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Abstract

Objective—Children differ greatly in their ability to self-regulate food intake for reasons that are 

poorly understood. This laboratory-based twin study tested genetic and environmental 

contributions to self-regulatory eating and body fat in early childhood.

Methods—Sixty-nine 4 to 7 year-old same-sex twin pairs, including 40 monozygotic (MZ) and 

29 dizygotic (DZ) pairs, were studied. Self-regulatory eating was operationalized as the 

percentage compensation index (COMPX%), assessed by a “preload” challenge in which lunch 

intake was measured following a low- (3 kcal) or high-calorie (159 kcal) drink. Body fat indexes 

also were measured. The familial association for COMPX% was estimated by an intraclass 

correlation, and biometric analyses estimated heritability.

Results—Children ate more at lunch following the low- compared to high-energy preload (p< 

0.001), although variability in COMPX% was considerable. Compensation was significantly 

poorer among African American and Hispanic compared to European American children, and 

among girls compared to boys. There was a familial association for self-regulatory eating (ρ= 

0.23, p= 0.03) but no significant genetic component. Twenty two percent of the variance in 

COMPX% was due to shared environmental (‘household’) factors, with the remaining variance 
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attributable to child-specific (‘unique’ or ‘random’) environments. Poorer self-regulatory eating 

was associated with greater percent body fat (r= −0.21, p= 0.04).

Conclusions—Self-regulatory eating was influenced by environmental factors, especially those 

differing among siblings. The absence of a significant genetic effect may reflect age of the sample 

or could be artifactual due to measurement issues that need to be considered in future studies.
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Introduction

Why do some children spontaneously regulate their food intake in response to 

environmental perturbations so much better than others? Is this a skill that can be taught or 

acquired as a result of some optimal rearing practice? Or is it largely the result of differences 

in genetic predisposition 1? Indeed, children vary greatly in their capacity to self-regulate 

food intake for reasons that are poorly understood 2, 3. Environmental experiences are 

believed to disrupt ‘compensation’ 3–5, however parents transmit DNA to their children in 

addition to providing structure to the home environment. Genes influence many behavioral 

traits during development 6, including child eating patterns 7–11. Moreover, increased child 

weight status, which itself is highly heritable 12–15, has been linked to poorer self-regulatory 

eating 16, 17. The need to control for genetic factors in studies of child development is 

paramount in order to draw valid inferences about the role of the environment in shaping 

these behaviors 18.

Few investigations have examined the genetic-environmental architecture of children’s self-

regulatory eating. Two recent studies reported that genes accounted for 72% of the variance 

in reported ‘satiety responsiveness’ in the first three months of life 19 and 63% of the 

variance at ages 8–11 years 9. These important investigations used parent-report methods to 

assess the child eating phenotype. It is unclear whether similar results would emerge if using 

a laboratory-based preloading paradigm in which food intake is directly measured. Thus, 

the first aim of the present study was to estimate genetic and environmental influences on 

the self-regulatory eating of 4 to 8 year-old youth, using a laboratory preloading paradigm. 

We used a classic twin design, which compares the phenotypic similarity of monozygotic 

(MZ) twin pairs, who effectively share 100% of their genes, against dizygotic (DZ) twin 

pairs, who share 50% of their genes on average20, 21. We hypothesized that there would be a 

significant genetic influence based on the two prior studies using parent-report 

questionnaire9, 19. The second aim of our study was to test whether children with poorer 

compensatory eating have increased body fat and, if so, whether these associations were due 

to genetic or environmental factors. We also evaluated the heritability of three body fat 

indices (body mass index, BMI: kg/m2; waist circumference, and percent body fat) to 

confirm the sensitivity of our study design to detect these established genetic effects.
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Methods

Participants

Sixty-nine same-sex twin pairs, 4 – 7 years of age, and their mothers participated. Families 

were recruited through twins’ clubs, Twins Magazine, and mailings to parents of twins. All 

ethnicities and both sexes were eligible. Only same-sex twin pairs were recruited. 

Participating twins were in good health and had no food allergies or other medical 

conditions that would prohibit participation. Additional details of the sample are provided 

below.

Measures

Energy Compensation Ability—We measured energy compensation ability using a 

preloading paradigm, an established tradition in the literature 2, 17, 22, 23. Specifically, the 

difference in ad libitum lunch intake following a low- (3 kcal) and high- (159 kcal) energy 

preload was measured across two laboratory visits, with the order of presentation 

randomized (see below). The preloads were cherry-flavored carbohydrate drinks matched 

for mass (173 g) and sensory properties, served in plastic cups at room temperature. The 

fundamental difference between preloads was the total energy density, which was achieved 

by serving either standard cherry Kool-Aid® supplemented with maltodextran (high-energy 

preload) or Kool-Aid® with aspartame artificial sweetener (low-energy preload) 17, 24.

After drinking the preload, twins had a 25 minute play period during which staff post-

weighed the plastic cups to compute preload consumption. This also was done to ensure that 

most or all of the preload was consumed. Mean (SD) intake of the low- and high-energy 

preloads were 2.97 (0.05) kcals and 147.32 (9.69) kcals, respectively, indicating that 

children consumed over 95% of the preloads on average in both conditions. Twins were then 

served a multi-item lunch that included: macaroni and cheese (133 g), canned string beans 

(57 g), string cheese (30 g), graham crackers (25 g), green grapes (113 g), baby carrots (35 

g), and whole milk (513 g). Children could eat as much as they wished and were allowed to 

request additional servings. Research assistants read stories to the twins during lunch as their 

mothers sat in a chair that was located within several feet of the children’s table. (The 

influence of mothers’ presence on children’s lunch intake could not be determined, because 

this was the same for all children and not experimentally manipulated.) Twins sat together to 

simulate typical eating conditions at home, but were not allowed to share foods. During the 

meal, research assistants read non-food related books to the children to serve as a neutral 

distraction.

Compensation ability was operationalized as the percent compensation index (COMPX

%)17, 24:

where Meallow = test meal intake following the low-energy preload, Mealhigh = test meal 

intake following the high-energy preload, Preloadhigh = high-energy preload intake, 
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Preloadlow = low-energy preload intake. Energy intake was expressed as kcal units. 

COMPX% is a continuous measure with 100% reflecting “perfect” compensation. 

Progressively lower scores (“undercompensation”) reflect the tendency to overeat following 

the high-energy preload relative to the low-energy preload. Progressively higher scores 

(“overcompensation”) reflect the tendency to undereat following the high energy relative to 

the low energy preload.

Anthropometry and Body Composition—Children’s weight and height were 

measured by digital scale and stadiometer, respectively, and converted to body mass index 

(BMI). BMI values, in turn were converted to BMI z-scores and percentiles according to 

appropriate age- and sex-specific cut-offs 25. Children’s waist circumferences were 

measured in the standing position from midway between the last rib and the iliac crest. 

Because waist circumference is positively correlated with child age, we computed an age-

adjusted (“residualized”) waist circumference score using regression analysis 26. Dual 

energy X-ray absorptiometry (DXA) scans were conducted to measure children’s percent 

(%) body fat. Height, weight, and BMI measures were collected on 132 children, waist 

circumference was measured on 109 children, and DXA body fat measures were obtained on 

99 children, because certain parents/children declined these measures. Children with and 

without DXA scans did not significantly differ in self-regulatory eating (p= 0.96), BMI z-

score (p= 0.65), or waist circumference (p= 0.97). Mothers were asked to self-report their 

weights and heights, from which BMI was calculated.

Socio-demographic measures—Mothers reported their education level (≤ high school, 

college, or graduate/professional school), marital status (never, married, or separated), and 

current employment status (employed or unemployed). Marital status was recoded as Never 

or Currently Unmarried (coded 0) or Currently Married (coded 1). Child sex was dummy 

coded for final analyses. Child ethnicity categories were: European American, African 

American, Hispanic, Asian, Native American, and Other/Mixed. A dummy-coded variable 

of European American (0) and non-European American (1) was constructed for analyses.

Zygosity—Zygosity determination was based on analysis of 10 highly polymorphic genetic 

markers obtained from cheek cells using bucal swabs. Genetic analyses were conducted by 

an independent laboratory (http://www.affiliatedgenetics.com/). Twin pairs who were 

identical for all markers were classified as monozygotic (MZ); all others were classified as 

dizygotic (DZ). Genetic analyses did not yield interpretable results for 8 twin pairs, for 

whom a parent-report questions determined child zygosity 27. Twin pairs whose zygosity 

was assessed by swabs vs. parent-report did not differ in COMPX% (p= 0.17), BMI z-score 

(p=0.91), waist circumference (p= 0.99), or percent body fat (p=0.67).

Procedures

Families came to the New York Obesity Research Center, St. Luke’s-Roosevelt Hospital, for 

4 assessments over two weeks 28. The first two visits were primarily dedicated to the energy 

compensation protocol, with body composition assessed either on the third or fourth visit. 

Visit 1 lasted from ~11:30AM until ~1:00PM, with parents instructed not to feed their twins 

for at least two hours prior to the visit. Upon arrival, families were greeted by staff, 
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reviewed the study consent form and provided consent, and acclimated to the laboratory. 

Next, mothers were provided a questionnaire packet to complete as twins consumed the low- 

or high-energy preload drink preload. Preloads were presented to twin pairs in a randomized 

order, with each twin pair assigned to one of three conditions: Low/Low – High/High (i.e., 

twins A and B both receive low-energy preloads on visit 1 and high-energy preloads on visit 

2); High/High – Low/Low (i.e., twins A and B both receive high-energy preloads on visit 1 

and low-energy preloads on visit 2); Low/High – High/Low (i.e., twin A receives the low-

energy preload and twin B receives the high-energy preload on visit 1, with the order being 

reversed on visit 2). Twenty-five minutes following preload administration, the protocol 

lunch meal was served to the twins. Following lunch, children had additional play time and 

received prizes before departing the laboratory.

Procedures for visit 2 were identical except that questionnaires were not administered to 

parents and children received the alternate preload. Parents received financial compensation 

for their participation, to help offset travel and related expenses for their four visits. This 

study received full approval from the Institutional Review Board of St. Luke’s-Roosevelt 

Hospital.

Data Analytic Plan

Descriptive statistics are presented as means ± standard deviations (SD) or percentages. A 

paired t-test compared total energy intake at lunch (kcals) following the low and high calorie 

preloads, to assess for the compensation effect. The distribution of COMPX% score was 

examined to characterize variability in self-regulatory eating. We tested whether COMPX% 

scores differed by child sex and ethnicity (dummy coded). For any significant findings that 

were detected, mixed effects linear models were conducted to ensure that the finding was 

preserved when controlling for family membership. We comment on any effect that became 

non-significant (p> 0.05) when adjusting for family membership.

To test the familiality of self-regulatory eating, an intraclass correlation coefficient (ρ) was 

estimated for COMPX% across all 69 twin pairs. A significant estimate of ρ would indicate 

that compensation ability “runs in families,” but would not distinguish genetic from 

environmental effects. Thus, MZ and DZ twin pair correlations were computed for COMPX

% scores and body fat indexes to determine whether these traits were more similar among 

identical than fraternal twins.

Biometrical genetic analyses 29 formally estimated the magnitude of genetic, shared 

environmental, and non-shared environmental influences on COMPX% and body fat 

indexes. The ‘shared environment’ refers to aspects of the environment that are identical for 

twins, such as foods in home cupboards and meal-time rules for all children (eg, “no dessert 

until vegetables are eaten”). The ‘non-shared’ environment refers to aspects of the home 

environment that differ among twins, including differential treatment by or interactions with 

parents at home as well as peers and unrelated adults out of the home. The non-shared 

environment also reflects measurement error.

Biometric analyses tested the goodness of fit of five competing models that fit the following 

parameters in different combinations: Additive Genetic influences (A), referring to multiple 
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alleles that work additively to impact the trait; Dominant Genetic influences (D), referring to 

multiple alleles at the same genetic locus that work interactively to impact the trait; Shared 

Environment influences (C), and; Non-Shared Environment influences (E). The five 

competing biometrical models were: (i) A-C-E; (ii) A-D-E; (iii) A-E; (iv) C-E and (v); and 

E. The χ2 statistic and Akaike Information Criterion (AIC) were used to evaluate the 

goodness-of-fit of the competing models. A non-significant χ2 value suggests that the data 

do not significantly deviate from the posited model and signifies a relatively “good” fitting 

model. A progressively lower AIC value signifies a progressively better fitting model. The 

difference in fit between competing models was tested by a likelihood ratio test 

asymptotically distributed as χ2. We did not conduct separate analyses stratified by child sex 

or ethnicity, given our sample size.

With respect to statistical power, our study had sufficient power to detect an additive genetic 

effect of 20% or greater, when assuming an “A-E” model fit to the data 29. As noted 

previously, two prior behavioral genetics studies of self-regulatory eating in infancy and 

later childhood, using parent report questionnaire, reported heritability estimates in excess of 

60% 9, 19. This lends plausibility to the notion that the heritability of COMPX% should be at 

least 50%, which is typical of behavioral phenotypes in humans 20, 21. On the other hand, we 

recognized that genetic influences on this laboratory-assessed phenotype may be smaller in 

magnitude and potentially below our threshold for statistical detection. We return to this 

point in the Discussion.

Pearson’s correlations examined the associations between COMPX% and child body fat 

indexes. Where significant correlations were detected, bivariate biometric analyses tested 

whether the association was attributable to underlying genetic factors (ie, a “genetic 

correlation”), shared home environmental factors (ie, a “shared environmental correlation”), 

or non-shared environmental factors (ie, a “non shared-environmental correlation”). All 

biometical analyses were conducted using the Mx software 29.

Results

Sample Characteristics

Descriptive data for twins are presented by sex and zygosity (Table 1). The mean ±standard 

deviation (SD) child age was 59.7±18.2 months and 54% of the sample was female. The 

ethnicity breakdown was 52% European American, 17% African American, 13% Hispanic, 

3% Asian, and 15% other or mixed racial background. Fourteen percent of the children were 

overweight or obese, ie, BMI-for-age ≥ 85th %. There were no significant differences by 

ethnicity (ie, European American vs. non-European American children) in BMI (p= 0.62), 

waist circumference (p=0.85), or percent body fat (p= 0.72). There were no sex differences 

in BMI z-score (p=0.42) and waist circumference (p= 0.22), although girls had a greater 

percent body fat than boys (17.1±4.9 vs. 12.9±6.1, p<0.001). Descriptive data for 

participating mothers are presented in Table 2. Most mothers were college educated or 

higher (80.9%), married (73.9%), currently working out of the home (55.1%), and not 

overweight or obese (63.8%).
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Evidence for energy compensation

Lunch intake was greater following the low-energy compared to the high-energy preload 

across all 139 children (380.9 ± 257.5 kcals vs. 255.9 ± 204.1 kcals), with a mean difference 

of 124.9 kcals (p< 0.001). However, there was considerable variability in self-regulatory 

eating, with the mean percent compensation being 86.2 ± 119.2%, indicating that the 

average child undercompensated. Part of this variability was due to child sex and ethnicity. 

COMPX% scores were lower among girls than boys (65.9% vs. 109.7%, p= 0.03) (Figure 

1), and also lower among non-European American than European American children (60.0% 

vs. 100.2%, p= 0.01) (Figure 1). The ethnicity difference remained significant (p= 0.03) in 

multiple regression models that controlled for maternal educational status (p= 0.53) and 

work status (p= 0.58), as well as paternal educational status (p= 0.43) or work status (p= 

0.70). The ethnicity difference was comparable when comparing only Hispanic and African 

American to European American children (54.8% vs. 110.2%, p=0.02). COMPX% did not 

significantly differ as a function of the preload order to which twins were randomized (p= 

0.11).

Familiality and heritability of child self-regulatory eating

There was a significant familial association for our primary outcome measure, COMPX% 

scores (ρ= 0.23, p= 0.03). The correlation for COMPX% scores was r= 0.13 and r= 0.35 

among MZ and DZ twin pairs, respectively, suggesting the absence of genetic influences on 

the trait (Table 3). Biometric analyses indicated that the model including shared and non-

shared environmental influences provided the best fit to the data (χ2= 1.19, df= 4, p= 0.88, 

AIC= −6.81). Specifically, 22% of the variance was estimated to be due to shared 

environmental factors, with the remaining variance estimated to be due to non-shared 

environmental factors. When using sex/ethnicity-adjusted COMPX% scores, similar results 

were observed. The shared and non-shared environment accounted for 17% and 83% of the 

variance, respectively. Heritability was estimated at 0%.

Heritability of body fat indexes

Correlations for body fat indexes were consistently larger among MZ than DZ twin pairs, 

suggesting a strong genetic influence (Table 3). The best fitting model for BMI z-score, 

waist circumference, and percent body fat only fit additive genetic and non-shared 

environmental influences. Heritability was estimated at 89%, 79%, and 91%, respectively. 

Results were similar when analyzing age-adjusted waist circumference (h2= 73%) and sex-

adjusted percent body fat (h2=90%). Finally, as an alternative to percent body fat, we 

conducted biometric analyses for the ‘fat mass index’ (FMI), which is defined as total body 

fat (in kg) divided by the square of height (in meters)30. Heritability of FMI in the best-

fitting model was estimated to be 96% (χ2= 35.09, p< 0.001, AIC=29.09).

Associations among COMPX% and body fat indexes

Lower COMPX% (undercompensation) was correlated with greater percent body fat (r=

−0.24, p=0.04), an association that remained marginally significant when controlling for 

child sex (r= −0.19, p= 0.06). The former association was due to a non-shared environmental 

correlation (re= −0.27), meaning that child-specific environments promoted both poorer self-
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regulatory eating and increased body fat. COMPX% was not significantly associated with 

BMI z-scores (r= 0.01, p= 0.95) or waist circumference (r= 0.06, p= 0.52).

Discussion

Young children differ in their capacity to self-regulate food intake for reasons that have been 

poorly understood. This is an important trait that has been linked to weight status 16, 17 and 

appears to decline during childhood 23. We found in the present study that all of the 

variability in this trait was due to environmental factors, providing among the strongest 

evidence to date for household influences on children’s self-regulatory eating. Twenty-two 

percent of the variance was estimated to be due to the shared environment, which is known 

to influence children’s meal patterns 11 and food preferences 31. This accumulating evidence 

supports household influences in the development of children’s diet and eating patterns, 

even when controlling for genetic influences.

Child-specific environments explained most of the variability in COMPX% scores. Thus, 

parents’ greatest influence on children’s self-regulatory eating may reside in how they treat 

their children differently rather than similarly, which is typical of child development 6, 32. 

Child-specific environments can include parental feeding practices, which were shown to 

differ among siblings 33–35, as well as social factors out of the home 36. Peers have a 

powerful influence on child development 36, including eating behavior 37. Differences 

among siblings appear critical to the development of self-regulatory eating capacity, and 

should be identified in future research.

Contrary to our predictions, we did not detect a statistically significant genetic influence on 

self-regulatory eating. This finding may reflect the young age of our sample. Specifically, 

there may be age-specific genetic influences on compensatory eating that increase during 

childhood. The heritability of eating pathology was 0% in 11 year-old youth but increased to 

54% at age 17 38. Similarly, another study reported the absence of genetic influences on 

disordered eating symptoms in middle childhood that emerged in latter adolescence 39. 

There are age-specific genetic influences on children’s BMI 13 and the same may be true of 

compensatory eating. Indeed, a recent study using an elegant animal model supports the 

importance of puberty in the development of disordered eating patterns40. Genes also may 

interact with children’s food environment in an age-specific manner, resulting in greater 

genetic expression of self-regulatory eating over time. On the other hand, a recent study 

reported genetic influences on infants’ satiety responsiveness 19, as measured by parent 

report. This calls into question whether there is truly no heritable component to self-

regulatory eating in early childhood.

There are alternative interpretations of our null genetic finding, which we place into two 

categories: statistical power/effect size, and measurement procedures. With respect to 

statistical power/effect size, it is possible that there are relatively small genetic effects on 

COMPX% that our sample size could not detect. For example, over 500 twin pairs would 

have been necessary to detect a genetic effect accounting for 2% of the variance in COMPX

% scores, if shared and unique environmental factors accounted for 20% and 78% of the 

variance respectively. Genetic influences on directly measured food intake may be much 
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smaller compared to that for reported food intake. If so, our sample size would have been 

too small to detect such effects. Interestingly, the two prior studies to examine this trait 

using parent-report methodology found sizable heritability estimates in excess of 60% 9, 19. 

To the extent that that method by which this trait is assessed yields discrepant genetic 

effects, this has implications for the design and powering of future studies. Of note, prior 

studies have reported a lack of congruence among parents and children with respect to 

reported aberrant eating patterns by the youth41, 42.

With respect to measurement, our laboratory assessment of compensation, while well 

established 17, 23, 24, may have induced environmental effects that ‘overwhelmed’ genetic 

influences. For example, twin pairs were instructed to sit with each other while eating in 

order to simulate more realistic eating conditions at home and in order to make the children 

more comfortable on the initial laboratory visits 28. However, we cannot rule out potential 

“sibling interaction” effects 29 with one twin imitating the food intake of his/her sibling. 

Also, children were read to by research staff during the meals, which may have influenced 

children’s food intake and potentially induced similarity among twin pairs irrespective of 

zygosity. The reading also may have been a distraction that diverted attention away from 

internal satiety cues, which could have influenced food intake. These considerations 

collectively speak to the importance of the ‘context of measurement.’ Future research might 

address this issue by using multiple assessment methods for self-regulatory eating (e.g., 

observational and parent-report).

We found that 80%–90% of the variance in body fat measures was due to genetic variations. 

Noteworthy was the high genetic loading for percent body fat, which has been rarely studied 

in children 12. These findings underscore the critical role of genetic vulnerability in obesity 

onset. Genes that promote childhood obesity may impact on satiety mechanisms, such as the 

melanocortin 4 receptor gene (MC4R) 43 and the FTO gene 44, 45. Interestingly, the FTO 

gene has been implicated in at least one aberrant eating behavior (‘loss of control eating’) in 

children which has been linked to poor self-regulation46. At the same time, results from 

genetic studies have not replicated consistently 47. Given the high heritability of body fat, 

obesity-promoting genes may operate through eating traits other than self-regulatory eating 

at this age range 48, or may also influence energy expenditure, a variable that was not 

measured in the present design.

Children who undercompensated had a greater percent body fat. A reduced capacity to 

recognize satiety cues may lead to longer-term overconsumption of calories 17. For example, 

responsiveness to internal satiety cues, assessed by parent-report, was poorer among heavier 

compared to thinner children in a community-based UK study 49. Impaired compensation 

may be a novel target for obesity prevention, as few satiety training interventions have been 

tested with children 50. We note that COMPX% was not associated with BMI z-score or 

waist circumference in our study, underscoring the importance of refined body fat 

assessment.

Interestingly, COMPX% scores for African American and Hispanic children were ~60% that 

of European American children. This is noteworthy given current ethnic disparities in 

childhood obesity rates 51 and nutrition 52. As body fat measures did not significantly differ 

Faith et al. Page 9

Int J Obes (Lond). Author manuscript; available in PMC 2016 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by ethnic group, poorer self-regulatory eating may be a precursor to the development of 

obesity in these vulnerable populations 51. Prospective designs need to replicate these 

findings in a large sample of ethnically diverse subjects. We also found that girls 

compensated at approximately half the level of boys, replicating a prior finding 17.

Our findings implicate the importance of the family environment for fostering self-

regulatory eating practices in early childhood. Parents have a unique opportunity to teach 

children to recognize internal sensations of hunger 50, as preschool age children can be 

taught to scale feelings of fullness quantitatively using age-appropriate tools 53, 54. Parenting 

strategies that foster satiety awareness by children, and a less energy-dense home food 

environment, need critical evaluation for obesity prevention. Reduced food portion 

sizes 55–58, and manipulations of cup and bowl dimensions 59, 60, may be environmental 

strategies to prevent children’s overconsumption in response to external cues 61.

Our findings should be interpreted in light of study limitations. First, the sample size was not 

large enough to detect potentially small genetic effects on COMPX% scores, as measured in 

the laboratory. Future studies should consider using larger samples that would be 

sufficiently powered to detect much smaller genetic effects. Second, measures of 24-hour 

dietary intake and physical activity were not assessed. Third, as this was a cross-sectional 

study, inferences cannot be drawn about changes in self-regulatory eating and body fat over 

time. Fourth, the educational level of our families was relatively high and so generalizability 

to families with less educated parents is unclear. Fifth, although children were not supposed 

to eat for two hours prior to coming to the laboratory, we could not confirm adherence 

beyond parent report. Non-adherence potentially could have impacted on lunch intake and 

therefore derived COMPX% scores. We did not provide measuring scales or instruct parents 

in advance to keep a detailed food record for foods eaten earlier that day. Finally, we did not 

assess children’s habitual self-regulatory eating by parent-report questionnaire 62.

In sum, we found that children’s self-regulatory eating was influenced exclusively by 

environmental factors, particularly those differing among siblings. Compensatory eating was 

poorer among African American and Hispanic compared to European American children, 

who did not differ in body fat, suggesting a potential behavioral precursor to obesity in these 

at risk youth. Poorer compensation also was associated with greater percent body fat. 

Identifying child rearing practices that foster self-regulatory eating practices is critically 

important 50. Finally, the absence of a genetic influence on self-regulatory eating in this 

study could reflect our laboratory assessment methodology rather than a true null finding. 

As directly measured food intake has clear advantages over reported intake 63, future 

research should use multiple methods when possible to assess children’s self-regulatory 

eating to understand individual differences in this phenotype 49.
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Figure 1. 
Mean (±SD) COMPX% as a function of child sex (upper panel) and ethnicity (lower panel).

Note: For COMPX% scores, 100% represents perfect self-regulatory eating or compensatory 

eating. Progressively lower scores (<100%) represent undercompensation and progressively 

higher scores (>100%) represent overcompensation.
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Table 1

Characteristics of participating children by sex and zygosity.

Variable Boys Girls

MZ: DZ: MZ: DZ:

N (children) 28 36 54 20

Age (months) 63.8 (17.4) 57.6 (18.1) 57.6 (18.4) 58.10 (14.7)

Ethnicity (%)

 Non-Hispanic White 38.5 66.7 51.9 40.0

 Other 61.5 33.3 48.1 60.0

Lunch Intake, w/Low-energy Preload (Kcals) 458.6 (254.2) 410.7 (318.5) 342.4 (206.6) 344.1 (263.9)

Lunch Intake, w/High-energy Preload (Kcals) 302.4 (272.8) 247.2 (203.1) 248.0 (175.5) 247.5 (186.4)

COMPX (%) 107.0 (139.0) 112.7 (126.2) 64.9 (108.8) 68.4 (119.3)

BMI: (kg/m2) 15.6 (0.8) 16.6 (3.04) 15.7 (1.3) 16.1 (2.0)

BMI Percentile 53.8 (19.6) 58.2 (27.9) 52.2 (29.1) 51.2 (29.6)

BMI z-score 0.0 (0.8) 0.3 (1.0) 0.0 (1.0) 0.2 (1.3)

Waist Circumference (cm) 51.2 (4.8) 53.9 (8.0) 50.9 (3.9) 52.6 (5.3)

Percent Body Fat (%) 10.8 (2.3) 14.78 (7.6) 17.0 (4.6) 17.6 (5.8)

Note. For MZ boys, the sample sizes for body composition measures were: N=26 (BMI, BMI z-score, and BMI percentile), N= 22 (waist 
circumference), and N= 20 (total and percent body fat from DXA). For DZ boys, the sample sizes for body composition measures were: N=34 
(BMI, BMI z-score, and BMI percentile), N= 32 (waist circumference), and N= 23 (total and percent body fat from DXA). For MZ girls, the 
sample sizes for body composition measures were: N=54 (BMI, BMI z-score, and BMI percentile), N= 41 (waist circumference), and N= 42 (total 
and percent body fat from DXA). For DZ girls, the sample sizes for body composition measures were: N=18 (BMI, BMI z-score, and BMI 
percentile), N= 14 (waist circumference), and N= 14 (total and percent body fat from DXA).
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Table 2

Characteristics of participating mothers.

Variable

Age (yrs)

Body Mass Index (BMI: kg/m2) 26.2(7.0)

Overweight or Obese (%) 36.2

Education Level (%)

 ≤High School 19.1

 College 58.9

 > Grad/Prof School 22.0

Marital Status (%)

 Single/Never Married 13.0

 Married 73.9

 Separated or Divorced 11.5

 Widow 1.4

Currently Employed (%)

 No 44.9

 Yes 55.1

Note. The number of valid responses for maternal measures was 69 except for age (N= 29), BMI and overweight status (N=65), and educational 
level (N= 68).
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