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Abstract

The term cerebral small vessel disease (SVD) refers to a group of pathologic processes with various etiologies that affect
small arteries, arterioles, venules, and capillaries of the brain. Magnetic resonance imaging (MRI) correlates of SVD are
lacunes, recent small subcortical infarcts, white-matter hyperintensities, enlarged perivascular spaces, microbleeds, and
brain atrophy. Endothelial dysfunction is thought to have a role in the mechanisms leading to SVD-related brain changes,
and the study of endothelial dysfunction has been proposed as an important step for a better comprehension of cerebral
SVD. Among available methods to assess endothelial function in vivo, measurement of molecules of endothelial origin in
peripheral blood is currently receiving selective attention. These molecules include products of endothelial cells that
change when the endothelium is activated, as well as molecules that reflect endothelial damage and repair. This review
examines the main molecular factors involved in both endothelial function and dysfunction, and the evidence linking
endothelial dysfunction with cerebral SVD, and gives an overview of clinical studies that have investigated the possible
association between endothelial circulating biomarkers and SVD-related brain changes.

Keywords
Cerebral small vessel disease, endothelium, inflammation, lacunar infarcts, white-mater hyperintensities

Received 3| December 2014; Revised |7 April 2015; Accepted 5 May 2015

The term cerebral small vessel disease (SVD) refers to a
group of pathologic processes with various etiologies
that affect the small arteries, arterioles, venules, and
capillaries of the brain.! Age/hypertension-related
SVDs and cerebral amyloid angiopathy are the most
common sporadic forms of SVD. Among a few genetic
forms of SVD, CADASIL (cerebral autosomal
dominant arteriopathy with subcortical infarcts and
leukoencephalopathy), caused by NOTCH3 gene muta-
tions, is the most frequent one. It is a systemic arterio-
pathy although the clinical symptoms are those caused
by brain dysfunction. The effects of both sporadic and
inherited SVD on the brain parenchyma are repre-
sented by lesions mainly located in the subcortical
structures, and include lacunar infarcts, ischemic
white-matter lesions, and intracerebral hemorrhage.
An international working group has recently published
the STRIVE (STandards for Reportlng Vascular
changes on nEuroimaging) to provide definitions and
imaging standards for markers and consequences of

SVD.? According to this consensus, changes currently
seen on neuroimaging related to SVD include lacunes,
recent small subcortical infarcts, white-matter hyperin-
tensities (WMH), perivascular spaces (PVS), micro-
bleeds (MB), and brain atrophy.

Over the last few decades, evidence has being accu-
mulated regarding prevalence, clinical significance, and
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prognostic value of each of these changes. It is now
accepted that they are strongly associated with stroke,
cognitive decline, psychiatric and motor disorders, dis-
ability, and death. Overall, they are considered as a
marker of poor prognosis.'> Mechanisms linking
SVD with parenchyma damage, either ischemic or
hemorrhagic, are heterogeneous and not completely
understood. Vessel wall changes may in fact be respon-
sible for the rupture of the vessel, thus manifesting as
hemorrhagic SVD, or for structural restriction of the
vessel lumen, or for its functional dysregulation, lead-
ing to a state of chronic hypoperfusion that is respon-
sible for incomplete infarct or acute focal necrosis
(lacunar infarct).! Besides to and together with these
mechanisms, conceptualization about the role of
endothelial dysfunction, purported by some opinion
leaders, leads to expect that it has a prominent role,
and that the study of it may be an essential step for
expanding knowledge of cerebral SVD.® Endothelial
functioning can be assessed in vivo using instrumental
tests able to reflect functional properties of normal and
activated endothelium.” The assessment of circulating
molecules of endothelial origin in blood may provide
the opportunity of a wider appreciation of the various
functions of the endothelium. These molecules include
direct products of endothelial cells that change when the
endothelium is activated, as well as molecules that reflect
endothelial damage or repair. Many of these circulating
biomarkers are difficult and expensive to measure, and
are currently used only in the research setting.

The aim of this review is to analyze available evi-
dence of biologic circulating markers of endothelial
dysfunction in cerebral SVD. The first part of the
review examines the main pathways and molecular fac-
tors involved in the physiologic function and dysfunc-
tion of the endothelium with a special focus on the
peculiar situation in the central nervous system.
Available evidence linking endothelial dysfunction
with cerebral SVD is summarized. In the second part,
we review clinical studies that have investigated poten-
tial associations between various endothelial biomar-
kers and the different manifestations of SVD.

Endothelial Functions and Dysfunctions

Endothelium is a monolayer of cells covering the inner
surface of blood vessels, with an estimated total area in
humans of about 350m>® The endothelium is a
dynamic organ that serves as a functional and struc-
tural barrier between the blood and the vessel wall,
and has a wide variety of critical roles in the control
of vascular function and, as a consequence of its dys-
function, in many mechanisms underlying vascular dis-
orders. Figure 1 schematically depicts the structure of
vessel wall, with endothelial cells and their main

functions. Endothelial cells are the main regulator of
vascular homeostasis due to their interaction with both
the circulating cells and those present in the vascular
wall, mainly the smooth muscle cells.” They modulate
blood flow, control permeability to plasma compo-
nents, and influence adhesion and aggregation of plate-
lets and leukocytes. The main molecules and pathways
involved in the four main endothelial functions are
schematically depicted in parts A, B, and C of
Figure 1 (see figure legends for details).

(1) Regulation of vascular tone which is obtained
through the balanced production of vasodilators
and vasoconstrictors in response to a variety of
stimuli.”'® Figure 1A shows the main mechanisms
involved in vasodilatation and vasoconstriction.

(2) Regulation of fibrinolysis and coagulation path-

ways.
The intimal surface of healthy endothelium has both
anticoagulant and antithrombotic  properties:

endothelial cells secrete a variety of molecules impor-
tant for the regulation of blood coagulation and
platelet functions.”'" Vessel damage or exposure
to certain cytokines or proinflammatory stimuli
shift the balance toward a procoagulant/prothrom-
botic phenotype of the endothelial cells. Figure 1B
shows the main molecules involved in this pathway.

(3) Participation in inflammation (Figure 1C).
Endothelial cells, together with leukocytes, mast
cells, and platelets, are key cellular players of
inflammatory reactions and strictly interact with
the soluble factors involved in the regulation of
each of the different steps of the inflammatory reac-
tion.'*'? Left side of Figure 1C depicts the main
implicated molecules.

(4) Blood vessel formation, repair and remodeling.
Angiogenesis is essential for several physiologic
processes, such as reproduction, development, and
tissue repair, as well as in certain diseases, including
inflammation and malignancies. Also on this occa-
sion, the final outcome depends on the balance or
imbalance between angiogenic mediators and inhi-
bitors.'*!>1 Main factors involved in endothelial
repair are shown in the right side of Figure 1C.

Although schematically described separately, the
four different endothelial functions, with related path-
ways, are strictly inter-related. The term endothelial
dysfunction is applied to identify the shift from a
normal endothelium to a damaged one that may
express with a proinflammatory, provasoconstriction,
proliferative, — and  procoagulation  phenotype.
Abnormal endothelial function has been documented
in different other pathologic conditions, mainly athero-
sclerosis, diabetes, hypertension, hyperlipidemia, and
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Figure 1. Schematic representation of blood vessel structure and main endothelial functions. (A) EC and regulation of vascular tone.
The regulation of vascular tone is obtained through the balanced production of vasodilators and vasoconstrictors in response to a
variety of stimuli.”'® The left side of (A) shows the main mechanisms involved in vasodilatation: Nitric oxide (NO) is the predominant
mediator of normal vascular function and is generated from L-arginine through endothelial NO synthase (NOS). When released by the
endothelium, NO diffuses in the vessel wall, to the vascular SMC, and activates guanylate cyclase causing SMC relaxation. Another
endothelium-derived vasodilator is prostacyclin (PGI2), generated by cyclooxygenase (COX) and arachidonic acid metabolism. PGI2
activates adenylate cyclase with subsequent generation of cAMP and final relaxation of the underlying smooth muscle cells. NO and
PGI2 have also important antiplatelet effects, as they limit aggregation; both of them are involved in the inhibition of coagulation,
inflammation, and smooth muscle cells proliferation. The right side of (A) shows the main mechanisms involved in vasoconstriction.
The main vasoconstrictive factor is Endothelin (ET), an endothelium-derived 2|-amino-acid peptide (the ET family consists of three
structurally related peptides, ET-1, ET-2, and ET-3). The product of ET transcription is prepro-ET, which is cleaved by a neutral
endopeptidase to form the active precursor pro-ET. Pro-ET may be released from the non-luminal surface of the endothelial cells and
converted to mature ET by the membrane-bound metalloproteinase endothelin-converting enzyme (ECE). The two ET receptors,
both coupled to G proteins, are endothelin A (ETA) receptor, situated on the vascular SMC, and endothelin B (ETB) receptor, located
on endothelial cells. Binding to ETA receptor stimulates phospholipase C initiating in turn events leading eventually to SMC con-
traction. The result of ET binding to ETB receptor on endothelial cells is the release of NO and PGI2, which opposes the vaso-
constricting action of ET. ET also exert mitogenic activity on SMC (not shown in picture). Many factors stimulating ET synthesis, such
as thrombin and angiotensin I, also cause the release of vasodilatator PG12 and/or NO, which oppose the vasoconstricting action of
ET. (B) Endothelial cells and coagulation and fybrinolysis. The major antiplatelet agents secreted by endothelial cells are PGI2 and NO.
In the quiescent state, endothelial cells maintain blood fluidity by promoting the activity of numerous anticoagulant pathways, the most
important being the protein C/protein S pathway (PC/PS), which is initiated when thrombin interacts with the endothelial cell receptor
thrombomodulin (TM), facilitating activation of protein C. Activated protein C (aPC) inactivates two cofactors essential for blood
coagulation: factors Vllla and Va. To be effective, protein C must form a complex with protein S, which is synthesized by endothelial
cells. Complex formation between thrombin and thrombomodulin also prevents thrombin from being able to clot fibrinogen or to
activate platelets. Moreover, the endothelial cell surface is rich in heparin-like glycosaminoglycans (HSPG) to which antithrombin (AT)
is bound thus providing the main site for inactivation of active thrombin. Endothelial cells also synthesize tissue factor (TF) pathway
inhibitor and participates in fibrinolysis by releasing tissue-type plasminogen activator (t-PA) and urokinase, allowing the transfor-
mation of plasminogen into plasmin, which degrades thrombi by digesting fibrin network. t-PA is constitutively released while
urokinase is only synthesized by activated endothelial cells. The natural inhibitor of t-PA, plasminogen activator inhibitor type | (PAI-1)
is also constitutively secreted by endothelial cells. The balance of t-PA and PAI-1, which is normally in favor of PAI-1 is also altered by
(continued)



Poggesi et al. 75

Figure 1. Continued.

cytokines, again in a way that is procoagulant. After activation, the balance of endothelial properties can be tipped to favor platelet
aggregation and clot formation through coordinate induction of procoagulant/prothrombotic factors and suppression of anticoagulant
mechanisms. Operating in coordination, these changes can allow fibrin formation and platelet activation to proceed in an inflamed
focus. At least two mediators released by activated endothelial cells favor platelet activation. The first one is the lipid mediator
platelet-activating factor (PAF), synthesized by endothelial cells stimulated by thrombin, histamine, or cytokines. Most of the produced
PAF remains membrane associated. PAF is a potent platelet activator and can promote platelet adhesion to endothelial cells. The
second is the von Willebrand factor (vWF) of which endothelial cells are the major source. vWF is constitutively secreted into the
plasma and the subendothelial matrix. It is also stored in high amount in intracellular Weibel-Palade bodies, which can be mobilized
rapidly in response to agonists like thrombin. Endothelial cells do not normally express the primary trigger of the coagulation system,
TF. However, when exposed to thrombin, cytokines, or lipopolysaccharides (LPS), endothelial cells synthesize and express TF at their
surface. Once coagulation has been initiated, endothelial cells promote thrombi activation since the activity of factor Xa (generated by
TF plus factor VII) is locally enhanced by promotion of binding with its cofactor Va at adjacent Xa and Va receptors on the endothelial
cell surface. Thrombin is the main effector protease of the coagulation cascade. Factor Xa, activated by factor Vlla and TF, converts
prothrombin into active thrombin. This protease converts circulating fibrinogen into fibrin monomer, which polymerizes to form
fibrin, the fibrous matrix of blood clot. In endothelial cells, thrombin causes VWF release, the appearance of P-selectin at the plasma
membrane, production of PAF and chemokines. Prothrombin fragment | 42 (FI 4-2) and thrombin—antithrombin (TAT) complexes
may be measured to assess thrombin activation. Endothelial cells also change shape and show increased permeability. All together,
these changes initiate a proinflammatory and procoagulation situation. Thrombin similarly activates platelets. (C) Endothelial cells,
inflammation, repair, and remodeling. Endothelial factors involved in the phase of increased vascular permeability include NO,
prostaglandins, and platelet activating factor (PAF). Endothelial cells are also the ‘gatekeepers’ of the cell recruitment in inflammation.
(C) Left side depicts the main events involved in the recruitment of leukocytes from the circulation into the extravascular space,
critical for inflammatory responses, and repair of tissue injury. Once activated, endothelial cells express adhesion molecules on their
surfaces thus allowing the binding to reciprocal molecules on the surfaces of circulating leukocytes. Finally, chemotactic factors attract
leukocytes along a chemical gradient to the site of injury. Adhesion molecules involved in leukocyte recruitment include four molecular
families which are selectins, addressins, integrins, and immunoglobulins. P-selectin is preformed and stored within Weibel-Palade
bodies of endothelial cells and a-granules of platelets, allowing the rapid transportation to the cell surface, upon stimulation and thus
the rapid adhesive interaction between endothelial cells and leukocytes. E-selectin is not expressed on quiescent endothelial cell
surfaces but is induced by inflammatory mediators, such as cytokines or bacterial LPS. L-selectin is mainly expressed on leukocytes.
Vascular addressins are mucin-like glycoproteins expressed on the surface of endothelial cells as well as leukocytes. They possess
sialyl-Lewis X, which binds the lectin domain of selectins. Their functions include regulation of localization of leukocytes and are
involved in lymphocyte activation. Vascular cell adhesion molecule (VCAM-I), together with intercellular adhesion molecules | and 2
(ICAM-1, ICAM-2), are adhesion molecules belonging to the immunoglobulin (Ig) superfamily. Platelet/endothelial cell adhesion
molecule-1 (PECAM-1) is a member of the Ig superfamily expressed on the surface, at intercellular junctions, of unstimulated
endothelial cells, as well as on other types of cells including circulating leukocytes, which is important for the passage of leukocyte
across the endothelium. The interaction between endothelial and leukocyte PECAM-1 is fundamental for transmigration. The right
side of (C) shows main mechanisms implicated in endothelial repair. Mediators of angiogenesis are growth factors, among which
vascular endothelial growth factor (VEGF) is the most specific for endothelium, cytokines, chemokines, matrix metalloproteinases
(MMPs), and extracellular matrix macromolecules, which may influence endothelial proliferation directly or indirectly by means of the
stimulation and the production of other angiogenic factors. Circulating endothelial progenitor cells (EPC) are hematopoietic stem cells
with limited pluripotent potential, mainly involved in formation of new vessels after ischemia and in repairing damaged endothelium.
Circulating progenitors cells (CPCs) are more undifferentiated bone marrow-derived cells, involved in damaged brain repair.
Circulating endothelial cells (CEC) are mature endothelial cells released from the intima after vascular damage. In pathologic con-
ditions with endothelial dysfunction, the number of EPC and CPC is reduced, while CEC levels are increased. BM, basal membrane;
EC, endothelial cells; ExM, extracellular matrix; PMN, polymorphonuclear leukocytes; SMC, smooth muscle cells.

chronic kidney disease. Finally, the role of some circu-
lating factors as important cardiovascular risk factors
has been explained by their main harmful effects on
endothelial cells. In this sense, homocysteine (HCY),
C-reactive protein (CRP), and asymmetric dimethylar-
ginine (ADMA) may all be considered as endothelial
toxins.'”?

Cerebral Endothelium: the Blood-Brain
Barrier and the Neurovascular Unit

Within the vascular tree, endothelium presents a high
degree of structural and functional heterogeneity.

In the central nervous system, the ‘neurovascular unit
(NVU)’ refers to the conceptual framework that links
microvessels and neuron function and the responses of
these compartments to injury.”® The ‘NVU’ consists of
microvessels [endothelial cells—basal lamina matrix—
astrocyte end-feet (and pericytes)], astrocytes, neurons
and their axons, and other supporting cells that are
likely to modulate the function of the ‘unit’
(Figure 2A).>' Endothelial cells in the cerebral micro-
vessels are a part of the blood-brain barrier (BBB)
(Figure 2B), where they exhibit a specialized phenotype
with no fenestrations, extensive tight junctions, and
sparse pinocytotic vesicular transport (Figure 2C).
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Figure 2. Schematic representation of the cerebral endothelium as integral part of the neurovascular unit (NVU) and blood-brain
barrier (BBB). (A) Schematic representation of the NVU, which consists of the monolayer of endothelial cell, connected by tight junctions
and resting on the basal lamina, pericytes, smooth muscle cells, astrocytic end-feet, microglia, and neuronal terminals. Circulating blood
cells, such as polymorphonuclear (PMN) cells, lymphocytes, and monocytes, are also part of the unit, given the close interaction with the
luminal surface of endothelial cells and their role in immune surveillance. (B) Schematic representation of the BBB, which is an integral
part of the NVU. The BBB is formed by highly specialized endothelial cells, astrocytic end-feet, and pericyte that together constitute the
dynamic interface separating the brain from the circulatory system. (C) Schematic representation of tight junctions, which consist of
three main groups of proteins. They are transmembrane proteins (claudins, occludin), cytoskeletal proteins (actin), and accessory
proteins. Structurally, they all interact to form a continuous network of transmembrane and cytoplasmic proteins linked with the actin-
based cytoskeleton, allowing the tight junction to form a barrier while remaining capable of rapid modulation and regulation.

This barrier allows a strict control of exchange of solutes
and circulating cells between the plasma and the inter-
stitial space. Cerebral endothelial cells in most brain
regions are connected by tight junctions that function
as a ‘physical barrier’ preventing molecular traffic
between blood and the brain.** Blood-brain barrier
also act as a ‘transport barrier’, given to the presence
of specific transport systems regulating the transcellular
traffic of small hydrophilic molecules, as well as a ‘meta-
bolic barrier’, given the presence of a combination of
intracellular and extracellular enzymes.*

When dealing with cerebral SVD, also taking into
account the different types of associated brain lesions, it
is fundamental to bear in mind that all the
above-mentioned components are strictly inter-related,

and that presumably endothelial dysfunction is one of
the major determinants of the structural and functional
brain-vessel alterations.®

Evidence of Endothelial Dysfunction/
Damage in Small Vessel Disease

Endothelial dysfunction is nowadays considered as one
of the pivotal mechanisms of the structural and func-
tional brain-vessel alterations in SVD, and the
underpinned evidence comes from different settings.®
First of all, in SVD patients there is evidence suggest-
ing the presence of reduced cerebral blood flow, and
impaired cerebral blood flow autoregulation.>* Cerebral
blood flow studies using a variety of techniques, including
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positron emission tomography and magnetic resonance
imaging (MRI), have shown hypoperfusion. Using endo-
genous contrast MRI perfusion, perfusion is reduced in
the white matter but not in the gray matter,?” and, within
the white matter, it is reduced not only within regions of
radiologic WMH but also in normal appearing white
matter, although to a lesser extent.”® Endothelium
might have a role in this sense, given the fact that nitric
oxide signaling is an important factor in local cerebral
blood flow regulation, and that it has been used as a
marker to show endothelial dysfunction and decreased
vasodilation in response to external stimuli such as hyper-
capnia or salbutamol in patients with lacunar infarction,
compared with controls.?”-**

Second, it has been hypothesized that cerebral SVD
may be considered as a systemic condition resulting
from  dysfunction of arteriolar  perfusion.”
Interestingly, there is now evidence pointing to a sys-
temic endothelial dysfunction in patients with cerebral
SVD, as indicated by several studies in which endothe-
lial changes have been measured in other vascular beds
other than the brain. This association has been docu-
mented with the kidney,?**! with the skin,** and the
sublingual microvasculature.*® Impairment of endothe-
lial function in systemic vessels, investigated by means
of flow-mediated dilatation in the brachial artery, has
also been associated with lacunar stroke.**

A third body of evidence comes from pathology stu-
dies. Available pathological studies on WMH show
infarct-like areas of white-matter loss, and/or area of
myelin attenuation and pallor. The glial pathology
includes astrogliosis, changes in astrocytes, apoptosis
of oligodendrocytes and astrocytes, and axonal loss.*
Tissue pathology changes seen postmortem are fre-
quently interpreted as ‘ischemic’, although some of the
changes also support the concept of endothelial dys-
function. An Australian study showed that reduced
endothelial integrity was independently associated
with increasing WMH severity, and with a significant
decrease in endothelial and BBB integrity in areas of
WMH compared with normal white matter.’® In the
Medical Research Council Cognitive Function and
Ageing Study, a prospective population-based neuro-
pathologic study of elderly people in the United
Kingdom, postmortem MRI was used to sample
lesioned and nonlesioned white matter.>> Controls in
these studies have further been divided into those from
cases with lesions (controls—Ilesional) and those with-
out lesions (controls—nonlesional). White-matter
lesions were characterized by the expression of
hypoxia-related molecules and by the expression of
endothelial markers such as intracellular adhesion mole-
cule 1 (ICAM-1), thus supporting the role of endothelial
dysfunction.’’ There is evidence of BBB leakage, as
identified by albumin extravasation, which is

widespread in the aging brain and increased in severe
white-matter lesions.*® Together with BBB, there is evi-
dence of the involvement of other components of the
NVU. Microglial activation, identified by MHC class
IT upregulation, has been found to be increased in con-
trol white matter from cases with lesions compared with
control white matter from individuals without white-
matter lesions. Very recently, it was shown that oxida-
tive DNA damage, identified by immunohistochemistry
for 8-hydroxydeoxyguanosine, is also increased not only
in white matter lesions but also in control white matter
from lesional cases.*” Taken together, these data sup-
port the fact that normal-appearing white matter from
cases with lesions more closely resembles the lesions
themselves than it does white matter from nonlesional
cases, and this suggests that lesions in the white matter
exist or develop in white matter that shows a “field effect’
of diffuse abnormality.’

Finally, another hypothesized mechanism by which
endothelial dysfunction may contribute to brain par-
enchyma lesions is increased BBB permeability, with
consequent leakage of plasma components into the
vessel wall and  surrounding  parenchyma.*!
Permeability of the BBB augments with advancing age
and in the presence of cerebral SVD. Increased cere-
brospinal fluid/serum albumin ratio, a marker of BBB
breakdown, has been documented in vascular demen-
tia,*** and in patients with white-matter changes on
neuroimaging.** More recently, contrast-enhanced
MRI has been used to study BBB permeability, docu-
menting an increased permeability in the white matter of
patients with lacunar stroke compared with patients
with cortical stroke.** Topakian et al.* found increased
BBB permeability in normal appearing white matter in
patients affected by SVD compared with controls, and
white-matter lesion severity was an independent predic-
tor of these permeability-related signal changes.

From what reported so far, endothelial dysfunction
might thus be per se involved as a cause of SVD-related
symptoms but also the first step on which other condi-
tions may superimpose. This might be the case, for
example, of local thrombosis with subsequent arteriolar
occlusion, leading to tissue ischemia through failure of
vasodilatation in response to increased neuronal
activity.*’

Studies Investigating Potential
Associations Between Circulating
Biomarkers of Endothelial Dysfunction
and Small Vessel Disease

Methods

Search Strategy. The literature search was performed using
MEDLINE (Pubmed), and was restricted to the period
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January 2000 to September 2014 because we wanted to
restrict the search to the most recent studies in which
SVD-related changes had been assessed using current
MRI technologies. Search strategy was as follows: (1)
endothelial AND each of the following terms: lacunar,
subcortical infarcts, silent brain infarcts, white-matter
hyperintensities, white matter changes, leukoaraiosis,
and microbleeds; (2) tPA, PAI, Fibrinogen, selectine, d-
dimer, homocysteine, ICAM, VCAM, c-reactive protein,
interleukin, metalloproteinase, Von Willebrand and each
of the following terms: lacunar, subcortical infarcts, silent
brain infarcts, white-matter hyperintensities, white-matter
changes, leukoaraiosis, and microbleeds; (3) endothelial,
tPA, PAI, Fibrinogen, selectine, d-dimer, homocysteine,
ICAM, VCAM, c-reactive protein, interleukin, metallo-
proteinase, Von Willebrand, and CADASIL (Cerebral
Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy).

We included only English language written papers
reporting studies that dealt with human cohorts, and
considered both population- and hospital-based stu-
dies. These latter were defined as studies in which
patients were recruited in hospital wards or outpatient
settings. Hospital-based studies were excluded when
stroke or other cardiovascular events had occurred
less than 2 months before biomarkers assessment, to
exclude changes consequent to the acute phase. We
considered only studies regarding circulating biomar-
kers. Given the distinct pathophysiologic features of
the arteriopathy, we report the results for sporadic
SVD and CADASIL in separate tables.

Results

Sporadic Small Vessel Disease and Endothelial
Biomarkers

Thirty-eight articles were selected and fully evaluated.
Tables 1 and 2 summarize the main characteristics and
results of these studies, with a focus on results dealing
with the association between SVD and different circu-
lating biomarkers of endothelial dysfunction or inflam-
mation. Seventeen studies were hospital-based and
twenty were population-based studies. Thirty-five stu-
dies performed only cross-sectional analyses, one long-
itudinal analyses,85 and two both.°%6!

Small vessel disease and coagulation/fibrinolysis. Ten studies
evaluated markers of coagulation and fibrinolysis in
relation to MRI changes consequent to SVD.
Plasminogen activator inhibitor resulted independently
associated with the presence of WMH and/or lacunar
infarcts and reduced fractional anisotropy on diffusion
tensor imaging sequences in three studies.”’’*” Four
studies investigated the association between D-dimer

and markers of SVD. Gottesmann et al.>? found an inde-
pendent association between D-dimer levels and subcli-
nical lacunar infarcts in the Atherosclerosis Risk in
Communities cohort. Data from the Framingham
study showed an independent association between D-
dimer and total cerebral brain volume but not with
WMH or silent brain infarcts.>® In the remaining two
studies, characterized by smaller sample sizes, D-dimer
proved to be increased in SVD, i.e. lacunar infarcts and
clinically manifest Binswanger disease (defined by the
presence of WMH and evidence of subcortical vascular
dysfunction such as gait disorders, incontinence, and
parkinsonism), but the relation was not confirmed
after multivariate analyses.”>’* Regarding tissue factor
pathway inhibitor (TFPI), discordant results were found
in two studies. Hassan et al.”® found higher TFPI values
in lacunar infarct patients compared with patients pre-
senting both lacunar infarcts and moderate/severe
WMH and with healthy volunteers adjusting for possi-
ble confounders. In Knottnerus et al.’s study, TFPI
values were lower in patients with lacunar stroke com-
pared with controls; the highest values were found
among patients with lacunar stroke and WMH, com-
pared with patients with only lacunar stroke.®® These
two studies examined also tissue factor (TF), which
resulted independently associated with the extent of
WMH only in Hassan’s et al. study.”® Regarding throm-
bomodulin studies, only Hassan et al. found higher
values in SVD patients in comparison with controls
and a positive association with lacunar infarcts, while
in the remaining two studies no association was
found.>*” Thrombin-antithrombin (TAT) was inde-
pendently associated with the presence of WMH only
in a small-sized study.”® Two studies determined
F1+2levelsin SVD, documenting an independent asso-
ciation with multiple subcortical lacunar infarcts.”*’*
Finally, von Willebrand factors proved to be indepen-
dently associated with SVD MRI markers in two
studies.’>"*

Small vessel disease and hyperhomocysteinemia. In the
majority of the population-based cohorts, abnormally
increased HCY levels were found independently asso-
ciated with WMH and/or silent lacunar
infarcts.’>>%%%  In the Framingham Offspring
cohort,”® a significant association with SVD was
appraised only with total brain cortical volume, while
in the French cohort of the Epidemiology of Vascular
Ageing study only a nonsignificant trend between HCY
levels and WMH severity was found.>® Hospital-based
studies have reported less homogenous results.””’5%!

Small vessel disease and inflammation. Several studies
reported on the association between inflammatory mar-
kers and SVD. One of the most widely studied
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biomarker was CRP. In population-based studies,
results were contrasting; in three large cohorts
(including overall 5,947 subjects), CRP resulted signifi-
cantly associated with WMH,"**°! while in the
remaining six cohorts, examining a total of 5,156
patients, the association was not demon-
strated.*?-36:63:64.65 Dyiscrepant results were also appar-
ent from the two longitudinal studies reporting on CRP
and progression of WMH: subjects with high baseline
CRP levels had significant more progression of periven-
tricular WMH than people with low CRP levels in the
Rotterdam Scan Study, while no significant association
was observed between baseline CRP levels and the evo-
lution of silent brain infarcts and WMH in the 3C
Dijon study.®®®' Interestingly, the two studies that
investigated the association between CRP and a more
sensitive MRI marker of white-matter changes, i.e. the
microstructural damage as assessed using diffusion
tensor imaging, found a positive association.**’" An
independent relation between CRP and MB or CRP
and periventricular spaces was reported by two differ-
ent studies.*>’* Silent brain infarcts proved to be asso-
ciated with higher level of CRP in three studies,®¢"* a
result that was not confirmed by Gottesmann et al.’s
study.’® Data concerning IL-6 are more consistent
because an independent association between I1L-6 and
either WMH or silent brain infarcts was shown by the
majority of population and hospital-based stu-
dies.” 06799 Nevertheless, no association with the pro-
gression of MRI SVD markers was found for IL-6 in
the 3C-Dijon study.®® Only one study reported an asso-
ciation between IL-6, IL-18, and MB.”?

Three studies evaluated the association between
fibrinogen and WMH, lacunar infarcts, PVS, and the
most severe SVD-related clinical picture defined as
Binswanger’s disease. In the largest of the three stu-
dies,*® SVD patients compared with controls had
higher levels of fibrinogen, a finding that was not con-
firmed in the two other cohorts.*””* In all the studies in
which ADMA levels were measured, an independent
association with both lacunar infarcts and WMH was
reported.>*>>7® Matrix metalloproteinase 9 (MMP9)
was measured in a total of 234 patients, but the asso-
ciation with WMH was significant only at univariate
analyses.®”’" The Northern Manhattan Study found
an independent association of both MPO and Lp-
PLA2 with WMH, but the result for Lp-PLA2 was
not confirmed in the Framingham Offspring
Study.®®*® Finally, one study evaluated the role of
autoantibodies against oxidized-LDL finding an inde-
pendent association with PVS.*?

Considering adhesion molecules, the association
between ICAM-1 levels and SVD markers was investi-
gated in three studies. Roulh et al.®® reported an associa-
tion with WMH that was confirmed after multivariate

analyses in a further study cohort. Higher levels of
ICAM-1 were observed in patients with lacunar infarcts
and WMH compared with controls.”® Interestingly, in the
Austrian Stroke Prevention Study, ICAM-1 proved to be
associated with a robust outcome measure, i.e., WMH
progression at both 3 and 6 years.®® Rouhl et al.** studied
several endothelial biomarkers finding higher levels of
E-selectine, neopterin, and VCAM-1 in patients with
lacunar infarcts and/or WMH. Considering MRI mar-
kers of SVD, PVS resulted independently associated
with neopterin and MB with E-selectine.

SVD and repair and remodeling. Only two studies evalu-
ated the association between SVD and peripheral cir-
culating cells documenting that immature EPC, and
Angiogenic T cells (T,,,) were significantly reduced in
SVD patients. The association remained significant in
multivariate analyses only for Tang,75’82

Cerebral Autosomal Dominant
Arteriopathy with Subcortical Infarcts
and Leukoencephalopathy and
Endothelial Biomarkers

Five studies investigated circulating markers of endothe-
lial dysfunction in CADASIL patients (Table 3).
ADMA levels were significantly increased in 14
CADASIL patients compared with 22 healthy con-
trols.%¢ Similarly, in 59 CADASIL there were higher
HCY levels in comparison with 14 non-CADASIL
patients with stroke or transient ischemic attack, both
in the fasting state and after methionine challenge.
Median differences between HCY levels before and
after methionine challenge were greater among
CADASIL patients than in controls.*” However,
among 15 mildly symptomatic CADASIL patients, com-
pared with 16 controls, HCY levels were not increased in
one study in which higher levels of antioxidant molecules
(blood reduced glutathione) and lower levels of oxidant
mediators (plasma reduced cysteine) were found, sug-
gesting a protective action against free radical formation
at an early stage of clinical symptoms.*® In a larger
cohort of 127 CADASIL patients, HCY levels were
higher in CADASIL patients with migraine compared
with non-migraine CADASIL patients, and elevated
HCY levels were independently associated with an ear-
lier age of onset of migraine itself.*® It was hypothesized
that hyperhomocysteinemia could act by exacerbating
the vascular injury, which presumably leads to migraine
in CADASIL. Alternatively, hyperhomocysteinemia
could increase susceptibility to oxidative injury and exci-
totoxicity, leading to mitochondrial dysfunction. Finally,
in a study performed by our group CADASIL patients
had a reduced number of EPC in comparison with
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controls.”® We also found that CADASIL patients with
a more severe clinical picture (i.e., history of stroke and
dementia) presented with lower circulating progenitor
cell (CPC) levels than patients with a milder clinical pic-
ture (i.e., no history of stroke or dementia). Moreover,
lower CPC levels were associated with worse perfor-
mances at neuropsychologic, functional, and
motor tests.

Discussion

Evidence from the above considered rather large
number of published studies, in which the association
of several circulating endothelial biomarkers with SVD
was scrutinized, looks largely heterogeneous and incon-
clusive concerning the identification, or even the suspi-
cion, of a pivotal pathogenic role exerted by one or
more distinct molecular factors or pathways in cerebral
SVD.*® The most consistent associations in sporadic
SVD regard PAI, ICAM-1, ADMA, and IL-6.
Noteworthy, these molecules are involved at different
places of the endothelial dysfunction/coagulation
system/inflammation cascade. Another marker of
endothelial dysfunction, for which significant results
seem to emerge in both sporadic SVD patients and in
CADASIL cases in comparison with controls, is the
level of EPC. Moreover, in CADASIL, CPC levels
were associated with clinical/functional indicators of
disease severity, suggesting that these cells might have
a role in the determination of the final phenotypic
expression of the disease.”

Data heterogeneity may be explained by a number of
differences in studies design. A first major concern
relates to the different cohorts under investigation:
some studies were conducted in the framework of
population-based surveys of elderly individuals, while
others investigated hospital cohorts without age limits.
It is presumably logical to think that the brain lesion
load related to SVD is lower in the population-based
compared with the hospital-based cohorts, especially in
stroke cohorts. Also sample sizes were largely variable,
ranging from over three thousands in the largest popu-
lation-based study, to less than a hundred in a number
of hospital-based studies. Moreover, among the hospi-
tal-based cohorts, the clinical status of the enrolled
patients was largely variable across the different studies,
ranging from asymptomatic subjects, to hypertensive
patients, and finally to previous symptomatic lacunar
stroke patients. Concerning this latter category, it is
fundamental to note that only few studies distinguished
between isolated lacunar infarcts and multiple lacunar
infarcts associated or not with WMH, thus recalling the
concept, first introduced by Fisher, that the pathogen-
esis of small subcortical infarcts may be distinct: arter-
iolosclerosis, lipohyalinosis on one side, and

(micro)atheroma on the other.”’ When this distinction
has been made, results support the hypothesis of a dis-
tinct pathogenesis.”®””7>% Considering stroke cohorts,
in some studies, infarcts cannot be defined convention-
ally and univocally as lacunar: in fact, while the inferior
diameter was precisely defined (generally 3 mm), there
was no cutoff value reported for the superior one. For
this reason, even if the infarcts were subcortical, it
cannot be excluded that, in some cases, they were not
related to SVD.

Among the different SVD-related MRI changes
selected for investigating the effect of circulating bio-
markers, WMH (visual grading or volume) and lacunar
infarcts were the most frequently studied, especially in
the older studies. Only few recent studies considered
novel MRI markers of SVD such as MB, enlarged
PVS, and microstructural WM damage measured on
diffusion tensor imaging. Very few studies used cellular
biomarkers of endothelial dysfunction. Finally, with
the exception of a few studies,’>7+7%%% only selective
biomarkers involved in different points of the complex
pathways linking together endothelial dysfunction and
coagulation system/inflammation processes were ana-
lyzed. It should be underlined that the assessment of
individual biomarkers cannot provide information on
relative contributions by the distinct pathways.
Conceptually, only the combined use of multiple circu-
lating endothelial biomarkers may provide a compre-
hensive understanding of the role of selective
endothelial pathways related to the variable pathologic
or clinical expressions of brain SVD. In fact, the panel
of biomarkers related to each single pathway was often
heterogeneously studied across studies. Different meth-
odologies can be applied to measure circulating bio-
markers, thus leading to a limited reproducibility of
the results obtained in different laboratories. Finally,
for several circulating biomarkers investigated in
many of the considered studies no definite cutoff
values were reported.

Conclusion and Future Directions

The vascular endothelium, located at the interface of
blood and tissue, is essential for vascular homeostasis,
as it is capable of sensing changes in the hemodynamic
forces and blood borne factors, and to respond by
releasing different kind of substances involved in the
different pathways of the above-summarized endothe-
lial functions. The net balance between endothelial-
derived factors involved in the regulation of vascular
tone, of coagulation and fybrinolysis, of pro- and anti-
inflammation, and factors associated with growth inhi-
bition and promotion, is essential for the maintenance
of vascular homeostasis. Any disruption of this balance
may have a detrimental role in the overall
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‘ What we do not know ‘

Hp 1

| Normal endothelial function |
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| No parenchymal lesions |

| Normal endothelialfuncton |

| No parenchymal lesions | | No parenchymal lesions |
L2000 .30 .. .40 .50 .. .60 .70 .80 .. _.90..| *
Time, years

Figure 3. Conceptualization of the possible relationship between endothelial dysfunction and cerebral small vessel disease (SVD).

pathophysiology of SVD or in the production of the
final tissue changes consequent to it. Research in the
field of cerebral SVD in relation to endothelial circulat-
ing biomarkers appears to be in a very preliminary
stage. A major problem relates to the fact that what
is measured from blood samples reflects systemic
endothelial function, which does not necessarily corre-
spond to what happens at the level of brain endothe-
lium. As such, the study of endothelial circulating
biomarkers needs to be strictly correlated with other
measures specific for brain endothelial function, i.e.,
advanced MRI technologies with intravenous gadoli-
nium contrast agent combined with perfusion imaging.

Finally, the issue of causality or possible reverse
causality seems critical. Figure 3 is an attempt to sche-
matically represent the possible relationship between
endothelial dysfunction and brain parenchyma lesions
related to SVD. We have evidence that, generally in
elderly subjects, cerebral SVD-related lesions and
endothelial dysfunction co-exist, but what we do not
know is whether the association is causal, i.e., what
happens before their coexistence. Support for a causal
rather than a secondary role may come from longitu-
dinal studies, as is the case of the three studies reported
in Table 2, in which the predictive effect of the baseline
circulating biomarkers levels is looked at on SVD
progression.

Another way of addressing the issue of causality
may come from candidate gene association studies.

As an example, HCY levels are known to be asso-
ciated with SVD, particularly with WMH,”” and this
could either be causal or could be secondary to estab-
lished disease. Examination of a genetic variant asso-
ciated with increased HCY levels throughout life
allows causality to be explored, an approach referred
to as ‘Mendelian randomization’.’? The methylenete-
trahydrofolate reductase C677T polymorphism is
associated with elevated HCY levels. A number of
studies have shown no or only weak associations
between a common methylenetetrahydrofolate reduc-
tase polymorphism and stroke as a whole. In contrast,
an association was found in a well-phenotyped group
of patients with lacunar stroke and, interestingly, this
association was present only in the ischemic leukoar-
aiosis subtype.®® This supports a causal role for HCY
in this specific subtype.

In conclusion, considerable evidence suggests that
endothelial dysfunction may have an important role
in cerebral SVD, although much molecular details still
need to be clarified. The use of comprehensive panels of
circulating endothelial biomarkers exploring function-
ing of the different biologic pathways may be useful
in this regard, and it might overcome limitations
associated with individual assays. The final transla-
tional goal is obviously to provide a more robust
pathophysiologic background for the design of
experimental research finalized to reduce the burden
of cerebral SVD.
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