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Dengue is the most common vector-borne viral disease, causing nearly 400 million infections 

yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral 

responses may not be accessible by conventional B cell panning methods. To demonstrate an 

alternative strategy to generating a therapeutic antibody, we employed a non-immunodominant, 

but functionally relevant, epitope in domain III of the E protein, and engineered by structure-

guided methods an antibody directed to it. The resulting antibody, Ab513, exhibits high-affinity 

binding to, and broadly neutralizes, multiple genotypes within all four serotypes. To assess 

therapeutic relevance of Ab513, activity against important human clinical features of dengue was 

investigated. Ab513 mitigates thrombocytopenia in a humanized mouse model, resolves vascular 

leakage, reduces viremia to nearly undetectable levels, and protects mice in a maternal transfer 

model of lethal antibody-mediated enhancement. The results demonstrate that Ab513 may reduce 

the public health burden from dengue.

Graphical Abstract

In Brief—A structure-based approach allows for the development of a monoclonal antibody that 

targets a nonimmunodominant epitope to effectively neutralize all four serotypes of the dengue 

virus. This antibody treats several symptoms of severe infection in animal models and may 

provide strategies for treatment in humans.

INTRODUCTION

Dengue is the most important mosquito-borne viral disease affecting humans. Half of the 

world population lives in areas at risk for dengue, resulting in an estimated 390 million 

infections per year globally (Bhatt et al., 2013). Dengue is a self-limiting, systemic illness 

caused by any of four dengue virus serotypes, DENV-1 through DENV-4, which share only 

60%–75% identity in amino acid sequence. Infection results in life-long protection to the 

infecting serotype but only transient protection to heterologous serotypes. Currently, there is 

no specific treatment available, and the leading vaccine candidate recently demonstrated 

limited efficacy, estimated to be between 30%–60%, with limited to no significant 

protection against DENV-2 (Capeding et al., 2014; Sabchareon et al., 2012; Villar et al., 

2015).

Passive immunotherapy with monoclonal antibodies represents a potentially important 

approach to the treatment of dengue. Treatment with monoclonal antibodies has been shown 
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to rapidly and substantially reduce viral titers in several instances, including influenza 

(Ramos et al., 2015) and HIV (Caskey et al., 2015). Therapeutically viable antibodies to 

infectious diseases must have a broad coverage of genetically diverse strains. Such 

antibodies are typically identified by large-scale panning exercises of B cells from infected 

individuals. These approaches are inherently biased by the native humoral immune response, 

and as such, may be limited in accessing epitopes that elicit no or little humoral response but 

may yet be functionally important target epitopes. Moreover, antibody therapy to 

immunodominant regions has the potential to cause immune interference, such as by 

masking important epitopes for eliciting a memory protective response (Siber et al., 1993; 

Siegrist et al., 1998; Zhang et al., 2007).

Utilizing panning of B cells derived from infected patients or challenged mice, a range of 

DENV-neutralizing antibodies have been identified, including those with reactivity to 

multiple serotypes (Beltramello et al., 2010; Brien et al., 2010; de Alwis et al., 2011; Lai et 

al., 2013; Smith et al., 2013). Studies characterizing the human humoral response to DENV 

infection have found that it is dominated by antibodies to prM and domain I and II (DI/II) of 

the envelope (E) glycoprotein (Beltramello et al., 2010; Dejnirattisai et al., 2010; Lai et al., 

2008). More recent studies have indicated that antibodies which bind complex, quaternary E 

protein epitopes on the virus surface (de Alwis et al., 2012; Fibriansah et al., 2014; Teoh et 

al., 2012), notably the hinge region connecting EDI and EDII, appear to contribute the 

majority of the human humoral DENV neutralizing activity and may mediate long-term 

protection, albeit in a serotype-specific manner (de Alwis et al., 2012). In contrast, anti-

EDIII antibodies have been shown to constitute a minor proportion of the overall human 

humoral response and also contribute little of the anti-DENV neutralizing activity 

(Dejnirattisai et al., 2010; Wahala et al., 2012; Wahala et al., 2009; Williams et al., 2012). 

Additionally, there have been recent reports of potent antibodies that bridge E monomers 

(EDE-directed antibodies) (Dejnirattisai et al., 2015).

As EDIII-specific antibodies have been shown to constitute a minor component of the 

overall human humoral response but have high potency, we investigated whether targeting 

EDIII might represent an important strategy for immunotherapy. However, existing EDIII-

directed antibodies are not fully cross-reactive; while they typically exhibit high potency due 

in part to greater antibody accessibility, none have been shown to neutralize diverse 

genotypes among all four serotypes. We recently described the derivation of antibody 4E5A, 

which was engineered from 4E11, a mouse antibody directed to an accessible EDIII epitope, 

without the assistance of crystal structure information through a structural-physicochemical 

statistical approach (Tharakaraman et al., 2013).

Herein, we describe a structural framework developed to characterize the epitope-paratope 

interface on domain III, thereby enabling us to engineer an optimized antibody candidate, 

Ab513. Ab513 was extensively characterized in vitro and in vivo to investigate its potential 

to alter dengue pathogenesis. Ab513 represents an alternative, complementary approach to 

identification of broad-spectrum antibodies, and illustrates an effective strategy to target 

non-immunodominant but functionally relevant epitopes.
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RESULTS

Structure-Guided Redesign of 4E5A

Recently, we reported the engineering of antibody 4E5A from 4E11 with improved binding, 

especially to DENV-4; however, affinity to DENV-4 was still modest (100 nM) compared to 

the other serotypes. Analysis of genetic variability in epitope regions confirms that the 

region targeted by 4E5A is far more conserved compared to the EDI/II hinge epitope region. 

Therefore, to develop a broad-spectrum potent antibody for dengue that targets a non-

immunodominant epitope, we redesigned 4E5A for improved affinity to DENV-4, 

leveraging analysis of the epitope-paratope interface. Adapting from network (graph) theory, 

we developed a framework to compute the inter-residue atomic interactions between 

interacting amino acid pairs of an antigen-antibody interface. As such, we define the inter-

residue interactions between a CDR residue and its neighboring epitope residues, rendered 

in a 2D graph format, as the epitope-paratope connectivity (EPC) network (Experimental 

Procedures). CDR mutations or positions (when mutated) that contribute to more favorable 

epitope contacts, as evaluated by EPC network analysis, were investigated experimentally. 

To wit, absent in the identification of 4E5A was interrogation of amino acids within CDR-

H1 which, unlike CDR-H3, is positioned at the Ab-Ag interface periphery, thereby 

potentially allowing for subtle changes to the binding interface. Therefore, 4E5A CDR-H1 

was inspected as a potential region to engineer, to test the accuracy of our epitope-paratope 

description and to develop an optimized immunotherapy candidate targeting a specific 

epitope.

First, we hypothesized that subtle differences in the CDR backbone and/or residue side-

chain conformation between the 4E11 model developed earlier (Tharakaraman et al., 2013) 

and the crystal structure, published recently (Cockburn et al., 2012), could have led us to 

underestimate the significance of certain CDR residues in our previous design calculations. 

While the placement of the majority of the backbone and side-chain atoms were highly 

similar (pairwise Cα RMSD of the six CDR loops, CDR-H1, -H2, -H3, -L1, -L2, -L3, varies 

from 0.176 to 0.407 Å), one notable exception was Thr33 of CDR-H1, which is observed to 

be in close contact with Lys310, Lys323, and Val364 of DENV-4 EDIII (Figure S1). In all 

the DENV-1 to -4 co-crystal structures (3UZE, 3UYP, 3UZQ, 3UZV), the CG2 carbon of 

Thr is proximal to the CG2 carbon of Val364 filling a void between VH and EDIII, whereas 

in the homology model, the CG2 carbon points away from Val364 disrupting this 

hydrophobic contact. In view of the different side-chain orientation of Thr33, we 

hypothesized that a Val in place of Thr at 33 would form a stronger hydrophobic contact 

with the Val at 364 of EDIII. This is evident from the EPC network analysis (Figure 1A). 

Furthermore, the fact that position 364 is hydrophobic in all DENV-1 to -4 suggests that a 

Thr33Val mutation would not be detrimental toward DENV-1 to 3 binding.

Structural analyses coupled with EPC network analysis identified sites 27–28 and 31–33 of 

heavy chain as being positioned to potentially mediate new or improved contacts. To 

interrogate these sites, including Thr33Val, site-saturation combinatorial libraries were 

generated (Supplemental Experimental Procedures), combined, transformed into yeast, and 

assessed for binding to DENV-4 EDIII by scFv surface display using flow cytometry. 
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Relative to 4E5A, the combined library exhibited a population with greater binding, 

supporting predictions that these regions are hotspots for improving DENV-4 affinity. After 

three rounds of sorting in which the top binders to DENV-4 EDIII were selected, the FACS 

profile of the population showed significant enrichment of cells with enhanced DENV-4 

EDIII binding. Sequencing of 50 clones from this enriched population revealed four unique 

variants (Table S1). Interestingly, for the enriched triple-site variants, all contained a 

Thr33Val substitution and no variation was observed at position 32, despite sequencing of 

the unsorted library demonstrating that variation at this position was intact.

We tested the mutations identified by the EPC network analysis in the context of full-length 

IgG and found the variants exhibited ~10- to 20-fold enhanced affinity to DENV-4 EDIII 

relative to 4E5A (Table 1, rows 1–4). In this process, we noted that the Lys31Ser variant 

introduces a putative N-glycosylation site at position 29, therefore, this variant was not 

further pursued. The single mutation Thr33Val demonstrated the best binding profile overall 

(Table 1, row 2), consistent with our EPC network analysis. Notably, all variants 

demonstrated enhanced or equivalent binding to DENV-1 to -3.

Next, we analyzed the conservation of the epitope residues across serotypes to identify 

potential DENV-4 “signature” residues, as these might contribute to the relatively weaker 

affinity of 4E5A to DENV-4. Critically, four out of the seven epitope residues unique to 

DENV-4 were localized to a region in the loop between the “D” and “E” β strands (residues 

358–365), suggesting that differences in this region could be partly responsible for the lower 

affinity binding of 4E5A against DENV-4 strains. Closer examination of this region 

indicated that shortening the length of the proximal antibody CDR-H1 loop via residue 

deletion would result in the removal of a “elbow” region (25ASGF28) in the CDR loop, 

resulting in roughly an 8% increase in shape complementarity (Lawrence and Colman, 

1993) between the interacting surfaces (estimated shape complementarity “Sc” of 4E11 and 

CDR deletion mutant are 0.65 and 0.71, respectively). In addition to aiding DENV-4 EDIII 

binding, our analysis also suggested that deletion of a residue in the region 25–28 of CDR-

H1, notably Ala25, Ser26, or Gly27 of CDR-H1, would permit the antibody to more 

efficiently engage DENV-1 to -3 by virtue of electrostatic interactions between the 

positively charged surface on the antibody VH created by Arg99 of CDR-H3 and Lys3 of 

FR1 and the negatively charged residues 360–363 of EDIII (D360, E362 on DENV-1; E360 

and D362 on DENV-2; E362 and E363 on DENV-3) (Figure 1A and Figure S1B). 

Additionally, a fourth mutation—Gly27Pro—was also predicted to have a similar effect as 

the deletion since introduction of a Pro residue might introduce a bend in the loop backbone.

Experimental testing of these variants indicated that two of the deletion mutants, Ser26Δ and 

Gly27Δ, demonstrated ~7-fold and 3.6-fold greater binding to EDIII of DENV-4 (strain 

BC287/97, having Asn at position 360), without being detrimental to DENV-1 and DENV-2 

EDIII affinity (Table 1, rows 5–9). In agreement with the structural predictions, the two 

deletion mutants also improved affinity to DENV-3 albeit to a lesser extent. The Ser26Δ 

mutant improved affinity to DENV-4 strain H241 EDIII (containing Tyr at 360) to 240.9 

nM, a 19-fold improvement when compared to the parent 4E5A antibody. Notably, other 

putative affinity-enhancing amino acid substitutions that were predicted from a standard 

structure-based rational design, including Glu97Arg/Lys and Tyr106Arg, were found to 
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have marginal or no improvement based on EPC network analysis (Figure 1)—a result that 

was verified experimentally (Table 1, rows 10–13). The final engineered antibody, Ab513, 

differs from 4E11, the starting antibody, through introduction of six affinityenhancing point 

mutations and an affinity-enhancing deletion at position 26 (VH) and amino acid changes to 

humanize the candidate. Relative to 4E5A, Ab513 exhibits a 13- and 22-fold affinity 

improvement to DENV-3 and DENV-4, respectively, while showing smaller gains to 

DENV-1 and DENV-2 (Table 1).

The Structure of the Ab513-EDIII Complex

To verify the structure-based predictions of affinity-enhancing mutations and to cross-

compare 4E11 against Ab513, we solved the crystal structure of Ab513 (reformatted as a 

scFv) bound to EDIII of DENV-4. Two crystal forms were obtained providing a total of 

eight independent views of the complex (Table S2). The crystal asymmetric unit of form I 

contains six scFv-EDIII complexes arranged as three dimers (Figure 2A). The scFvs in each 

dimer are related by a non-crystallographic dyad (Figure 2C) adopting a “swapped” 

configuration. Crystal form II (Figure 2B), however, comprises two independent monomeric 

mAb513scFv-DIII complexes (related by a non-crystallographic dyad). Notably, the 

temperature factors for the antigen in both crystal forms (temperature factors of DIII in form 

I and II are 80.5 and 120.4 Å2 respectively) exceed that of the scFv moiety (form I, II: 47.5, 

70.4 Å2), indicating greater flexibility. Nevertheless, the eight complexes do not differ 

significantly from each other (average pairwise rmsd of 0.457 Å).

As expected, Ab513 recognizes the A-strand epitope on EDIII, with the heavy and light 

chain domains contacting the A and G β strands, respectively. The overall scFv-EDIII 

complex structure is similar to the 4E11-EDIII complex (PDB: 3UYP) with a root-mean-

square deviation (rmsd) of 0.463 Å, indicating that the epitopes recognized by these two 

antibodies are nearly superimposable. Examination of the epitope-paratope interface reveals 

that the side chains of the six affinity-enhancing substitutions (Thr33Val and Ala55Glu of 

VH; Arg31Lys, Asn57Glu, Glu59Gln and Ser60Trp of VL) make the predicted contacts, 

with no significant deviations observed at any of the contact positions (Figure S2). Further, 

it is observed that the deletion of Ser26 results in higher surface complementarity with the 

antigen due to removal of the “elbow” present in 4E11, as predicted (Figure 2D). It should 

be noted that the deletion does not alter the canonical conformation (Chothia et al., 1989) of 

the H-CDR1 loop (Chothia type 1). A total of 898 Å2 of accessible surface area of Ab513 is 

buried in the Ab513-EDIII interface with the VH and VL making contact surface areas of 

480 and 418 Å2, respectively. Twenty H-bonds and 13 salt bridge interactions are found 

across the Ab513-EDIII interface, whereas 16 H-bonds and 8 salt bridges are found across 

the 4E11-EDIII interface, indicating improved contacts as the principal reason of affinity 

enhancement.

Ab513 Neutralizes a Wide Range of DENVs

To assess the breadth of binding of Ab513, the antibody was tested against a panel of 21 

EDIII proteins, which represent a set of diverse challenge strains selected, in part, for having 

diversity within the epitope region. Ab513 was able to bind all EDIII proteins and 

demonstrated affinity improvement relative to 4E5A by as much as 40-fold against DENV-3 
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and DENV-4 strains while marginally increasing the affinity against DENV-1 and DENV-2 

strains (Table 2). Consistent with its strong binding, Ab513 demonstrated strong in vitro 

neutralization of DENV-1 to -4, with observed EC50 values of <200 ng/ml for all four 

serotypes (Table 2), a substantial enhancement compared to 4E11 (Figure S3).

The compact yet dynamic surface structure of flaviviruses, including DENV, impacts 

epitope accessibility and thereby antibody neutralization activity (Lok et al., 2008; 

Sukupolvi-Petty et al., 2013). Therefore, extending beyond the binding studies, we 

performed a series of neutralization studies to characterize further the activity of Ab513. 

First, to validate the affinity gain observed by Ser26Δ mutation to DENV-4 strain H241 

(containing a bulky Tyr at position 360) EDIII protein, as predicted by structural modeling 

analyses, we also tested Ab513 for in vitro neutralization against this strain. Compared to 

4E5A, Ab513 exhibits a 4-fold improvement in neutralization potency to H241, with an 

EC50 of about 2 μg/ml. Next, to challenge Ab513 neutralization breadth, we performed a 

bioinformatic analysis of strains available from the World Reference Center for Emerging 

Viruses and Arboviruses to identify diverse isolates having sequence diversity within and 

near the Ab513 epitope region. This analysis resulted in the identification of 12 isolates, 

three from each serotype, which collectively represent a true challenge panel of viruses that 

are most likely to be refractory to Ab513 neutralization. Ab513 was able to fully neutralize 

all tested challenge viruses, with 9 of 12 viruses yielding EC50 values of <0.5 μg/ml, and the 

remaining three viruses neutralized at <4 μg/ml (Table S3).

To further assess and compare Ab513 with other DENV-neutralizing antibodies, we 

performed comparison studies of in vitro neutralization. We note that variations exist in 

methods of measuring in vitro neutralization of DENV, and studies have shown that even 

when using the same method, substantial titer/EC50 differences are often observed between 

laboratories with the same antibody samples (Rain-water-Lovett et al., 2012; Thomas et al., 

2009). We therefore performed side-by-side direct comparisons, first against four of the 

most potent antibodies from the recently described EDE class of antibodies (Dejnirattisai et 

al., 2015). Results demonstrated that Ab513 exhibits similar or better potency than EDE 

mAbs of sub-class 1 and comparable activity to those of subclass 2, which are sensitive to 

glycosylation state of DENV (Table S4). We also directly compared Ab513 with a 

representative fusion loop-directed antibody (4G2) (Henchal et al., 1982), two DI/II hinge 

epitope-directed antibodies (14c10 and 1F4) (de Alwis et al., 2012; Teoh et al., 2012), and a 

potent human cross-reactive antibody directed to DIII (DV87.1) (Beltramello et al., 2010). 

Ab513 showed greater potency than the fusion-loop mAb, comparable activity to the potent 

DIII-directed mAb and one DI/II hinge-directed mAb and slightly lower potency than the 

other DI/II hinge-directed mAb (Figure S4). Collectively, these results demonstrate that 

Ab513 is able to efficiently neutralize a broad panel of challenge viruses which contain 

sequence diversity within the epitope region and which represent genotypic and 

geographical diversity of DENV. Additionally, Ab513 is able to neutralize virus more 

strongly than fusion loop-directed antibodies and with similar or better potency than the 

most potent EDE antibodies.
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Ab513 Neutralizes DENV Despite Fc Receptor-Mediated Phagocytosis

Secondary infection with a heterologous DENV serotype has been associated with more 

severe illness; one mechanism that has been posited to explain this observation is antibody-

mediated enhancement of virus uptake through the Fc receptor upon virus binding with 

either a non-neutralizing antibody, for example to prM, or binding of a neutralizing antibody 

at sub-neutralizing concentrations. Therefore, we investigated the ability of Ab513 to 

enhance virus uptake in the context of an ex vivo model.

We compared the extent of enhanced virus replication with Ab513 and a chimeric version of 

the fusion loop-directed antibody, 4G2, in Fc-receptor bearing cells. Significantly lower 

levels of enhancement were observed with Ab513 as compared to 4G2 against all four 

DENV serotypes (Figure 3A). Since neutralization of the homologous DENV serotype can 

occur in the presence of Fc receptor-mediated phagocytosis, whereas heterologous DENV 

neutralizes by inhibiting uptake (Chan et al., 2011), we assessed the ability of Ab513 to 

neutralize the four DENV in the presence of cellular uptake. We examined the fate of 

fluores-cently labeled DENV with the highest dilution of antibodies that resulted in 

complete virus neutralization in THP-1 cells. Then, the localization of DENV-immune 

complexes was visualized by immunofluorescence. Ab513 neutralized all four DENV 

serotypes in the presence of uptake, with DENV-immune complexes trafficked to the 

LAMP-1 compartment (Figure 3B). This is in contrast to chimeric 4G2 (and 4E5A, data not 

shown) where DENV was neutralized by inhibition of initial virus uptake (Figure 3C). 

Collectively, these results demonstrate that Ab513 can neutralize all DENV serotypes in the 

presence of phagocytosis, which has been previously observed exclusively when 

convalescent serum samples were reacted with the homologous but not heterologous DENV 

serotypes (Chan et al., 2011; Wu et al., 2012).

Ab513 Demonstrates Activity in Multiple Mouse Models Capturing Key Clinical Features of 
Disease

Severe dengue infection is associated with increases in vascular permeability, which can 

lead to life-threatening hypovolemic shock. The increased permeability is often 

accompanied by thrombocytopenia. Currently, there are no specific therapies for treating 

dengue and management consists of supportive care only. Therefore, development of a 

therapeutic strategy that attenuates the duration and severity of symptoms and/or reduces the 

incidence of these major complications is of clinical importance (Simmons et al., 2012). To 

test the hypothesis of whether an immunotherapy can reduce clinical signs and symptoms of 

DENV infection, we deployed Ab513 in a set of animal models having multiple relevant 

endpoints: (1) viremia, (2) throm-bocytopenia, (3) vascular leak/permeability, and (4) 

antibody-enhanced disease.

To test the ability of Ab513 to reduce viremia, we administered Ab513 to 7- to 10-week-old 

AG129 mice infected with DENV-2. While the AG129 mouse model has potential 

limitations, we were particularly interested in whether we could prevent virus from 

migrating to the CNS. In this model, using DENV-2 strain NGC as the infective agent, 

administration of 25 mg/kg of an irrelevant isotype-matched antibody (“Ctl. mAb”) 24 hr 

prior to virus injection had no effect on CNS-related migration of virus, paralysis, and death. 
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In contrast, a single prophylactic administration of Ab513 at 5 mg/kg resulted in survival of 

6/10 animals (p < 0.0001) out to day 31 post-challenge, indicating elimination of most virus, 

little to no migration of DENV-2 to the CNS, and protection against CNS-related symptoms, 

such as paralysis (Figures 4A and 4B). This effect was even more pronounced at 25 mg/kg, 

where 9/10 animals survived. This increase in survival was also reflected in measurement of 

viremia levels at day 3 post-infection, the day of peak viremia in this model (Figure 4A). 

Administration of 5 mg/kg of Ab513 resulted in a 1.7 log10 reduction in viral titer; a 2.4 

log10 mean reduction was observed in mice treated with 25 mg/kg Ab513, with three of the 

animals in this group having titers below the limit of detection. We note that the typical 

read-outs of this model are viremia at day 3 or following animals for 14–21 days, prior to 

evidence of CNS-related symptoms. However, as demonstrated here, a single dose of Ab513 

is able to effectively neutralize the virus and prevent migration of virus to the CNS.

Next, we directly tested the prophylactic and therapeutic potential of Ab513 in the context of 

platelet loss upon DENV infection. To this end, we adapted a recently reported humanized 

mice (humice) dengue model developed using DENV-2. Humice were reconstituted with 

human blood lineage cells, leading to production of a significant level of human platelets. 

We have shown previously that DENV infection in humice reproduces some key features of 

dengue in human, most notably thrombocytopenia (Sridharan et al., 2013). Critically, the 

reduction in platelet count occurs with human but not mouse platelets, thus allowing us to 

evaluate if Ab513 can specifically prevent human thrombocytopenia, in vivo. We applied 

the same infection approach with clinical isolates representing all four DENV serotypes for 

evaluation of Ab513, without any adaptation. Humice challenged with virus only or virus 

with isotype control antibody display a sharp reduction of human platelets after virus 

infection, with the nadir typically observed 2–3 days post challenge followed by a gradual 

recovery (Figures 4C–4F). Humice receiving a single administration of Ab513 (25 mg/kg) 

either 24 hr prior to or after virus challenge demonstrated a significantly accelerated 

recovery of human platelet levels (Figures 4C–4F), with a more dramatic impact on humice 

challenged with DENV-1 and DENV-2 (Figures 4C and 4D). In contrast, mouse platelet 

levels were not affected by virus infection or by Ab513 administration (Figure S5). 

Quantification of virus levels in sera (as determined by plaque assay) from humice 

challenged with DENV-1 and DENV-2 showed a significant reduction in viral load by 

administration of Ab513 prior to or post-infection. DENV-4 viremia could not be detected 

by plaque assay or qRT-PCR and DENV-3 viremia could only be detected by qRT-PCR but 

mostly near the limit of detection, precluding a robust analysis (Figure S5). Despite the 

current limitations of this model in the context of the DENV-3 and DENV-4 clinical 

isolates, our data indicate that treatment with Ab513 shortened the duration of human 

thrombocytopenia. Additionally, levels of IFN-γ and IL-10 were markedly reduced in 

DENV-2 challenged humice treated with Ab513 in comparison to those that received no Ab 

or the control serotype-specific mAb. A significant reduction in IFN-γ was also observed in 

DENV-4 challenged humice in response to administration of Ab513. These results 

demonstrate that a single dose of Ab513 administered before or after infection is able to 

effectively prevent thrombocytopenia or accelerate recovery of human platelets to normal 

levels in humanized mice across all four DENV serotypes. Additionally, in the more robust 
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models of DENV-1 and -2, Ab513 causes a significant reduction in viremia in humanized 

mice, consistent with the data generated in the AG129 mouse.

In addition to thrombocytopenia, another crucial aspect to address in use of an 

immunotherapy for dengue treatment is whether it can mitigate vascular leakage. Therefore, 

we assessed the extent of vascular leakage in Ab513-treated DENV2-infected mice by 

Evans Blue assay on day 6 post-infection, the time point at which the isotype control mice 

were moribund and expected to display significant increased vascular permeability (Ng et 

al., 2014). Evans’ blue dye binds strongly to albumin present in the blood and the amount of 

the dye detected in perfused organs is proportional to the extent of vascular leakage. In the 

AG129 ADE model, significant vascular leakage can be detected in the liver, intestine, 

spleen, and kidney of infected mice born to immune mothers (Ng et al., 2014). In this model, 

a significant increase in vascular leakage was observed in the isotype antibody-treated mice 

compared to control mice as measured by elevated Evans Blue content in their livers, 

intestines, spleen, and kidneys (Figure 5A). Upon treatment with Ab513 on day 1 post-

infection, the extent of vascular leakage detected for all the organs was significantly reduced 

(Figure 5A). Taken together, this data indicates that Ab513 treatment significantly limited 

the extent of vascular leak in key organs.

Finally, for Ab513 to be useful therapeutically to treat dengue, this antibody must be able to 

compete with heterologous antibodies that could enhance DENV infection of Fc-receptor 

bearing cells. This is particularly relevant since severe dengue is more common in patients 

having secondary infection with a DENV serotype heterologous to initial infection. To test 

whether our antibody can be effective under such circumstances, we examined whether 

Ab513 could mitigate enhanced disease caused by heterotypic antibodies. Consistent with 

previous reports (Ng et al., 2014), a sublethal challenge with 106 PFU of DENV-2 of A129 

pups from DENV naive mothers resulted in a transient infection with 100% survival. In 

contrast, 100% of pups from DENV-1 immune mothers reached moribund state on day 4 

post-DENV-2 infection (Figure 5B), indicating that these animals underwent enhanced 

disease severity mediated by maternally acquired heterologous DENV antibodies. The 

protection efficacy of Ab513 in the presence of these heterologous enhancing antibodies was 

then determined by treating the infected pups from DENV-1 immune mother with 25 mg/kg 

or 5 mg/kg of Ab513 on day 1 post-infection. Ab513 treatment was able to efficiently 

prevent disease enhancement in these infected pups with 100% and 88% survival rate, 

respectively (Figure 5B). In sharp contrast, administration of an isotype Ab control resulted 

in 100% mortality on day 4 post-infection. Notably, the mice from the treatment groups 

displayed mild diarrhea but were still very active on day 4 post-infection. In contrast, 

infected animals administered an isotype control displayed ruffled fur, severe diarrhea, 

hunched backs and lethargy (Figure 5C). A dose response was observed for Ab513, with 

more rapid recovery time associated with the higher antibody dose.

DISCUSSION

In this study, we sought to address the question of whether an engineered anti-DENV 

antibody targeted to a non-immundominant—but functionally relevant—epitope could be 

used for immunotherapy. Importantly, development of such a strategy to treat dengue, unlike 
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most other infectious agents such as influenza virus or HIV, faces a unique set of challenges 

arising from the fact that DENV antibodies potentially have the capacity to mediate 

protection or exacerbate disease. Additionally, recent discovery of antibodies that neutralize 

DENV-1 to -4 and bind epitopes that span two adjacent E monomers within a single dimer 

(EDE-directed antibodies) raises interesting and important questions with regards to the 

human immunological response (Dejnirattisai et al., 2015). While EDE antibodies exhibit 

potent pan-serotype neutralizing activity, they have features which may limit their potential 

as effective immunotherapies. First, they have long CDR-H3 loops (15–27 amino acids) 

with a high level of Tyr residues. Both these features have been linked to antibody 

polyreactivity (Mouquet and Nussenzweig, 2012; Wardemann et al., 2003). Additionally, 

activity of many EDE antibodies is dependent on glycosylation state of the virus, thereby 

limiting their breadth and providing potential viable escape mechanisms (Dejnirattisai et al., 

2015).

Our structure-based EPC network analysis enabled the successful prediction of a CDR-

proximal deletion to enhance epitope-paratope complementarity. Engineering of Ab513 

validates the EPC network approach, enabling a structural understanding of antibody 

diversification with regards to antigen engagement, thereby providing a complementary tool 

to existing genetic approaches that aim to trace the development of broadly neutralizing 

antibodies from germline (Lingwood et al., 2012; Pappas et al., 2014).

Ab513 exhibits broad binding and neutralization, regardless of virus genotype, neutralizes 

all four DENV serotypes even in the presence of FcR-mediated uptake, and demonstrates in 

vivo efficacy against all four DENV serotypes. Taken together, these data demonstrate that 

an immunotherapy has the potential to effectively control viremia and disease in humans.

EXPERIMENTAL PROCEDURES

Materials

Cell culture and virus propagation were carried out as previously described (Tharakaraman 

et al., 2013). Briefly, viruses were procured from ATCC or BEI Resources and propagated 

in C6/36 or Vero cells using an MOI of approximately 0.1, and harvested after 4–7 days, 

depending on the strain. Aliquots were stored at −80°C. For breadth of neutralization 

studies, the 12 viruses were obtained from the UTMB World Reference Center for Emerging 

Viruses and Arboviruses (WRCEVA) repository.

Computation of Epitope-Paratope Connectivity Network of Dengue EDIII-Antibody 
Complexes

The X-ray co-crystal structures of 4E11 in complex with the EDIII antigen (PDB: 3UYP 

[DENV4], 3UZE [DENV3], 3UZV [DENV2], 3UZQ [DENV1]) were used to determine the 

various inter-residue inter-atomic contacts across the antigen-antibody interface, including 

putative hydrogen bonds (including water-bridged ones), disulfide bonds, pi-bonds, polar 

interactions, salt bridges, and Van der Waals interactions (non-hydrogen) as described 

previously (Soundararajan et al., 2011). The interactions between a CDR residue and its 

neighboring epitope residues are represented by a 2D network graph as a visual aid, where 
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nodes represent amino acids and the edges represent inter-residue non-covalent interactions 

(black: hydrophobic bonds; red: hydrogen bonds; yellow: cation pi; green: ionic).

Structure Determination, Refinement, and Analysis

Data were collected at a wavelength of 1.00 Å at the Swiss Light Source beam-line PXIII 

using a Pilatus 6M detector (Dectris, Baden, Switzerland). Indexing, integration, and 

merging of the intensities were carried out with program XDS (Kabsch, 2010) and scaling 

was performed using program SCALA (Evans, 2006). Data collection statistics are 

summarized in Table S2. The structure of form I crystals was determined by molecular 

replacement using scFvE11 and DIII DENV4 as individual search probes (Cockburn et al., 

2012). The molecular model was rebuilt using COOT and refined with REFMAC (Winn et 

al., 2011). Subsequently, a second crystal form (form II) diffracting to higher resolution 

(2.49 Å) was obtained in the monoclinic space group P21 with two scFv513-DIII complexes 

per asymmetric unit. The data were collected by exposing two different regions of the 

prismatic crystals and processed using the same packages. The structure was solved by 

molecular replacement using the refined coordinates obtained from crystal form I and the 

structure was refined using REFMAC. Figures were prepared in PyMOL (http://

pymol.sourceforge.net) and the structure was validated using the Molprobity web server 

(http://molprobity.biochem.duke.edu). Structural superimpositions, buried surface areas and 

inter-molecular contacts were calculated using programs LSQKAB, AREAIMOL, SC, and 

NCONT from the CCP4 package (Winn et al., 2011).

Assessment and Visualization of DENV Fate in the Presence of Antibody

THP-1.2S was subcloned from THP-1 by limiting dilution (Chan et al., 2014). DENV-1 

(06K2402DK1), DENV-2 (ST), DENV-3 (05K863DK1), and DENV-4 (06K2270DK1) are 

clinical isolates. For visualization of DENV immune complexes, DiD-labeled DENV was 

incubated with media, antibodies, or serum for 1 hr at 37°C before adding to cells at MOI 

10. Uptake was assessed as described previously (Chan et al., 2011).

Administration of Ab513 in a Humanized Mouse Model

All experiments were performed in compliance with the guidelines of the institutional 

committees at the National University of Singapore and Massachusetts Institute of 

Technology. Humanized mice were generated as previously described (Sridharan et al., 

2013). Experiments were initiated 1 week before infection with the i.v. administration of 

300 mg/kg human immune globulins (IVIG, GAMMAGARD [BAXTER]) twice a week to 

ensure normal levels of circulating IgG. Humice were infected by tail vein injection of 1 × 

107 PFU of virus (DENV2 strain 05K3295) in 200 μl of RPMI 1640 medium. IVIG 

administration continued during the infection period. Uninfected humice reconstituted with 

the same batch of fetal liver cells were injected with 200 μl of RPMI medium. Humice were 

prophylactically (24 hr before DENV infection) or therapeutically (24 hr after infection) 

administered with 25 mg/kg of Ab513 or an isotype control antibody (control Ab) 

intravenously (i.v). Plaque assay and platelet counts were performed as described (Sridharan 

et al., 2013). Results are shown as means ± SEM except for viremia which presented as a 

median. Differences were compared by using ANOVA followed by Student-Newman-Keuls 

post hoc analysis. Results with a p < 0.05 were considered significant. All calculations to 
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examine differences between cohorts were completed using GraphPad Prism v5.0 

(GraphPad Software).

Maternal Transfer Model and Measurement of Vascular Leakage

Five- to six-week-old AG129 pups that were born to DENV1-immune mothers were 

infected via the subcutaneous route with 103 PFU of DENV2 (D2Y98P-PP1) diluted in 0.1 

ml of sterile PBS. On day 1 post-infection, mice received the respective treatments, either 

control antibody or Ab513, via the intravenous (i.v.) route. The mice were then monitored 

twice daily for their survival and clinical score for a period of 27 days (0: healthy; 1: ruffled 

fur; 2: hunched back; 3: severe diarrhea; 4: lethargic; 5: moribund). In addition, on day 6 

post-infection (the time point at which mice from the isotype antibody-treated group became 

moribund), Evans blue assay was performed on 5 mice per group (infected control, isotype 

control, 5 mg/kg and 25 mg/kg group) as previously described (Ng et al., 2014). An 

uninfected control group, comprising age-matched AG129 mice, was included to obtain the 

baseline absorbance readings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Structure-guided affinity enhancement of a cross-reactive dengue antibody

• mAb neutralizes all four serotypes with a low level of viral-enhancing activity

• Antibody demonstrates in vivo ability to resolve symptoms of severe dengue 

infection

• Crystal structure of antibody-antigen validates the predicted designs
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Figure 1. Epitope Paratope Connectivity Network of Putative Affinity-Enhancing Mutations and 
Structural Impact of Asn360Tyr Mutation (EDIII) on Antigen-Antibody Interaction
(A) The EPC networks observed in 4E11 and mutant antibodies are shown for examples of 

putative affinity enhancing positions. Each of these EPCs networks is shown as a 2D graph: 

nodes represent amino acids (antibody: red; antigen: blue) and edges represent inter-residue 

non-covalent interactions (black: hydrophobic bonds; red: hydrogen bonds; yellow: cation 

pi; green: ionic). For each position of interest, the EPC network is given before and after 

mutation (with the arrow pointing from the WT to the modeled structure).

(B) Sequence alignment of EDIII domain of representative DENV-4 strains from genotypes 

I, IIA, and IIB. 4E5A epitope residues are highlighted in red. The column corresponding to 
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the Asn360Tyr mutation, observed in the genotype I strain H241 (Philippines/1956), is 

highlighted by bold letters.

(C) Close-up view of CDR-H1 and the DE-loop (residues 358–365) as observed in the 

4E11-EDIII (DENV-4) co-crystal structure (PDB: 3UYP): VH: green; VL: not shown; 

EDIII: cyan. Asn360 forms a water-mediated hydrogen bond (dotted arrows) with Gly27 of 

the CDR-H1 loop of 4E11.

(D) Alternate conformers of Tyr360 generated by modeling are rendered in stick format. 

The side chains of these conformers are colored according to potential steric clashes: 

yellow-favorable; red-unfavorable.

(E) Energetic calculations as carried out using Discovery Studio.
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Figure 2. scFv Ab513-EDIII (DENV-4, BC287/97 (Mexico/1997)) Complex Structure
(A–D) The asymmetric unit of crystal forms I (A) and II (B) contain six and two Ab513-

EDIII complexes, respectively. The scFvs of form I are rendered in solvent accessible 

surface format and the EDIII domains are rendered in cartoon format. The interface formed 

by the heavy chains of the two ScFvs in the dimer is shown in C. (D) Comparison of the 

antibody-EDIII interface for Ab513 (left) and 4E11 (right) demonstrating that deletion of 

Ser26 results in higher surface complementarity due to removal of the “elbow” present in 

4E11.
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Figure 3. Effects of Antibody on DENV Uptake in a Monocytic Cell Line
(A) Enhanced virus infection in THP-1.2S cells with addition of either chimeric 4G2 or 

Ab513.

(B) Analysis of Ab513 and DENV localization in THP-1.2S cells. The late endosomal and 

lysosomal compartments of cells were stained by LAMP-1.

(C) Analysis identical to (B) except chimeric 4G2 is used as antibody.
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Figure 4. In Vivo Activity of Ab513 in AG129 and Humanized Mice
(A) AG129 mice (n = 10) were treated with Ab513, an irrelevant IgG1 mAb (“Isotype 

control”), or PBS prior to challenge with 106.4 CCID50 of DENV-2. Viremia from serum 3 

days post-infection (dpi) was measured by qRT-PCR. Dotted line represents limit of 

detection. The three dots on the x axis represent values (samples) below the lower limit of 

detection.

(B) A separate cohort of animals were monitored for survival. ***p < 0.0001, as compared 

with PBS controls.

(C–F) Comparison of human platelet levels in uninfected and infected humanized mice 

(humice) without treatment or treated with an isotype control Ab (“Control Ab”) or Ab513. 

The dashed line indicates the average of human platelet counts in uninfected humice. 

Results are shown as the average counts of human platelets per microliter of blood at 

different days post-infection (n = 5–7). **p < 0.05. Log-rank (Mantel-Cox) statistical test 

was performed to assess for significance. Error bars denote SD.
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Figure 5. Ab513 Protects Animals from Enhanced Disease
(A) Five- to six-week-old AG129 mice born to DENV-1 immune mothers were infected 

with DENV-2; included was an uninfected control (black). On day 1 post-infection, infected 

mice were either treated with 25 mg/kg of Ab513 (green) or isotype control antibody (red). 

On day 6 post-infection, the extent of vascular leakage in the mice were assessed by Evans 

blue assay. **p < 0.01 based on the Mann-Whitney test with reference to the isotype control.

(B and C) A group of A129 infected pups was followed daily. (B) Survival curves of four 

cohorts (n = 8): untreated, receiving a control antibody (Ctrl mAb), or 5 mg/kg or 25 mg/kg 

Ab513. Statistical inferences were made by pairwise comparisons for each treatment group 

to the control group, considering the survival of both. Ab513 at all doses had a significant 

effect on survival, log-rank (Mantel-Cox) test, p < 0.0001). (C). Assessment of mean clinical 

score of the three treatment cohorts.
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