borrell,

2012; Betizeau et al., 2013). Although significant progress

has been made in identifying the OSVZ precursor types in

human (Hansen et al., 2010; Fietz and Huttner, 2011) and

non-human (Betizeau et al., 2013) primates, understanding

the cellular and molecular properties of OSVZ precursors

that drive its expansion in the primate lineage remains a

major challenge (Lui et al., 2011; Dehay et al., 2015).

Lipophilic dye deposit on the basal membrane and

adenoviral infection in human tissue shows that the pri-

mate OSVZ includes a large fraction of basal radial glia

cells (bRGs) that greatly outnumber intermediate pro-

genitors (IPs) (Fietz et al., 2010; Hansen et al., 2010).

bRGs were described as monopolar precursors with a

basal process contacting the basal lamina, but lacking

an apical process contacting the ventricle (Fietz et al.,

2010; Hansen et al., 2010; Fietz and Huttner, 2011;

Reillo and Borrell, 2012). A recent study in embryonic

macaque, combining real-time imaging of retrovirally

infected green fluorescent protein (GFP)-expressing pro-

genitors from long-term organotypic slice cultures with

immunohistochemistry, showed that the bRG population

is more diverse than previously reported in human stud-

ies (Betizeau et al., 2013). This study showed that, in

addition to the previously described basal process bear-

ing bRG precursor (the bRG-basal-P precursor), three

additional categories of bRGs can be observed: 1) bipo-

lar bRG precursors exhibiting an apically directed pro-

cess in addition to the basal process (bRG–both-P

precursors); 2) monopolar bRG precursors lacking a

basal process and exhibiting an apically directed pro-

cess (bRG–apical-P precursors); and 3) transient bRGs

(tbRG precursors) where either a well-developed apical

or basal process (or both) retract or are formed during

the lifetime of the precursor (Betizeau et al., 2013).

Note that in macaque, bRG apically directed processes

do not reach the ventricular border and therefore con-

tain only basolateral plasma membrane (reviewed in

Florio and Huttner, 2014). By contrast, bRG basal proc-

esses can either extend all the way to the basal lamina

or just be basally directed.

This work reveals complex lineages of the primate

OSVZ precursor subtypes involving many successive

rounds of proliferative divisions. Importantly, statistical

analysis showed that each bRG subtype has a distinct

proliferative behavior and neurogenic capacity. This

unanticipated diversity in the OSVZ progenitor pool has

prompted a revised view of prevailing models of pri-

mate corticogenesis (Florio and Huttner, 2014).

To explore the diversity of OSVZ precursors and the

robustness of the morphology-based classification, we

have implemented an unsupervised probabilistic cluster-

ing approach based on Hidden Markov Trees (HMTs)

(Crouse et al., 1998; Durand et al., 2004). Compared

with conventional parametric or hierarchical clustering

models (Polo et al., 2010), the HMT approach takes the

tree-based nature of the data into account when identi-

fying clusters, revealing the order relationships in line-

ages. These order relationships are then used to better

define progeny. HMTs are thus well suited for modeling

data with natural growth and branching processes, and

have been used for diverse applications such as analyz-

ing branching patterns during tree growth (Durand

et al., 2005) and reconstruction of pluripotent stem cell

lineage trees from incomplete gene expression meas-

urements (Olariu et al., 2009). The method is widely

used in technical applications such as wavelet-based

signal processing for acoustic and visual denoising and

reconstruction (Crouse et al., 1998; Choi et al., 2000;

Willsky, 2002; Duarte et al., 2008), image modeling

(Romberg et al., 2001), or pattern recognition (He

et al., 2008). Here we present the first application of

HMT models to the analysis of cortical precursor types.

HMTs encode in their structure the underlying assump-

tion that there exist discrete types of precursors that

can be characterized both by their observable charac-

teristic morphology and by the fate of their progeny. In

this way the unsupervised machine learning algorithms

for HMTs are able to identify unobservable precursor

types when lineage-based clustering is applied to a

large database of monkey cortical precursors, collected

for Betizeau et al. (2013). One can speculate that

molecular markers would identify these unobserved pre-

cursor types. In the Betizeau et al. (2013) database

each cell is characterized by its observed features as

well as its position in the lineage trees. Despite the

simplicity of the HMT model, the learned probabilistic

model accurately identifies and explains the roles of

diverse morphological precursor types and their lineage

relations in monkey cortex, reproducing the diversity

revealed by empirical (manual) observation (Betizeau

et al., 2013). In addition, HMT predicts the type of cells

that previously could not be characterized because of

their unknown fate.

A novelty of the HMT prediction is that the automated

method simultaneously takes into account morphological

and lineage information including progeny, thereby sug-

gesting slight deviations from a purely morphology-based

characterization. The HMT model also predicts the possibil-

ity of a higher diversity than so far observed in the data-

base. This larger diversity, largely resulting from

subdividing existing categories, could correspond to pre-

cursors with as yet to be determined specialized develop-

mental roles. In accordance with the previously reported

nature of precursor type transitions (Betizeau et al., 2013),

M. Pfeiffer et al.
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the HMT shows that each precursor type generates charac-

teristic frequencies of daughter types. Importantly, the

HMT transition diagrams confirm the presence of loops

connecting members at different lineage depths, thereby

speaking against a strict direction of transitions from less

toward more fate-constrained precursors. By using the

HMT, we have been able to show that these loops serve to

ensure the high precursor diversity observed in the data.

As larger datasets of progenitor and stem cells for different

species with a diversity of morphological and genetic

measurements become available (Costa et al., 2011; Beti-

zeau et al., 2013), automated methods such as HMT mod-

els will be able to provide an invaluable generic tool for

identifying hidden patterns of proliferation.

Glossary of terms and synonyms
Root: the first node of the lineage tree, i.e., the first

observed precursor.

Lineage depth, rank of division: number of divisions

between the root and the cell.

Normalized depth: depth divided by the length of the

longest branch of the tree, so that the root has normal-

ized depth 0, and the maximum normalized depth is 1.

Observer classification, manual classification: classifi-

cation of precursors into discrete categories by a

human expert, according to manually defined criteria,

such as morphology. Also refers to the classification in

Betizeau et al. (2013).

Type, category, cluster: synonyms for discrete cate-

gories of real objects or abstract data. We use the term

“type” to denote a category of real cells, and “cluster”

when talking about groups of data points that share

statistical similarities in the abstract feature representa-

tion space.

Transition diagram: graph showing proportions of cell

types and the frequencies of transitions between types.

Arrows in the transition diagram show for each precur-

sor type the proportion of daughter cell types after divi-

sions. The precursor types in a transition diagram are

vertically arranged according to their normalized depth.

MATERIALS AND METHODS

Animals
Fetuses from timed-pregnant cynomolgus monkeys

(Macaca fascicularis, gestation period 165 days) were

delivered by caesarian section as described elsewhere

(Lukaszewicz et al., 2005). All experiments are in com-

pliance with national and European regulations as well

as with institutional guidelines concerning animal exper-

imentation. Surgical procedures are in accordance with

European requirements 2010/63/UE. The experimental

protocol C2EA42-12-11-0402-003 was reviewed and

approved by the Animal Care and Use Committee

CELYNE (C2EA #42).

Organotypic slice culture, adenoviral, and
retroviral infection

Occipital poles of embryonic hemispheres were iso-

lated and embedded in 3% low melting agarose (Sigma,

Saint-Quentin-Fallavier, France) in supplemented Hanks

balanced salt solution (HBSS) at 378C. Then 300-lm-

thick parasagittal slices were cut in 48C supplemented

HBSS using a vibrating blade microtome (Leica VT1000

S). Slices were incubated in Glasgow minimum essential

medium (GMEM) containing porcine cytomegalovirus–

enhanced GFP (pCMV–EGFP) retrovirus (1–5.105 pi/ml)

(Betizeau et al., 2013) or Ad-CMV-GFP (1 3 1010 PFU;

Vector, Nanterre, France), for 2–3 hours at 378C. Slices

were then mounted on laminin/poly-lysine–coated 0.4-

lm Millicell culture inserts (Millipore, Molsheim, France)

in a drop of type I collagen (BD Biosciences, Allschwil,

Switzerland) and cultured at 378C, 7.5% CO2, in 6-well

plates in GMEM supplemented with 1% sodium pyru-

vate, 7.2 lM beta-mercaptoethanol, 1% nonessential

amino acids, 2 mM glutamine, 1% penicillin/streptomy-

cin, and 10% fetal calf serum (FCS; GE Healthcare,

V�elizy-Villacoublay, France).

Following 1–4 days of in vitro culture, slices were

fixed for 1 hour in phosphate-buffered (0.1 M) parafor-

maldehyde solution (PFA 2%) and cryoprotected with

10% and then 20% sucrose in phosphate buffer (PB).

Sections were cut at 20 lm on a cryostat (Microm

HM550) after embedding in O.C.T. compound (Tissue-

Tek, Sakura Finetek, Alphen aan Den Rijn, The

Netherlands).

Antibodies
The primary antibody used in these studies is listed

and described in Table 1. Fluorophore-conjugated sec-

ondary antibodies, goat anti-chicken/Alexa 488

(1:1,000), goat anti-mouse/Alexa 555 (1:800), and goat

anti-rabbit/Alexa 647 (1:400) were obtained from

Molecular Probes (Lyon, France).

Antibody characterization: GFP
This antibody is the purified IgY fraction from chicken

serum raised against GFP directly from the jellyfish

Aequorea victoria (RRID:AB_11180610). GFP antibodies

are suitable for the detection of native GFP, GFP var-

iants, and most GFP fusion proteins. This antibody

allows the highlighting of cells positive for GFP-

adenovirus or GFP-retrovirus (Hansen et al., 2010; Beti-

zeau et al., 2013).

Unsupervised Characterization of Primate Precursors
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Immunohistochemistry
Cryosections were air-dried for 30 minutes and

hydrated in Tris-buffered saline (TBS; pH 7.6) for 30

minutes. Slices were treated with Antigen Retrieval

(Dako, Les Ulis, France) for 15 minutes at 95–968C and

then cooled to room temperature during 20 minutes.

Nonspecific binding was blocked by incubation in TBS

1 bovine serum albumin (BSA) 1% 1 normal goat

serum (10%, Gibco/Life Technologies, Grand Island, NY)

for 30 minutes. The primary antibody was incubated

overnight in TBS 1 1% BSA at 48C for 12 hours. After

washing in TBS, fluorophore-conjugated secondary

TABLE 2.

Description of measured morphological and proliferative features per cell

Feature Description Possible values

Morphology at birth Presence/absence of apical/basal processes at birth � No processes
� Apical process only
� Basal process only
� Apical and basal process

Morphology at mitosis Presence/absence of apical/basal
processes prior to mitosis

� No processes
� Apical process only
� Basal process only
� Apical and basal process

Cell type Cycling/postmitotic � Unknown
� Cycling
� Postmitotic
� Dead cell

Process stability Process stability between birth and mitosis � No process
� Minimum one transient process
� Permanent (at least one process during at least

85% of the cell’s lifetime)

Process retraction Retraction of processes during mitosis � No mitosis
� No retraction
� Minimum one process retracts

Cell-cycle length Cell-cycle length in hours � No mitosis
� Time bins for 20–40, 40–60, 60–80, 80–100 h

Mitotic plane angle Orientation of mitotic plane � No mitosis
� 0–30, 30–60, 60–90 deg

Translocation Translocation movement prior to mitosis � No mitosis
� Downward translocation
� No translocation
� Upward translocation

Zone Zone where cell is located at onset � Apical VZ (ventricular zone)
� ISVZ (inner subventricular zone)
� IFL (inner fiber layer)
� OSVZ (outer subventriculsar zone)
� OFL (outer fiber layer)
� SP (subplate)

Mitosis location Cell following mitosis � Lower daughter cell
� Upper daughter cell

Division type Proliferative or differentiative division: the values indicate
the daughter cell types (proliferative,
postmitotic, unknown type)

� Absence of mitosis
� 2 postmitotic
� 1 postmitotic, 1 unknown
� 1 postmitotic, 1 proliferative
� 1 proliferative, 1 unknown
� 2 proliferative
� unknown

TABLE 1.

Primary Antibody Used in This Study

Antibody Immunogen

Manufacturer, cat.#, host species,

mono- vs. polyclonal, RRID Dilution

Green fluorescent
protein (GFP)

GFP isolated directly from the
jellyfish Aequorea victoria

Molecular Probes, #A10262,
chicken, RRID AB11180610

1:800

M. Pfeiffer et al.
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antibodies were coincubated in Dako Diluent (Dako) for

1 hour at room temperature. After washing in TBS, sec-

tions were stained with 40,6 diamidino-2-phenylindole

(DAPI; Molecular Probes, Eugene, OR; 1:4,000 in TBS)

for 10 minutes at room temperature. Sections were

mounted in Fluoromount G (SouthernBiotech, Birming-

ham, AL).

Image acquisition
Images were collected by confocal microscopy using

a Leica DM 6000 CS SP5. Acquisitions were performed

using a Leica HCX PL AP immersion oil 403/1.25 0.75

with a digital zoom of 2. Tiled scans were automatically

acquired using the LAS AF software (Leica). For cryo-

sections, stacks of five optical sections spaced 2 lm

apart were taken. For the morphology analysis on 80-

lm-thick sections, stacks throughout the entire section

thickness were acquired spaced 1 lm apart. All image

analyses were performed in ImageJ software (Schneider

et al., 2012).

Collection of the dataset
The dataset comprising positively identified precur-

sors via immune staining and video recording was col-

lected for Betizeau et al. (2013), and is described in

detail there. The dataset is the result of approximately

7,000 hours of video recordings of organotypic slice

cultures from developing macaque cortex. Images were

taken every 1–1.5 hours for up to 15 days. We ana-

lyzed cells from embryonic (E) day 65 (i.e., 65 days

post conception) and E78 derived from four hemi-

spheres at each time point (34 lineages, 216 cells at

E65, 57 lineages, 479 cells at E78 for a total of 91 line-

ages, 695 cells). Table 2 lists the features measured for

each cell and their possible discrete values.

Data preprocessing and annotation
Continuous features of the dataset were rounded and

converted into discrete values. Bins of 20 hours for the

cell-cycle length were used, with a maximum of 100

hours. For the mitotic plane, bins of 308 between 08

and 908 were used. The presence of a process was

evaluated at each time point. A process was noted

present if detected on the image. A process was con-

sidered stable if at least one process was present in at

least 85% of the precursor’s lifetime, transient if it was

present between 15 and 85% of the lifetime, and

absent if not detected for more than 15% of the life-

time. Because of the focus of the present study on the

precursor types of the OSVZ and inner (I)SVZ, lineage

trees originating in the apical VZ (22.3% of all recorded

lineage trees) were removed.

Hidden Markov Trees
A Hidden Markov Tree (Crouse et al., 1998) is a

graphical model, closely related to the Hidden Markov

Model (HMM). It models the probabilistic relationship

between observable variables and a hidden state vari-

able, as well as the probabilistic dependencies between

hidden states of different observations. Whereas in an

HMM every hidden state has exactly one successor, an

HMT models the relationship between different observa-

tions with a tree structure. For simplicity, only binary

trees, i.e., trees in which every non-leaf node has

exactly two successors, are considered here. In the

context of cell lineage analysis, the measured features

of a single cell are considered as so many observations,

and allow a discrete hidden state to be attributed to

each cell. The vector of features of each cell consti-

tutes the observable variables, which are dependent

uniquely on the hidden state. The lineage is directly

translated into the HMT structure, and the hidden state

of each cell is modeled to depend stochastically

uniquely on the hidden state of the mother cell (Fig. 1).

The hidden state of each cell is an abstraction of inter-

nal and external signaling that the cell experiences.

This state, which is not directly observed, expresses

itself through observable features such as the morphol-

ogy, behavior of cells before mitosis, and observed

daughter cell types.

Hidden Markov Tree notation
The data for a single lineage are given by observations

X, and the lineage tree structure. Following the notation

of Durand et al. (2004), we denote by X15ðX1; . . . ; XnÞ
a single tree rooted in X1. In addition, we define the tree

of hidden states (with the same structure as X1) by

Figure 1. Graphical model structure of a Hidden Markov Tree

(HMT) model, with hidden states Su and observation vectors Xu.

The representation shows statistical dependencies assumed by

the model: the hidden states of the two daughter cells (S2 and

S3) are conditionally independent given the hidden state of the

mother cell (S1), and the distribution of observation variables

depends only on the hidden state of the cell.

Unsupervised Characterization of Primate Precursors
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S15ðS1; . . . ; SnÞ, where each Si can take on discrete

values from 1 to K, corresponding to the number of hid-

den states (Fig. 1). For each node u we denote the set of

children as c(u), the parent of u as q(u), and the sub-trees

rooted at u as Xu and Su . An HMT is defined through two

properties: 1) for each observation in a node Xu the

observation probability is given as a mixture model

dependent on the hidden states via

PðXu5xÞ5
XK

j51

PðSu5jÞ � PðXu5xjSu5jÞ

and 2) for given observations X1 and hidden states S1

of the whole tree, the likelihood factorizes according to

the Markov property for a tree structure

PðX15x1 ;S15s1Þ

5PðS15s1Þ �
�Y

u6¼1
P
�

Su5sujSqðuÞ5sqðuÞ

��

�
Y

u
PðXu5xujSu5suÞ

The task required here is to infer automatically an HMT

model that explains the morphological subtypes

observed, as well as stochastic lineage relationships

between the discrete types. This requires defining in

advance the parameter K that determines the number

of possible hidden states for each cell. The HMT algo-

rithm then infers three sets of parameters:

1. A multinomial prior distribution p 5 (p1, . . ., pK), so

that pj is the probability that the hidden state of the

root node in a lineage is j, i.e., pi5PðS15jÞ.
2. A transition matrix A 5 (aij), where aij describes the

probability that the hidden state of a daughter cell is

type j, under the condition that the mother cell’s hid-

den state is of type i, i.e., aij5PðSu115jjSu5iÞ,
where u11 is a child of u.

3. An observation model h 5 (u1, . . ., uK), in which

each uj describes a multivariate discrete probability

distribution for the observed variables x under the

condition that the hidden state is type j, i.e.,

ujðxuÞ5PðXu5xujSu5jÞ. For simplicity, a discrete

mixture-of-multinomials model is assumed. All

observed variables are conditionally independent

given the hidden state (this is equivalent to the

Na€ıve Bayes model commonly used in machine

learning). In this case, the likelihood model factorizes

over all observed attributes, i.e., for xu5ðx1
u ; . . . ; xp

uÞ
one can calculate ujðxuÞ5

Qp
i51PðXi

u5xi
ujSu5jÞ. In

principle, other models, e.g., Gaussians for continuous

variables, or modeled dependencies, could be equally

used (Bishop, 2006).

The likelihood for given parameters can thus be fac-

torized as

PðX15x1 ;S15s1Þ5pðs1Þ �
Y
u 6¼1

Aðsu; sqðuÞÞ �
Y

u

usðuÞðxuÞ:

Given an HMT model, a variant of the well-known

Viterbi algorithm adapted to the tree structure is used

to infer the most likely hidden state assignment for

each cell from known observations and the lineage rela-

tionship (Durand et al., 2004). For our application it is

necessary to learn the most likely model (p, A, h) that

explains all the measured data, given by multiple line-

age trees and the morphological measurements. For

this, a variant of the unsupervised expectation–maximi-

zation (EM) algorithm called the upward–downward

algorithm is used (described below) (Crouse et al.,

1998; Durand et al., 2004). The algorithm iterates mul-

tiple times through the whole dataset, consisting of

multiple lineages, and adapts the three sets of parame-

ters to maximize the likelihood of the observations. Our

analysis was performed with Matlab (Mathworks,

Natick, MA).

The algorithm is initialized with a predefined number

of cell types between 2 and 20. The algorithm proceeds

to perform 50 iterations of the upward–downward algo-

rithm to learn (p, A, h), after which convergence is

reached in all cases. As for every EM-type algorithm,

the parameters to be learned need to be initialized ran-

domly. This leads to different but qualitatively similar

results following multiple iterations. Twenty repetitions

on each dataset are performed, and the most represen-

tative result is selected for further analysis.

To choose the most representative result of the 20

repetitions for a fixed number of clusters K, the distan-

ces between the h vectors are computed for all clusters

of one clustering to all h vectors of the other 19 clus-

terings. For each cluster the most similar cluster in

every other experiment is determined. Distances

between clusterings are defined as the sum of mini-

mum distances between clusters. The clustering with

the minimum median distance to all other clusterings is

selected as the representative clustering for the fixed

number of clusters K.

Model constraints
The HMT algorithm can easily be modified to impose

specific constraints on the lineage relationships, such

as a directionality of precursor type transitions. Typi-

cally A is initialized as a random matrix with entries

between 0 and 1 that are normalized to represent

proper probabilities. If, however, an entry in A is set to

0, it will remain 0 throughout model learning, making

certain transitions between states impossible. If A is

thus initialized as a (random) triangular matrix, where

aij 5 0 for i > j, the resulting model will impose a

M. Pfeiffer et al.
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directionality in the possible hidden state transitions,

whereby precursors in state i cannot generate daughter

cells with a state j < i. This implies that larger state

indices correspond to more differentiated cells, whereas

precursors of states with low indices can still differenti-

ate into many different cell types. Unlike stem cells,

precursors have a limited potential to self-renew prior

to differentiating into distinct cell types (Hirabayashi

and Gotoh, 2010). Cortical progenitors also exhibit

bidirectional state transitions that are not compatible

with a directional model (Betizeau et al., 2013). There-

fore in our analysis we tested both models and found

similar precursor types but in significantly different

proportions.

Upward–downward algorithm
The upward–downward algorithm is a variant of the

unsupervised EM algorithm that learns the optimal

parameters (p, A, h) for an HMT model of a given data-

set. The main difficulty is estimating the distribution of

the hidden states of each node, from which the

updated parameters of the HMT model can be relatively

easily estimated. The smoothed-probability variant

(Durand et al., 2004) was used to obtain the distribu-

tion of hidden states. This method avoids the numerical

problems arising from multiplication of small probabil-

ities along the tree paths. It computes the auxiliary

smoothed probabilities, where 1\u denotes the whole

tree without the subtree rooted at node u:

buðjÞ5PðSu5jjXu5xuÞ

bqðuÞ;uðjÞ5
PðXu5xu jSpðuÞ5jÞ

PðXu5xuÞ

auðjÞ5
PðX1n u5x1n u jSu5jÞ

PðX1n u5x1n u jXu5xuÞ
:

As the name of the algorithm implies, these quantities

can be computed in two passes through the tree, one

in the upward and the other in the downward direction.

In addition, the marginal distribution PðSu5jÞ is

required. This is computed by starting with PðS15jÞ5pj

at the root, and then using the recursion PðSu5jÞ5P
i PðSu5jjSqðuÞ5iÞ � PðSqðuÞ5iÞ.
In the upward recursion, the leaf nodes are initialized

to buðjÞ5
ujðxuÞ�PðSu5jÞ

Nu
, where Nu5

P
j ujðxuÞ � PðSu5jÞ is

a normalizing factor. For the internal nodes one com-

putes buðjÞ5
ujðuÞ�PðSu5jÞ�

Q
v2cðuÞbu;vðjÞ

Nu
, where the normaliz-

ing factor Nu5
P

j ujðxuÞ � PðSu5jÞ �
Q

v2cðuÞ bu;vðjÞ.
The bu;v are calculated recursively as bqðuÞ;uðjÞ5P

k

buðkÞ�PðSu5kjSpðuÞ5jÞ
PðSu5kÞ .

In the downward recursion, the quantities auðjÞ are

computed, starting with the initialization a1ðjÞ51 for

the root node. Subsequently, auðjÞ is computed as

auðjÞ5 1
PðSu5jÞ �

P
i

aqðuÞðiÞ�bqðuÞðiÞ�PðSu5jjSqðuÞ5iÞ
bqðuÞ;uðiÞ

.

Once auðjÞ and buðjÞ are known for every node in a

single tree, the probabilities for the hidden states are

obtained as PðSu5jjX15x1Þ5auðjÞ � buðjÞ. By doing

this for all lineage trees, the parameters of the HMT

model can be updated in the M-step of the EM algo-

rithm with rather straightforward calculations of

weighted sums and subsequent normalization, given

that the parameters describe probability distributions

that sum to 1 (Crouse et al., 1998; Durand et al.,

2004).

Viterbi algorithm
The purpose of the Viterbi algorithm is to assign for

a given HMT model the most likely tree of hidden

states S1 to a lineage tree with observations X1 . We

give a brief summary of the implementation suggested

by others (Durand et al., 2004). The algorithm calcu-

lates the assignment s15arg maxs PðS15s;X15x1Þ
that maximizes the likelihood given x1 . For this, auxil-

iary variables duðjÞ5 maxscðuÞ PðXu5xu ; ScðuÞ5scðuÞ jSu

5jÞ and dqðuÞ;uðjÞ5 maxscðuÞ PðXu5xu ; ScðuÞ5scðuÞ jSqðuÞ
5jÞ are computed for every node u, respectively each

parent–child node pair, starting at the leaf nodes where

duðjÞ5ujðxuÞ. For the internal nodes, the values are

computed in an upward recursion as

duðjÞ5ujðxuÞ �
Y

v2cðuÞ
du;vðjÞ

dqðuÞ;uðjÞ5 max
k

duðkÞ � PðSu5kjSqðuÞ5jÞ:

In a subsequent downward pass, the optimal hidden

state sequence is retrieved by first maximizing pj � d1ðjÞ
to find the optimal state S1 for the root node, and then

assigning the states that maximized dqðuÞ;uðjÞ for the

given state of the parent node, until the leaf nodes are

reached.

Cluster initialization
The unsupervised HMT learning algorithm is initialized

by setting the parameters A and h to random values

between 0 and 1, followed by normalization to obtain

proper probability distributions. For A, different types of

constraints are defined (see above). The prior distribu-

tion p is initialized to a uniform distribution. Identified

postmitotic cells are initially assigned to a single clus-

ter, and remain there throughout the clustering. Without

this initialization, multiple clusters of postmitotic cells

are identified for larger numbers of clusters, but this

effect does not qualitatively change the types of
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identified precursors, which are the focus of the pres-

ent study. Different sets of features are used for the

data matrix, but features that had no effect on the clus-

tering (such as the germinal zone or the cortical area)

are removed.

Evaluation of cluster analysis
Silhouette values (Rousseeuw, 1987) were computed

as indicators of clustering quality. The silhouette value

s(xi) for a single data point xi is computed as

sðxiÞ5 bðxiÞ2aðxiÞ
maxðaðxiÞ;bðxiÞÞ, where a(xi) is the average distance

of xi to all points in the same cluster, and b(xi) is the

minimum average distance of xi to all other clusters in

which xi is not a member. Hence low values of a(xi)

indicate that xi is representative of the cluster, whereas

high values of b(xi) indicate that xi is very different from

the other clusters. s(xi) is restricted to lie between 21

and 11, and high values indicate good clustering qual-

ity, whereas negative values indicate that the data point

should rather belong to a different cluster. By comput-

ing Sk5
1
nk

P
xi2Ck

sðxiÞ as the average of s(xi) over all nk

points in cluster Ck, one obtains an indicator of how

well separated the cluster is from all others. An indica-

tor for the complete clustering is obtained by averaging

Sk over all K clusters. These values are used to com-

pare clustering results with different numbers of clus-

ters, becausee increasing K reduces both a(xi) and b(xi)

simultaneously, and thus a larger number of clusters

does not necessarily improve the silhouette score. This

property makes the silhouette a better indicator for

cluster quality than, for example, the log-likelihood of

the data, because the latter merely increase with larger

K.

RESULTS

Unbiased sampling of OSVZ cortical
precursors

Empirically capturing the full repertoire of OSVZ pro-

genitors requires an unbiased sampling method. Previ-

ous reports on human fetal cortex reported that the

OSVZ was populated by two precursors types: bRG-

basal-P and nonpolar IPs (Fietz et al., 2010; Hansen

et al., 2010; Reillo et al., 2011; LaMonica et al., 2013;

Ostrem et al., 2014). Using 1,10-dioctadecyl-3,3,30,3

(Dil) deposits on the pia, these researchers detected

back-labeled cell bodies in the OSVZ, leading them to

describe only those OSVZ precursors as bRGs that pos-

sess a basal process attached to the basal membrane

(Fietz et al., 2010; Hansen et al., 2010). In addition, the

Kriegstein group used adenoviral labeling (Hansen

et al., 2010; LaMonica et al., 2013; Ostrem et al.,

2014) to label OSVZ precursors. Adenoviruses infect

noncycling and cycling cells but are preferentially inter-

nalized in precursors bearing integrins (Wickham et al.,

1993). Integrins are concentrated at the distal tip of

the basal process of the bRG that extends a process

up to the basal membrane (Fietz et al., 2010). Hence,

the bias in the adenovirus method results from a proce-

dure that only labels a specific subset of the OSVZ pre-

cursors. By contrast, retroviral vectors allow labeling of

all cycling cells—and no postmitotic cells—in a truly

unbiased fashion. The comparison of the diversity of

precursors encountered 24 hours after infection of an

organotypic slice by retrovirus or adenovirus (Fig. 2G)

clearly demonstrates the bias of the adenovirus infec-

tion technique due to labeling uniquely bRG-basal-P pre-

cursors. The progeny of the adenoviral infected

precursors 4 days after infection (i.e., after one to two

cell cycles) include the range of morphotypes that are

observed following retroviral infection (Fig. 2H) (Beti-

zeau et al., 2013). Of note, bRGs bearing an apical pro-

cess have been observed in human live-imaging data in

the rare instances in which the slice survival has been

sufficiently long to allow division of the infected precur-

sor (LaMonica et al., 2013). The focus of human studies

on bRG precursors bearing a basal process led the

authors of these studies to overlook apically directed

mitotic somal translocation (MST) (Ostrem et al., 2014),

although careful examination of their data reveals apical

MST, as shown, for instance, in Movie S6 in LaMonica

et al. (2013). However, bRGs with a basal process cor-

respond to 16% of the OSVZ bRG population, and MST

directionality is uniquely determined by the presence of

an apical or a basal process, with apical MST being as

frequent as basal MST (Betizeau et al., 2013).

Analysis of the dataset
The global statistics of the dataset obtained from

unbiased sampling (see Materials and Methods) were

initially analyzed. As we are primarily interested in

OSVZ and ISVZ precursors, all lineage trees that had

their root (first) precursor in the apical VZ (22%) were

removed. Cells that derive from precursors in the VZ

can migrate into higher regions, but this is very rare

(0.7%), the vast majority originating in the ISVZ. Hence

90% of all cells descending from the root precursor

remain in the same zone as the root while migrating

cells invariably terminate in more basally located zones.

The global statistics of the dataset are shown in Fig.

3. The dataset combines measurements from two

developmental stages (E65 and E78), with the majority

of cells coming from E78 (69%). The observed lineages

include between two and seven generations of divi-

sions. (Lineages in which the first observed cell does

not divide are excluded.) E78 lineages are longer
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(average depth 3.5) compared with E65 lineages (aver-

age depth 3.2). Among the observed cells, 43% are

cycling cells and 12% are postmitotic. There are signifi-

cantly more postmitotic cells in the E65 (20%) dataset

than at E78 (8%). Seven percent of cells died and there-

fore could not be classified as cycling or postmitotic. At

both time points the cells came mostly from the OSVZ

(71%) and ISVZ (20%), with small contributions from the

apical VZ, inner fiber layer (IFL), outer fiber layer (OFL),

and subplate. bRG precursor morphology was annotated

with respect to apical and basal processes, and distin-

guishing the morphology prior to and following mitosis.

Prior to mitosis, cells typically have more processes

than at birth, and at E65 there are altogether fewer

cells without processes. At mitosis 28% of the precur-

sors are nonpolar (IP), 17% are bipolar (bRG-both-P),

and similar percentages of precursors have apical (bRG-

apical-P) (47%) or basal processes (bRG-basal-P) (42%).

The proportion of IP precursors is higher at E78 than at

E65 (33% vs. 18%), whereas at E65 slightly more bipolar

precursors are observed (19% vs. 16%). Only a few

bipolar precursors are observed at birth (4%), the major-

ity being nonpolar precursors (36%). Of the precursors,

56% had at least one observed process during at least

85% of the observation period (denoted as “permanent

processes”), and 24% were identified as having tran-

sient processes; the rest did not have processes. Soma

translocation prior to mitosis (MST) occurred in 25% of

all cells, with slightly more moving down (15%) (apical

MST) than up (10%) (basal MST). Nineteen percent of

precursors retracted at least one process prior to mito-

sis; the rest either did not retract or failed to develop

processes.

For cycling cells in which the fate of the daughter

cell was known, 29% were found to perform differentia-

tive divisions. Included in these precursors are 12% in

which both daughters are postmitotic (25% at E65), 7%

in which the fate of one cell is unknown, and 10% that

have one postmitotic and one proliferative successor.

Thirty-four percent of precursors perform purely prolifer-

ative divisions, and 37% have one proliferative daughter

and one daughter of unknown fate. The mitotic plane

angle was horizontal (between 0 and 308) in 69% of all

dividing precursors. Comparison of cell-cycle times

reveals substantially longer durations at E65 (67 hours

on average) than at E78 (48 hours).

Unsupervised characterization of cell types
The HMT algorithm was applied to the pooled E65

and E78 datasets (Fig. 3), using the features listed in

Table 2 and the lineage relationship of cells as input.

Individual clustering for both sets led to qualitatively

similar results. To be compatible with the nomenclature

Figure 2. Examples of the different morphotypes of OSVZ

EGFP1 precursors on organotypic slices immunostained for

EGFP after 1 day in vitro following EGFP adenoviral infection

(A,B) or EGFP retroviral infection (C–F) at E76. Following adeno-

viral infection, two main types of precursors were observed: (A)

bRG with only a basal process, referred to as bRG-basal-P and

(B) multipolar cell with thin processes (orange arrowheads). Fol-

lowing retroviral infection, four different precursor types were

observed: (C) multipolar cell with processes (orange arrow-

heads), (D) bRG-basal-P, (E) bRG bearing both an apical and a

basal process referred to as bRG-both-P (note that the two

processes have different thickness and they extend through the

OSVZ depth, and (F) bRG cells bearing a well-developed apical

process referred to as bRG-apical-P. G: Proportions of morphol-

ogies observed 24 hours following infection. Adenoviral infec-

tion results in GFP being selectively expressed in bRG-basal-P

(>80%) (n 5 132). By contrast, GFP is expressed in all three

stable morphotypes after retroviral infection. H: 96 hours after

adenoviral or retroviral infection, similar frequencies of bRG-

basal-P, bRG-apical-P, and bRG-both-P are observed (n 5 96).

Scale bar 5 10 lm in A–F.
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in Betizeau et al. (2013), in which five types of progeni-

tors and one type of postmitotic cells were identified,

the algorithm was first initialized to use K 5 6 clusters,

and no constraint on precursor transitions was

imposed. This procedure permits stochastic, bidirec-

tional transitions between precursor types to be learnt,

on condition that they best explain the observed data-

set. In Fig. 4 we present detailed characterizations of

Figure 3. Analysis of the global statistics of the dataset at E65 (31% of all cells, gray bars) and E78 (69%, white bars), as well as for the

combined dataset (E651E78, black bars). The first two diagrams show for both developmental stages the counts of cells and the distribu-

tion of lineage depths, respectively. The following histograms show for each developmental stage and the combined dataset the distribu-

tion of the discrete parameter values for each feature, as described in Table 2. For cell cycle lengths the boxplots indicate the continuous

feature distribution at each stage.
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each cell type using the statistics of the measured mor-

phological and proliferative features. In particular, the

first part of each panel presents the percentages of

precursors of each type that possess apical or basal

morphology, or are bipolar (indicated by lighter colors).

From these visualizations it is apparent that the five

Figure 4. A–F: Automatically extracted cell types for the combined E65 and E78 dataset, using K5 6 different types and allowing all state

transitions. The visualizations of morphology show the percentage of cells that have apical and basal processes at birth (blue) and prior to

mitosis (red). Light blue and red bars indicate the percentage of bipolar cells. Histograms of morphological and proliferative features of

the cells in each cluster further specify the different cell types (see Table 2 for interpretation of features). The features drawn on the bot-

tom (Zone and Division Type) were not used for clustering. The automatic clustering result validates previously described precursor types

(Betizeau et al., 2013). Lineage properties of the precursor types are analyzed in Fig. 5.
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precursor clusters identified by the HMT are in good

agreement with previously described manual categoriza-

tions of progenitor types. In particular, one cluster con-

tained mostly postmitotic cells (labeled “Neurons”). This

is shown in the “Cell Type” histogram. Four of the six

precursor types are defined to a large extent by their

morphology, corresponding to the bRG-apical-P, bRG-

basal-P, bRG-both-P, and IP precursor types previously

described in Betizeau et al. (2013). The final precursor

type is characterized by the transient character of its

processes (see “Process” statistics), and was previously

identified as the tbRG type (Betizeau et al., 2013).

These findings confirm that the automatic extraction of

cell types by the HMT algorithm leads to similar results

as the manual categorization by human experts. Fig. 4

provides the statistics of the other features, described

in Table 2, as a further resource for revealing character-

istics of different progenitor types. The results of this

analysis are summarized below:

bRG-both-P (Fig. 4A) comprise 7% (49/695) of the

observed cells and are bipolar precursors both at birth

and prior to mitosis. The percentage of bipolar precursors

increases between first observation and mitosis (from

49% to 88%). Precursors of this type have longer cell

cycles than all other types (77.6 hours on average). They

are often found at the root of the observed lineage trees

(normalized depth 0.05; Fig. 5B), and are highly prolifera-

tive, creating on average almost twice as many progenies

as the other precursor types (4.8 cells on average; Fig.

5C). A third of the precursors of this type retract at least

one process prior to mitosis, and translocations in both

directions are possible (17% down, 15% up).

Figure 5. Analysis of the lineage properties of automatically extracted precursor types, obtained by the HMT algorithm using K 5 6 types

and allowing all state transitions. Types and colors correspond to Fig. 4. A: Distribution of cell types. B: Average normalized depth of cells

of each type. C: Average number of cells in the progeny. D: Percentage of differentiative divisions per precursor type. E: Transition dia-

gram between the precursor types. Node size indicates proportions of cells of that type. Edge thickness is proportional to the frequency

of the transition in the dataset. The y-axis represents the average normalized lineage depth where the precursor type is found. The neuron

type is placed in insert for clarity. The transition diagram shows that almost all transitions are possible, except for transitions into bRG-

both-P, which has a unique function at the roots of lineages, creating the largest progeny, and frequently differentiating. Bidirectional tran-

sitions are possible in most cases, and self-renewal is frequent for all precursor types with the exception of bRG-both-P. All precursor

types can produce neurons, but the three bRG types have the strongest contribution.

M. Pfeiffer et al.

546 The Journal of Comparative Neurology |Research in Systems Neuroscience



tbRG (Fig. 4B) constitute 18% (124/695) of all

observed cells, characterized by at least one transient

process. At birth, only 16–19% of these precursors

have apical or basal processes (never both). The per-

centage of these precursors with basal processes is

stable, but 47% will have apical processes prior to mito-

sis. tbRG precursors are almost equally likely to be

either the upper or lower precursor at birth. When mito-

sis was observed, 21% of these precursors undergo

translocations in either direction, and about 23% retract

a process. bRG-basal-P (Fig. 4C) constitute 19% (131/

695) of all observed cells. At birth it is typically the

upper precursor that inherits the basal process, which

is stable throughout its lifetime. Although these precur-

sors do not inherit the apical process, 32% of them pro-

ceed to develop an apical process, and prior to mitosis

21% will have a bipolar morphology. Twenty-one percent

undergo upward translocations, and 17% perform pro-

cess retractions prior to mitosis. bRG-apical-P (Fig. 4D)

constitute the largest cluster at 21% (149/695) of all

observed cells. They invariably inherit an apical but

never a basal process, and are typically the lower

daughter (86%). The apical process is stable in 99% of

the precursors of this type, and 21% grow a basal pro-

cess (in addition to the apical process) prior to mitosis.

28% of all dividing precursors of this type perform

downwards translocations, and 25% retract processes.

IP (Fig. 4E) constitute 19% (135/695) of the

observed cells and these precursors are characterized

by being nonpolar both at birth and prior to mitosis.

They are found as both lower and upper precursors

after division, and are found toward the ends of the lin-

eage trees (normalized depth 0.75). Because of their

position in the lineage, they produce fewer cells than

all other types (1.3 observed cells on average in the

progeny).

Neurons (Fig. 4F) constitute 15% (107/695) of the

observed cells and by definition do not include cycling

cells. They are not clearly defined by their morphology,

although 71% have basal processes at the final observa-

tion, and only 8% are bipolar. They include cells with

both transient (33%) and permanent (63%) processes.

They are equally likely to be upper or lower cells follow-

ing mitosis.

The proportions of cell types defined by the HMT are

summarized in Fig. 5A, which shows that four of the

five precursor types occur in almost equal numbers,

although bRG-both-P are notably less frequent. The nor-

malized depth in Fig. 5B indicates where cell types

occur in the lineage tree (with 0 being the root, and 1

being the deepest leaf of the tree). As expected, bRG-

both-P precursors are predominantly near the root, and

neurons are at the leaves of the trees. Because of

occasional early asymmetric divisions, where one

daughter is a neuron, and the other is a precursor that

divides multiple times, neurons do not always have nor-

malized depth 1, so that some lineage trees include

precursors that have larger depth than the neurons,

which explains the small difference in depth between

IPs and neurons, given that IP precursors are closer to

the end of the tree than are the other bRG and tbRG

precursors. The number of cells in the progeny (Fig. 5C)

is highest for bRG-both-P, and lowest for IP precursors,

despite the high rate of differentiative divisions for

bRG-both-P precursors, and the lowest rate of differen-

tiative divisions for IP precursors (Fig. 5D).

The lineage relationships between the different pre-

cursor types are best and most compactly described by

a state transition diagram as displayed in Fig. 5E. Tran-

sition diagrams are graphs showing the proportions of

all cell types by the size of the respective node, and

the frequency of transitions between types. Arrows indi-

cate that precursors of a particular type can create

daughter cells of the target type, and the thickness of

the arrow, as well as numbers near arrows showing the

percentage of all divisions that are of this type, indicate

how frequently such transitions occur. Self-renewing

transitions are displayed by a loop, and the percentage

of divisions that create neurons is presented in a sepa-

rate inset. The vertical order of the cell types corre-

sponds to their average normalized depth (Fig. 5B).

Most of the possible transitions (26/30) are

observed. Bidirectional transitions are detected

between all precursor types except for the bRG-both-P,

which receives no contribution from any other precursor

type, and is usually located at the root of the lineages.

In the transition diagrams the normalized depth shows

that the bRG-both-P has a high stemness. As expected,

bRG-both-P frequently split up into an upper bRG-basal-

P and a lower bRG-apical-P precursor, but rarely gener-

ate IP or tbRG precursors directly, nor do they self-

renew. bRG-basal-P often self-renew, and commonly

generate tbRG precursors. tbRG most commonly gener-

ate IP daughters. IP precursors often self-renew, and

differentiate less frequently than all other types. bRG-

apical-P precursors also frequently self-renew, and are

the largest source of differentiated cells. tbRG and

bRG-apical-P constitute hubs participating in the highest

number of transitions. All categories of precursors are

competent to generate neurons albeit with very differ-

ent frequencies. Interestingly, IP precursors exhibit the

lowest frequency of neuron generation and bRG-apical-P

the highest (insert, Fig. 5E).

Both the definition of precursor types and their prolif-

erative behavior resemble the earlier manual classifica-

tion of precursors based purely on their morphology
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(Betizeau et al., 2013). A notable difference is the bRG-

both-P type, which is characterized slightly differently

by the HMT algorithm. Even though it is still predomi-

nantly bipolar, it is less frequent, occurs almost exclu-

sively at the root of lineages, and does not exhibit

bidirectional transitions. In the Discussion section we

analyze in depth the reasons and significance of this

result.

Identifying new precursor types
Our results show that when the HMT algorithm is ini-

tialized with K 5 6 clusters (Fig. 4) it returns, on

Figure 6. A–H: Automatically extracted cell types, using K 5 8 different types and allowing all transitions. See Fig. 4 for an interpretation

of the visualization. Compared with the K 5 6 case, most precursor types remain (bRG-basal-P, bRG-apical-P, IP, bRG-both-P, Neurons),

but with K 5 8 clusters new precursor types (bRG-apical-birth-P, tbRG1, tbRG-) are identified. Lineage properties of the precursor types

are analyzed in Fig. 7.
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average, the same cell clusters obtained by manual

classification (Betizeau et al., 2013). If K is set to larger

values, new precursor types emerge. Under these con-

ditions it is not guaranteed that all previously found

precursor types are exactly reproduced, as they could

be split up into more refined clusters. However, overall

we do find that the most characteristic features are

retained. Fig. 6 shows the results for K 5 8 clusters of

cells. The retained precursor types are: bRG-basal-P,

bRG-apical-P, IP, bRG-both-P. Three new precursor types

emerge as subclusters from previously found types for

K 5 6. The tbRG type of precursors with transient proc-

esses is now split into two subtypes. A new type (9% of

cells), referred to as “tbRG1” (Fig. 6C), exhibits tran-

sient features and is mostly found in the OSVZ (86%).

tbRG1 is born with nonpolar characteristics, prior to

developing apical (73%) or basal processes (38%), and

in 11% of cases both processes. Forty-one percent of

the processes retract prior to mitosis. The other new

transient precursor type (6% of cells) is referred to as

“tbRG2” (Fig. 6D), and is the inverse of tbRG1: it is

born with apical (38%) or basal (48%) processes, but

never both. tbRG2 mostly lose processes prior to mito-

sis; 7% maintain an apical process. These precursors do

not translocate or retract.

The remaining new precursor type (9% of cells) is

referred to as “bRG-apical-birth-P” (Fig. 6B), and com-

bines features of bRG-apical-P and bRG-both-P types. At

K 5 6, 87% of bRG-apical-birth-P precursors were cate-

gorized as bRG-apical-P and the rest as bRG-both-P.

They are born uniquely with an apical process, and they

are invariably the lower cell following mitosis. In these

precursors, the cell-cycle is 63 6 26 hours, which is

longer than that of bRG-apical-P (47 6 13 hours), but

Figure 7. Analysis of the lineage properties of automatically extracted precursor types, obtained by the HMT algorithm using K 5 8 types

without constraints on transitions. A: Distribution of cell types, showing how precursor types from the K 5 6 case are split up. B: Average

normalized depth of cells of each type. C: Average number of cells in the progeny. D: Percentage of differentiative divisions per precursor

type. E: Transition diagram between the precursor types. Most transitions are possible, with the exception of transitions into bRG-both-P

and bRG-apical-birth-P. The strongest contribution to the neuron pool comes from bRG-apical-birth-P precursors, followed by bRG-basal-P

and bRG-both-P. The lineage properties reproduce the key properties of the K 5 6 case, and make common division patterns more visible

by introducing precursor subtypes.
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shorter than that of those seven bRG-both-P type for

which the cell cycle duration (73 6 22 hours) could be

reliably measured, because they were not the first cells

in lineages. This difference is consistent with bRG-api-

cal-P’s increased number of proliferative divisions and

shorter cell-cycle lengths (Pilaz et al., 2009). Prior to

mitosis, 53% of the bRG-apical-birth-P precursors

develop bipolar morphology. Figure 7B shows that bRG-

apical-birth-P precursors (normalized depth 0.35) occur

at deeper levels of lineage trees than bRG-both-P

Figure 8. A–F: Automatically identified cell types, using K 5 6 different types, but with imposed directionality of possible transitions. See

Fig. 4 for an interpretation of the visualization. Compared with the unconstrained case, the cell types are similar, but slightly less homoge-

neous (see, e.g., bRG-both-P). This is an effect of the imposed directionality of transitions. Lineage properties of the precursor types are

analyzed in Fig. 9.
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precursors (normalized depth 0.07), which occur almost

exclusively at the root of lineage trees, but significantly

higher than bRG-apical-P precursors, which are now

found toward the ends of lineage trees (normalized

depth 0.77). Furthermore, the number of progeny of

new bRG-apical-birth-P precursors (3.5; Fig. 7C) is the

second highest, lower only than for bRG-both-P precur-

sors (5.1), but higher than for bRG-apical-P precursors

(1.2). This implies that there are two types of precur-

sors born with uniquely apical processes: those bearing

an apical process at mitosis and that can regrow a

basal process (bRG-apical-birth-P), and those developing

an apical process soon after mitosis (bRG-apical-P).

Interestingly, bRG-apical-birth-P precursors also perform

substantially more differentiative divisions (Fig. 7D), and

are the largest source of neurons, whereas the remain-

ing bRG-apical-P have only a small contribution to this

pool, showing only a minimally higher rate of differentia-

tion than IPs.

The transition diagram (Fig. 7E) for K 5 8 shows a

similar picture to K 5 6 and in both cases the bRG-

both-P precursors do not receive contributions from any

other precursor type. A notable feature of the K 5 8

case is the strong transition from bRG-both-P to bRG-

apical-birth-P: the latter now capture those precursors

that regrow their basal process and maintain their

inherited apical process. bRG-apical-birth-P precursors

are either at the root of a lineage or daughters of bRG-

both-P, but are rarely daughters of other types. In the K

5 8 analysis, there are fewer transitions from bRG-

both-P into bRG-apical-P precursors, and almost none to

IP and tbRG1 precursors. bRG-apical-birth-P is a source

of bRG-apical-P, and also of bRG-basal-P and neurons,

but never tbRG2 and rarely IP precursors. bRG-basal-P

precursors constitute a hub as for K 5 6, receiving

contributions from all clusters, and generating all types

except bRG-both-P precursors, but having more transi-

tions into bRG-apical-P than into bRG-apical-birth-P pre-

cursors. bRG-apical-P precursors have their main source

in the bRG-apical-birth-P and tbRG1 precursor, often

self-renew and generate IP or tbRG2 precursors, but

rarely differentiate. Both tbRG types rarely self-renew,

but frequently generate IP precursors. There is a stron-

ger transition from tbRG2 to tbRG1 than vice versa,

and tbRG2 differentiate less frequently than do tbRG1

precursors. As in the K 5 6, in K 5 8 IP precursors

show the highest levels of self-renewal, and once again

rarely differentiate.

Figure 9. Analysis of the lineage properties of automatically extracted precursor types, obtained by the HMT algorithm using K 5 6 types

and imposed directionality of possible transitions. A: Distribution of cell types: imposing directionality leads to a shift of cell type propor-

tions. B: Average normalized depth of cells of each type. C: Average number of cells in the progeny. D: Percentage of differentiative divi-

sions per cell type. E: Transition diagram between precursor types. All allowed transitions except for direct bRG-both-P to IP transitions

are observed, but proportions are very different from previous results in Fig. 5 and Fig. 7, as well as for manual classification (Betizeau

et al., 2013). The constrained transition diagram cannot capture the observed bidirectionality of transitions.
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Imposed directionality of cell type
transitions

The HMT algorithm makes it possible to impose con-

straints on the directionality of precursor transitions

(see Materials and Methods). By initializing the transi-

tion matrix A to a triangular structure, precursors of

type i can only produce daughters of type j with j � i,

but not types of lower order. This restriction corre-

sponds to enforcing increased levels of differentiation

with every division, and a natural ordering of precursor

types according to their proliferative potential. Enforcing

this constraint leads to a reduction of the numbers of

parameters to be learnt by the HMT algorithm, which

facilitates statistical model learning. Comparing the

results of a constrained and unconstrained model to fit

the biological observations can thus provide insights

into the validity of the assumption of unidirectional pro-

gressive differentiation. When the restriction mechanism

is added to the HMT algorithm for K 5 6 clusters, there

is little change in precursor types identified, but there

are important changes in the lineage structure and pro-

portions of cells (compare Fig. 5 and 9). By definition of

the constraints, the precursor types are ordered by the

position in the lineages (Fig. 9B), whereas in the uncon-

strained case of Fig. 5 and Fig. 7 the order is arbitrary

(but was matched manually for easier comparison).

Imposed directionality leads to occasional changes in

the statistics of clusters. For example, the bRG-both-P

cluster is more than twice as large (Fig. 9A), but is less

homogeneous than the bRG-both-P cluster in Fig. 4.

Only 64% of all precursors of this type are bipolar, com-

pared with 88% without directionality constraints. This

is an effect of precursors in this cluster being forced to

be at the beginning of lineages, which leads to non-

bipolar precursors at the roots of lineage trees being

categorized into this cluster. In particular, 63% of the

precursors from the bRG-apical-birth-P type (identified

for K 5 8 in Fig. 7) are now categorized as bRG-both-P

precursors, compared with only 13% in the uncon-

strained case. Similarly, precursors with transient mor-

phology at later stages of lineages can switch from the

tbRG to the IP type, because this might better explain

their lineage position. Therefore the tbRG cluster

shrinks and becomes the least frequent type, whereas

IP grows. Also the normalized depth of tbRG is reduced

(Fig. 9B), and because tbRG have to occur prior to all

other types except bRG-both-P, their progeny is larger

than in the unconstrained classification, whereas the

progeny of bRG-apical-P and bRG-basal-P shrinks. Com-

paring this characterization with the results for K 5 8

(Fig. 7) shows that 60% of the tbRG1 precursors, but

only 32% of the tbRG2 precursors fall in the new tbRG

cluster (the rest are classified as IP or neuron cells).

Also the proportion of neurons is increased, possibly

due to the capture of the small number of uncertain

cells at the ends of lineages. The percentage of differ-

entiative divisions (Fig. 9D) shrinks for tbRG types,

because of their early position in lineages, and

increases for bRG-apical-P and IP precursors.

Blurring the distinction between types can be avoided

by increasing the number of clusters, because the HMT

algorithm can uncover types that have similar morpho-

logical distributions, but different positions in the line-

age as different cell types, or find non-overlapping

paths, where cells of one type can never occur as pro-

geny of a particular mother cell type. An increase to

K 5 10, for example, finds two types of bRG-basal-P,

bRG-apical-P, and IP, which occur at different depths

within the lineage. This also separates basal-only pre-

cursors at the roots of lineage trees from bRG-both-P

precursors, thereby leading to more homogeneous clus-

ters. In conclusion, the assumption of a strict, unidirec-

tional progressive differentiation of precursors does not

appear to match the biological reality, unless a signifi-

cantly higher diversity of precursor types is accepted,

and more data will be necessary to clearly describe

such types. A reasonable model with K 5 6 types can

be identified, which resembles the unconstrained

model, as well as manual classification based on mor-

phology. However there is a less clear distinction

between types, and a failure to capture bidirectional

transitions, which occur at least for unipolar bRG and

tbRG types in all other models, including the manual

classification (Betizeau et al., 2013).

Detection of new hidden cell types
As we have shown above, the number of clusters

with which the HMT algorithm is initialized determines

the subsequent types of cells identified. In particular,

smaller clusters of cell types are only found if they are

either sufficiently different from all other cells with

respect to their features or proliferative behavior, or if

the number of clusters of cell types is sufficiently large.

If these conditions are not fulfilled, then smaller clus-

ters of cell types are merged with the larger clusters,

as this maximizes the likelihood of the data under the

learned model. A stepwise increase in the number of

clusters leads to an increase in the cell types, accord-

ing to their prominence in the dataset. Figure 10 shows

how increasing the number of cell types from 2 to 10

impacts on the proportions of clusters (indicated by the

corresponding node size) and the relationships between

cell types found for different parameters (indicated by

lines connecting two cell types); an illustration of the

morphology of each cell type at mitosis is shown at the
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bottom). No constraints on transitions are imposed, the

color codes are matched with the conventions used in

Fig. 5 and Fig. 7, and precursor types with a transient

morphology are marked with a dashed circle. Fig. 10

shows that at K 5 2, only cycling and postmitotic cells

are distinguished. At K 5 3 a new cluster for nonpolar

IP-like precursors is obtained, which is also observed at

higher K values. At K 5 4, the polar cycling precursors

are subdivided into a group with predominantly apical

and another with predominantly basal processes. At

K 5 5, tbRG precursors with transient (growing) proc-

esses emerge as a separate progenitor type. At K 5 6

the bipolar progenitor type emerges as a separate small

cluster (for color code, see Fig. 5), and the tbRG type

now includes precursors that both grow and retract

processes. At K 5 7 two types of progenitors with tran-

sient processes appear. At K 5 8, the bRG-apical-birth-

P type (Fig. 6) is found as a new cluster with perma-

nent apical processes from birth to mitosis, of which

53% develop a bipolar morphology. Furthermore, the

two types of transient process–bearing precursors are

discriminated into two categories, one that grows

(tbRG1) and one that retracts processes (tbRG2). At

K 5 9, IP-like precursors are split into a cluster that

self-renews, and another predominantly neurogenic

cluster. At K 5 10, a new neurogenic type appears,

which is born with only a basal permanent process, but

around 50% of all precursors grow an additional apical

process, and most precursors perform upward translo-

cations prior to mitosis. Even though HMT can in princi-

ple be run for arbitrary values of K, a more finely

grained analysis that could reveal more meaningful cell

types would require larger datasets.

Objective evaluation of clustering quality
The different cell types identified by the HMT algo-

rithm correspond to well-separated clusters in the data

space. Fig. 10 shows that the cell types identified by

the HMT algorithm crucially depend on the number of

clusters to be learned, but are in good agreement with

previously described characterizations of progenitor

types. The choice of the appropriate number of clusters

for HMT and other free parameters can be based on a

variety of objective criteria for evaluating clustering

quality. Unlike the evaluation of supervised machine

learning techniques, in which classification error on a

test set is a universal criterion for performance compar-

ison, there is no such unique criterion for unsupervised

clustering methods. The choice of the “best” clustering

method depends on the desired application, in our case

exploratory data analysis. Although quantitative criteria

can strongly support this choice, it is important to eval-

uate several objective criteria that should be met by a

successful model, and to accompany them by an expert

interpretation of the learnt model (von Luxburg et al.,

2012). Different methods are likely to capture different

aspects of the dataset, and the results may depend on

the size of the dataset, as well as the noise level of the

data (Buhmann, 2010). Furthermore, hyperparameters

Figure 10. Increasing the number of potential clusters for the HMT algorithm reveals new precursor types. For different numbers of types

(from K 5 2 [left]) to K 5 10 [right]), the node size indicates proportion of cells falling into each cluster, and dashed circles indicate types

with transient morphology. Lines indicate the proportion of cells of a previous cluster (at lower K) that fall into the new cluster (for larger

K). For simplicity, only transitions that account for at least 10% of cells in each cluster are indicated. As the number of clusters increases,

previous precursor types split up to form better discriminated clusters, whereas other types remain mostly unchanged. Bottom: cartoon of

average morphology at mitosis for each type (red bars are proportional to the percentage of cells with apical or basal processes; colors of

cell bodies for K 5 6 also correspond to cell types in Fig. 4; for K 5 8 to Fig. 6).
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such as the overall number of clusters are not known a

priori and need to be chosen according to heuristics.

In machine learning, several heuristics for evaluation

metrics have been developed, which largely focus on

two clustering criteria: 1) data points within the same

cluster should be as similar as possible; and 2) data

points in different clusters should be as dissimilar as

possible, i.e., clusters should be well separated. An

often used criterion that takes both aspects into

account is the silhouette score described in Materials

and Methods (Rousseeuw, 1987). The silhouette score

intuitively compares the similarity of points within each

cluster (which should be high in a good clustering) with

the similarity between different clusters (which should

be low). The silhouette score turns this into a score

between 21 (bad clustering quality) and 11 (best qual-

ity). Higher silhouette values indicate that each data-

point in a cluster is closer to other datapoints within

that cluster, and farther away from datapoints in other

clusters. Values close to zero indicate that data points

are close to the borders of clusters, and negative val-

ues indicate that datapoints are closer to datapoints in

other clusters than to their own, thereby indicating a

clustering defect. In Figure 11A the silhouette values

for different numbers of clusters are compared for HMT

models without constraints (HMT undirected) or with

imposed directionality (HMT directed). For all values of

K, the unconstrained model performs better, and a

peak between K 5 4 and K 5 6 is found, which is also

the parameter range in which the identified cell types

correspond to previously identified types (compare Fig.

10). For smaller K values, the clusters overlap, and for

larger K values the clusters become similar, which

leads to lower silhouette scores. This was compared

with a completely random assignment of cells to clus-

ters with uniform probabilities, and a shuffling of labels

Figure 11. Quantitative evaluation of clustering quality provides a guideline for selecting model parameters. A: Evaluation of clustering

results with different K by their silhouette values (shown are means and standard errors for 20 repetitions). HMT models without con-

straints (HMT undirected) perform better at discrimination than models with imposed directionality (HMT directed). For comparison, results

of random and shuffled assignments of cells to clusters are shown, verifying that the clustering is significantly better than chance, even

for large K. B: Silhouette values per cell type for the K 5 6 clusters from Fig. 4, learned without constraints. C: Mismatch between pre-

dicted and actual statistics of all features at different depths of lineage trees (comparing marginal distributions, i.e., statistics irrespective

of cell type). For every lineage depth, the HMT model with an equal number of clusters predicts the distribution of features in the original

dataset better than a clustering model without lineage structure. D: Accuracy of cell type prediction for different numbers of clusters K,

given the mother precursor type and different sets of features (all features 5 full dataset; morphological features 5 use only features

about apical and basal processes at birth and at mitosis; birth features 5 use only features available at birth of the cell (processes at

birth, division position); no features 5 use only mother precursor type).
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that preserves the proportions of clusters. The HMT

algorithm leads to significantly better clustering. For

large numbers of clusters K the silhouette values

approach zero, meaning that in such fine-grained clus-

terings many data points can be switched between

clusters without much effect. This also indicates that

more data would be needed to reliably detect more

clusters, by measuring either more cells, or more fea-

tures per cell, which could facilitate the distinction

between otherwise similar types. However, even with

larger numbers of clusters, the HMT results are signifi-

cantly above chance. Figure 11B shows an analysis of

the silhouette values for individual cell types in the

HMT result for K 5 6 cell types, presented in Fig. 4. IP

and postmitotic clusters are best separated from the

rest, whereas the tbRG precursors have the smallest sil-

houette value due to the variable morphology of these

precursors. The silhouette score is one objective crite-

rion to evaluate the clustering quality of the learnt

model, and is helpful for choosing an appropriate range

for the number of types, but should not be the only cri-

terion, because it does not take lineage relationships

into account.

Comparison of HMT and feature-based
clustering

HTM models fit the tree-like nature of the dataset

well, but cell types could also be inferred based on

clustering of the attributes alone. Although this is suc-

cessful for capturing the overall distribution of attrib-

utes in the dataset, HMT models in addition capture

lineage relationships and can thus better predict the

distribution of features at different depths of lineage

trees. Pure clustering models instead have no notion of

transitions or lineage depths, and would predict the

same distribution at all levels. Because Fig. 5B, 7B, and

9B show that different cell types occur preferably at

specific lineage depths, this is obviously not the case.

The mismatch can be quantified through the marginal

distribution of features at different depths, which pre-

dicts the distribution of each feature in Table 2 using a

weighted average across cell types. The weight corre-

sponds to the likelihood of finding cells of each type at

every lineage depth; thus the distribution at the root is

dominated by bRG-both-P, and near the leaves by IPs

and neurons. Figure 11C shows the mismatch of the

marginal distributions between the actual distribution of

features in the dataset at each depth, the marginal dis-

tribution predicted by the HMT, and a clustering model,

learned with standard EM (Bishop, 2006), which ignores

lineage information. The mismatch is computed as the

sum of the absolute differences in predicted probability

tables for the discrete attributes. (Other measures lead

to similar results.) HMT performs better in matching the

marginal distributions at all lineage depths when com-

pared with a cluster model. The difference is particu-

larly striking for root nodes, which account for only 13%

of all cells, but have a very distinct morphology, in par-

ticular a much higher fraction of bipolar precursors

(42%) than in the overall dataset (17%). This difference

is only captured by the HMT model, but not by cluster-

ing alone. We can therefore conclude that tree-

structured models like HMT capture important lineage-

related properties of the dataset better than purely

feature-based clustering.

Prediction of daughter cell types
The silhouette analysis focuses only on the homoge-

neity of clusters according to the measured features,

but does not take into account the lineage information

that is simultaneously learned by the HMT algorithm.

Apart from the marginal analysis (Fig. 11C), which

TABLE 3.

Influence of features on the prediction of daughter cell type (%)1

Morphology

at mitosis

Morphology

at birth

Cell

type

Process

stability

Process

retraction

Cell

cycle

Mitotic plane

angle

Trans-

location

Mitosis

location

Only feature 62 63.9 49.7 60.3 51.4 50 49.5 51.2 48.3

Without feature 91.4 92.8 98.4 93.5 96.8 98.2 98.6 98.7 97.2

Features at birth Morphological features Proliferative features All/no features

Only feature 64 80.3 62 98.9
Without feature 86.2 86.7 93.7 38.2

1For the nine features used for clustering, the percentage of correct predictions is shown, using mother cell type and a single feature resp. all fea-

tures except one. For comparison we display the prediction accuracy if only features known at birth (processes and division position), morphologi-

cal features (processes at birth and at mitosis), proliferative features (cell-cycle length, mitosis location, mitotic plane angle, cell type), or all or no

features are used for prediction. Bold numbers indicate the best, italic numbers the lowest prediction result. Results are for the combined E65 and

E78 dataset, using K 5 6 clusters of cell types without constraints, averaged over 20 trials with random cluster initializations. All features have

similar influence on the prediction accuracy, with values around or over 50%. Morphological features are the best predictors, yielding accuracies

over 62%. The combination of features allows for prediction of the daughter cell type with more than 90% accuracy (98.9% if all features are used).
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compares the overall statistics at different depths, a

successful model of cell differentiation should also be

able to predict daughter cell types from both feature

and lineage information. We therefore introduce an

alternative criterion for the evaluation of tree-based

clustering quality, namely, the prediction accuracy of

the daughter cell type, based on the type of the mother

cell, and different subsets of features. Due to the ran-

domness involved in mitosis, perfect prediction cannot

be expected, but in a meaningful model it must be pos-

sible to predict the daughter cell types significantly

above the chance level of 1/K, e.g., due to the likeli-

hood of certain cell type transitions, described by the

transition matrix A in the HMT algorithm. Table 3 shows

the prediction accuracy for K 5 6 types, measured as

the percentage of correctly predicted daughter cell

types, given the mother cell type and different features.

Table 3 shows the prediction accuracy if only a single

feature, or if all other features (“Without Feature”) are

used. One can see that morphological features prior to

mitosis and at birth are highly predictive, but every fea-

ture contributes to a prediction well above chance

level. The accuracy is also shown for different groups of

features: “Features at Birth” uses only features that the

cell inherits when it is born (morphology at birth and

position after division). These indicators are not signifi-

cantly better predictors than the morphology alone. If

the morphological features (at birth and at mitosis) are

combined, a prediction accuracy of 80% is achieved,

which indicates that morphology is indeed a strong indi-

cator of cell type. In comparison, predictions using only

proliferative features (length of the cell cycle, cell type

[postmitotic or cycling], mitosis location, and mitotic

plane angle) show lower accuracy (62%). Finally, using

all features, cells can be correctly categorized almost

perfectly with 98.9% accuracy. If no features are used,

i.e., if prediction is only based on the cell type of the

mother cell and the probability of state transitions in A,

one can still predict the daughter cell type with an

accuracy of 38.2%, which is well above the chance level

of 16.6%.

The prediction accuracy is also dependent on the

number of cell types. Whereas with fewer clusters the

chance of randomly predicting the correct cluster is

higher, more types allow for more specialization, which

could limit the number of choices for the type of the

daughter cell, given the type of the mother cell. In the

extreme case of deterministic transitions between cell

types and many types of cells, an almost perfect pre-

diction should thus be achieved based solely on the

mother cell type, but this was not found to be the

case. Fig. 11D shows the prediction accuracy for differ-

ent numbers of clusters, and using different sets of fea-

tures. One can see that using all features, almost

perfect predictions (above 96.9%) of the daughter cell

type are achieved even for 20 different types, which

indicates that even in this case clusters do exhibit too

great an overlap. For all other groups of features the

prediction accuracy decays as the number of clusters K

approaches 20. Very good performance of over 70% is

reached when morphological features alone are used. If

no features are used, i.e., predictions are only based on

the mother’s type, the performance monotonically

decreases with increasing K, but is still well above the

chance level of 1/K.

DISCUSSION

The present study shows that an HMT lineage-based

clustering method provides an objective and quantita-

tive characterization of different discrete precursor

types in the developing primate cortex. This has been

made possible by the exploitation of an extensive data-

set of morphological, proliferative features, and lineage

relationships of precursors in the fetal macaque cortex

using an unbiased sampling method. Our results vali-

date the previously reported diversity of primate corti-

cal precursors using manual classification, and show

that nondeterministic transitions, defined via transition

probabilities between many different cell types, are the

rule, rather than the exception. The HMT model allows

the testing of hypotheses concerning the number of dis-

tinct progenitor types, hinting at a greater diversity

than previously reported, as well as exploring the signif-

icance of non-unidirectional progressive differentiation.

Validation of manual characterization of
precursors

Our present understanding of corticogenesis is

largely the result of experimental reports of distinct

classes of precursors based mostly on morphology

(Fietz et al., 2010; Hansen et al., 2010, 2013; Betizeau

et al., 2013; Florio and Huttner, 2014). Our quantitative

analysis validates this approach, as the cell types

obtained from HMT-based clustering largely correspond

to manually defined categories, with precursors divided

into five bRG types corresponding to permanent, tran-

sient, and nonpolar morphologies (Betizeau et al.,

2013). HMT analysis has the advantage in that it can

push characterization further than the manual classifica-

tion: the HMT model not only clusters cells according

to their observable morphological features, but also

takes into account the possibility that each cell type

has internal predispositions for the types of daughter

cells it can generate.
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There is good agreement between the manual and

HMT classifications, and upward of 85% of cells are put

into the same categories when HMT is run without con-

straints and with the same number of precursor types

as were previously identified manually (Betizeau et al.,

2013). However, there are also potentially important

differences between the two sets of results, which are

explored in Fig. 12. Figure 12A shows the HMT model

as developed here, which contrasts with Figure 12C,

which is the manual classification (Betizeau et al.,

2013). Comparison of the two models shows important

differences. One reason for this disagreement is that in

Betizeau’s study, labels were only assigned to clearly

identified cycling and postmitotic cells, whereas the

HMT can compute a prediction for all cells in the line-

age trees, including those cells at the end of the obser-

vation of the lineage, where the fate of the cell is

unknown. This prediction can be based on the available

measurements of morphology and other features, as

well as the categorization of the mother cell. This com-

pletion of partially observed and labeled lineages is an

important advantage of the HMT method.

A major difference between the manual and HMT

analysis concerning the proportions of cell types lies

mainly in the bRG-both-P and IP precursor types.

Whereas in the manual classification based uniquely on

morphology, bRG-both-P precursors account for 26% of

the total, this figure drops to 7% for the HMT analysis

(Fig. 5A, 12A). Do the differences between the manual

and HMT models stem uniquely from the HMT predict-

ing the cells that were not fully characterized in the

manual classification? Fig. 12B shows the transition dia-

grams for the HMT without predicted leaf nodes. Here

the proportions of cell types become closer to those

reported in the manual classification, in particular for

bRG-both-P (increased to 12%) and IP (decreased to

18%). Therefore this analysis shows that the inference

of the uncharacterized cells by the HMT method is not

the only source of difference in the results of the two

methods.

A potential important reason for differences in the

two methods is the consideration of lineage position by

the HMT algorithm. This defines the bRG-both-P type as

appearing only at or at least very near the beginning of

observed lineages (Fig. 5B), suggesting that this precur-

sor category shows a strong stemness. In the transition

diagram for the HMT with K 5 6 (Fig. 12A,B), this has

the effect that the bRG-both-P type has uniquely

Figure 12. Comparison of transition diagrams for HMT-based and manual classification into K 5 6 types, for the combined datasets from

E65 and E78. A: Transition diagram for the HMT results with K56 types and no constraints, equivalent to Fig. 5E, shown for comparison.

B: Same as A, but only showing transitions for precursors with certain fate, i.e., when either mitosis could be observed or cells could be

defined as neurons. Changes in the average normalized depth are due to the exclusion of leaf nodes of lineage trees, which leads to the

change of vertical layout. C: Transition diagram for precursors with certain fate (same cells as in B), using the manual classification from

(Betizeau et al., 2013). Comparison of B and C shows that many characteristics, such as bidirectionality of transitions, are shared, but

also reveals differences in the proportions of precursor types and the possibility of transitions into bRG-both-P.
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outgoing transitions, i.e., a bRG-both-P precursor can

only occur as the daughter of a precursor of the same

type, but not of any other type. This is different from

the manual classification (Fig. 12C), in which the bRG-

both-P cluster receives contributions from other bRG

types, thus forming bidirectional connections. When we

analyzed how often transitions over two levels occur,

we found that there are no transitions in which a grand-

mother precursor becomes a bRG-both-P precursor

after two divisions, unless the first daughter is bRG-

both-P. This implies that once a bRG-both-P precursor

has differentiated into a different type, the ability to

become bRG-both-P is definitively lost. This holds for

both HMT and manual classification. Although such

dependencies across two or multiple generations are

not directly modeled by the HMT, they are nevertheless

captured for our dataset. Below we will discuss possible

extensions to the HMT that could explicitly capture

higher order dependencies.

An important conceptual difference between the two

categorizations shown in Fig. 12 is that the HMT model

has probabilistic assignments to types, which means

that the types do not have to be completely homogene-

ous. In the HMT’s bRG-both-P type, only 88% are bipo-

lar, not 100% as in the morphology-based assignment,

so that we occasionally find bipolar precursors being

assigned to the bRG-apical-P and bRG-basal-P types.

The reason why HMT assigns such a cell to a specific

cluster also depends on whether the behavior of the

cell in terms of the fate of its progeny is closer to that

of other cells in that cluster, or is due to the similarity

in terms of other measured features. There are two

sorts of reasons for a cell to behave differently than its

morphology suggests. It could result from an annotation

error. For example, a cell’s processes could have been

incorrectly experimentally evaluated because of partial

or complete occlusion by other cells. It could, however,

reflect a more profound cause, whereby morphology

and fate of progeny are viewed as two stochastic

expressions of an internal genetic program (Kennedy

and Dehay, 2012). According to this view, a cell type

would then merely correspond to a discrete representa-

tion of this expression pattern, and could be seen as

the default or most likely expression pattern of the

state. This would still allow occasional random devia-

tions, and thus give rise to a continuum of morphologi-

cal and lineage patterns. The HMT model, because of

the probabilistic nature of observation and transition

models, is ideally suited to capture such variability in

the features and proliferation patterns of cells belong-

ing to the same type (see below for interpretation of

this developmental flexibility).

Diversity of precursor types
An important conclusion of the HMT analysis for K

greater than 6 (Fig. 7, 10) is the evidence for a potentially

larger diversity of precursor types with different roles

during development. For K 5 8 we identify three new

types: the tbRG precursors with transient morphology

are subdivided into tbRG1 and tbRG2, which exhibit dif-

ferences in their progeny and their ability to differentiate

into neurons. Furthermore, we identify the novel bRG-api-

cal-birth-P type, which is, like bRG-apical-P, uniquely born

with an apical process, but in 50% of cases acquires a

bipolar morphology prior to mitosis. Unlike bRG-apical-P,

bRG-apical-birth-P precursors occur much earlier in line-

ages, and have greater neurogenic potential than the

remaining precursors with apical processes. This raises

the question of how many types of precursors one should

expect. The HMT algorithm provides an easy to use tool

for such explorations, but due to the finite size of the

dataset, the number of clusters cannot be set arbitrarily

large. The qualitative analysis of Fig. 10 shows that rea-

sonable types are identified for K lower than 10, and the

quantitative criteria in Fig. 11 show that satisfactory per-

formance for cluster separation and prediction of cell

types is maintained at these K values. Nevertheless, the

automatically extracted types will necessarily become

more similar, which is shown in the silhouette plot of Fig.

11C, and they may eventually degenerate into clusters

with very few cells. In this case, a combination of objec-

tive and qualitative analysis using expert knowledge com-

bined with larger datasets is required for reliable fine

discrimination between larger numbers of cell types.

The ability of the unsupervised method to identify

previously unreported precursor types as new catego-

ries as in Fig. 6 depends crucially on the size of the

available dataset. The dataset of progenitors in the

developing monkey cortex is the largest of its kind to

date, containing 91 lineages with 695 cells and meas-

urements of their morphology and proliferative behavior

(Betizeau et al., 2013). Applying the HMT algorithm

with more clusters will require even larger datasets so

as to avoid overfitting, by which tiny clusters consisting

of very few cells would be formed. A further complica-

tion for large K values is that, due to the random initial-

ization of clusters, results may vary significantly from

trial to trial. Alternatively, clusters obtained for large K

may be merged a posteriori according to their similarity,

which leads to results similar to those shown in

Fig. 10.

Impact of directionality
A useful feature of HMTs and other Bayesian graphi-

cal models is their ability to include prior knowledge as

M. Pfeiffer et al.

558 The Journal of Comparative Neurology |Research in Systems Neuroscience



well as constraints in a principled fashion. For this

study we tested the impact of constraining the direc-

tionality of differentiation, so that precursors after each

division become progressively more fate constrained.

Although this is a common hypothesis concerning the

nature of corticogenesis (Qian et al., 1998; Noctor

et al., 2004; Tyler and Haydar, 2013), we found that an

explicit inclusion of this assumption leads to a model

(Fig. 9) that does not match the biological reality as

well as fully unconstrained models, suggesting that

bidirectional transitions between most (but not all) of

the precursor types would be a fundamental property

that a model of primate corticogenesis should capture.

The HMT model, as well as morphology-based manual

classification, finds that monopolar bRGs and tbRGs

exhibit bidirectional transitions. The exception is the

bRG-both-P precursor, which indeed seems to differenti-

ate unidirectionally under all HMT conditions.

One can use an adaptation of the HMT model to

explore the consequences of directionality. The effect

of imposing directionality is a blurring of precursor

types (Fig. 8), which occurs because precursors that

should differentiate into a precursor type that is

upstream in the directed HMT model get merged with

other cells. As a consequence, several other properties,

such as the proportions of the cell types, or the percen-

tages of differentiative divisions, differ from all other

assignments. A clear indication of the differences

between the directed and undirected case is illustrated

in Fig. 13, which shows the distribution of cell types in

the progeny of specific precursors, i.e., all cells result-

ing directly or indirectly from a division of each precur-

sor. In the unconstrained case (Fig. 13A, following the

transition diagram of Fig. 12), a large diversity of types

can be observed for all types of precursors, which is

also the case following manual classification. This is

clearly different for the constrained HMT model (Fig.

13B, following the transition diagram of Fig. 9), in which

more committed types such as IP are restricted to a

small subset of types in their progeny. In both cases

bRG-both-P can only be generated through self-renewal.

The progeny of the more committed precursors is much

less diverse than for early precursors. This can be eas-

ily seen in Fig. 13B by noticing the predominance of

the warm colors when comparing the rows for bRG-

both-P and IP precursors.

There is a subtle relationship between directionality

and the number of distinct precursor types. In the case

of K 5 8 types (Fig. 7), the results show that the

occurrence of the new precursor types such as bRG-

apical-birth-P, tbRG1, and tbRG2, leads to a sparser

transition diagram. For example, there are only weak

transitions from other types back into bRG-apical-birth-

P, but strong forward connections into other bRG types,

and a strong contribution coming from bRG-both-P. This

could hint at a progressive differentiation pathway from

bRG-both-P via bRG-apical-birth-P to bRG-apical-P, in

which the strongly neurogenic bRG-apical-birth-P type

could be responsible for asymmetric divisions.

Until the recent study of Betizeau et al. (2013)

describing bidirectional transitions in primate cortical

precursors, the prevailing view was that the early

stages of cortical development unfold according to hier-

archical principles. The dominant theory of a hierarchi-

cal development from stem cell toward differentiated

cell types perceives lineage progression as a progres-

sive restriction in stemness and cell potential caused

by a series of (irreversible fate) decisions. However,

this restrictive view of unidirectional lineage progression

has been challenged by a number of experimental and

conceptual studies (Rolink et al., 1999; Sato et al.,

1999; Heyworth et al., 2002). It has been argued that a

mechanism of lineage progression, which includes the

potential for reversibility, is much more flexible in

Figure 13. Distribution of cell types in the progeny of precursor cells for unconstrained and constrained HMT models. A: Nature of the

progeny of the different precursor types identified in the clustering for K 5 6 without constraints on transitions (Figs. (4 and 5)). B: Same

as A, but with imposed directionality (Figs. (8 and 9)). The progeny in B is far less diverse than in the results of other HMT or manual

classification.
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response to different environmental signals (Huang

et al., 2005; Zipori, 2005). The frequent occurrence of

bidirectional transitions between cortical precursor

types during corticogenesis introduces stochasticity,

and might therefore be indicative of a certain degree of

flexibility. We do not know whether the observed

reversibility entails going backward in developmental

potential. However, imposing directionality constraints

reduces the diversity of precursor types (Fig. 13). The

observed reversibility might be made possible by the

unique stem cell properties such as high self-renewal

ability and proliferative potential of primate precursors

(Betizeau et al., 2013). Instances of reversibility are

described in case of both transdifferentiation and dedif-

ferentiation, in which the cell behavior appears to

oppose the major developmental pathway. Contrary to

strict hierarchical lineages, in which once a decision is

made a cell is committed to a particular differentiation

stage, primate cortical precursors have the ability to

reverse. However, due to the lack of molecular analysis

at the single cell level, we do not know to which extent

the bidirectional transitions occur between more primi-

tive cell stages and more committed progeny.

The present results favor a concept of stem cell orga-

nization based on flexible and self-organizing cellular

units, which are not restricted to a unidirectional flow

through a sequence of compartments. Such an adaptive

system could allow for self-organization and thereby

provide the plasticity and robustness needed to gener-

ate the complexity of the adult cortex (Chang et al.,

2008; Huang, 2009; Kennedy and Dehay, 2012; Zubler

et al., 2013).

Potential and limitations of the HMT for
corticogenesis

Although tested here on morphological features and

lineage relationships for primate precursors, our

method could be applied more generally to datasets of

different species, including datasets with different types

of recordings, such as genetic expression markers

(Olariu et al., 2009; Costa et al., 2011). In our dataset,

measurements of every cell are available. However,

other studies (Olariu et al., 2009) have shown that it is

possible to infer the characteristics of intermediate pre-

cursors, even when there is only information about cells

at the end of lineages.

Given the complexities of real cell lineages and the

observed diversity of precursor types, the HMT model

clearly is a simplification. As we have shown in Fig. 10,

the number of clusters to be formed (the parameter K)

can play a crucial role in determining which precursor

types are identified by the unsupervised method. The

number of precursor types is linked to how one concep-

tualizes corticogenesis. Because it is unknown exactly

how many discrete types of precursors one should

expect to find in the developing cortex, there is no

clear a priori choice for K. One possibility is to base

the choice of free parameters on model comparison

methods like the silhouette value for clusters, which

evaluates the cluster separation and within-cluster simi-

larity, and the ability of the model to predict the type

of daughter cells (Fig. 11). We also based our choice of

K on exploratory analysis and the observation that the

results for K 5 6 correspond qualitatively to previously

reported precursor types with different proliferative

roles (Hansen et al., 2010; Betizeau et al., 2013). Alter-

natively, one could explore the additional categories of

precursors obtained with K 5 8 for explaining certain

aspects of corticogenesis. Other studies using HMTs

have used alternative criteria for model selection; such

as the Bayesian information criterion or integrated com-

pleted likelihood (Biernacki et al., 2000; Durand et al.,

2005), or selected K according to known properties of

the data (Olariu et al., 2009).

Limitations of the probabilistic model
Although the HMT model captures lineage dependen-

cies better than pure clustering models (Fig. 11C), it

has limitations. The HMT model makes the simplifying

assumption that the types of each of the two daughter

cells are conditionally independent, given the type of

the mother cell. This means that the HMT in its stand-

ard form is not able to capture the preference for cer-

tain patterns of division, such as the frequently

observed division into one upper bRG-basal-P and one

lower bRG-apical-P daughter cell. Although such com-

mon patterns have high likelihood in the HMT, other rel-

atively infrequent patterns such as the generation of

two daughters with only basal processes are given too

high a likelihood. Apparently, this problem does not

affect the capability of HMTs to extract meaningful cell

types, but it would affect its suitability as a generative

model to predict new lineages through random sam-

pling, and could improve the accuracy of predicted cell

types (Table 3). One potential solution would be to

modify the model and introduce a probabilistic depend-

ency between the two daughter cell types. In this case

the transition matrix A would predict not only the cell

types of the two daughters independently, but also pro-

vide a joint probability distribution for pairs of daughter

cell types, conditioned on the type of the mother, as

proposed, for example, by Durand et al. (2005). Simi-

larly, dependencies of daughter types across multiple

generations could be modeled by a higher order Markov

process, in which the daughter types are conditioned
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on the types of mother, grandmother, or earlier precur-

sors in the lineage, thus increasing the number of

parameters in A. As the discussion of the deviation of

the HMT model from morphology-based manual classifi-

cation has shown, there are indeed some seemingly

important second-order or higher order relationships,

such as the inability of precursors to become bRG-both-

P precursors after differentiation into another type. A

second-order Markov model could allow this aspect to

be captured explicitly.

Another shortcoming of the HMT model is that it

does not permit modeling dependencies of daughter

cell types on features of the mother cell, such as, for

example, the cell-cycle length or the angle of the

mitotic plane. Introducing such dependencies would fur-

ther complicate the probabilistic model, because the

assumption of a hidden Markov state would be violated.

Given enough data, it could be best avoided by increas-

ing the number of available precursor types K, such

that mother cells with similar morphologies but different

proliferative features could end up in different clusters,

and thus have different transition probabilities for

daughters. An example is the occurrence of the bRG-

apical-birth-P type for K 5 8 and its difference in prog-

eny compared with the bRG-both-P and bRG-apical-P

types (Fig. 6, 7).

Another simplifying assumption of the HMT is that

the observed features are conditionally independent,

given the type of the cell. Clearly there are correlations

between the morphologies prior to and after mitosis, or

between the inherited processes and the location of

mitosis. Such dependencies are still captured in our

results, because features are quite homogeneous within

clusters and can thus be analyzed after assigning types

to all cells with the Viterbi algorithm (Durand et al.,

2005). However, dependencies could in principle be

modeled also by a more complex observation model

that replaces the Na€ıve Bayes assumption for h with

additional dependencies between attributes.

Related work
The HTM method used for the present study relies

on the algorithms derived by Crouse et al. (1998) and

refined by Durand et al. (2004). HMT models for biologi-

cal growth processes were first proposed by Durand

et al. (2005) as a statistical model for plant architec-

tures. HMTs have been used by Olariu et al. (2009) to

reconstruct cell lineage trees for human pluripotent

stem cells. In their study, phenotypes of cells were only

known for cells at the root and at the end of lineages,

and measured by the expression of a cell surface anti-

gen. The HMT was used to predict survival of a cell and

two levels of the unobservable antigen expression level

at intermediate precursors; and also to infer division

patterns that lead to the observed expressions at the

leaves. That approach differs from the present study, in

which the set of observations for each cell is much

richer, and thus the HMT model provides a prediction

not only for lineages, but also for morphologically differ-

ent categories of cells.

CONCLUSIONS

Analysis of large cellular developmental databases

is a challenge to experimental and theoretical biolo-

gists. In this context, the development of a powerful

automated analysis pipeline such as the one pre-

sented here illuminates our understanding of cortico-

genesis. The HMT model presented here confirms that

primate corticogenesis is characterized by diverse

precursor morphologies and complex lineages. In con-

trast, rodent corticogenesis is thought to exhibit few

precursor types and linear lineages (Tyler and Haydar,

2013). In this context it would be interesting to apply

the HMT model to a large rodent database, which

should be able to inform us whether the observed pri-

mate rodent differences are qualitative or merely

quantitative.

Finally, exploring a large database that has fine-grain

genetic profiling would better inform us about the flexi-

bility of the lineages and give further insights into

mechanisms of self-organization predicted to be linked

to cortical complexity (Chang et al., 2008; Huang,

2009; Kennedy and Dehay, 2012; Dehay et al., 2015).
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