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Abstract
We present a mathematical model for vascular tumor growth. We use phase fields to model

cellular growth and reaction-diffusion equations for the dynamics of angiogenic factors and

nutrients. The model naturally predicts the shift from avascular to vascular growth at realistic

scales. Our computations indicate that the negative regulation of the Delta-like ligand 4 sig-

naling pathway slows down tumor growth by producing a larger density of non-functional

capillaries. Our results show good quantitative agreement with experiments.

Introduction

Aims and Scope
Tumor growth is governed by complex biological mechanisms that occur at different scales.
Arguably, the most representative scale partition is that defined by the molecular, cellular, and
tissue scales. Examples of relevant phenomena taking place at molecular scale include regula-
tion of signaling pathways at the cell membrane, nutrient uptake, or the degradation of DNA
that leads to abnormal proliferation of tumor cells. Several cell activities, such as division,
necrosis, and apoptosis occur at cellular level. The boundary between cellular and tissue scales
is blurry, but we consider the tissue scale to be operative when the tumor is able to trigger
angiogenesis. Angiogenesis is the formation of new capillaries from pre-existing vasculature
and is a crucial step for a tumor to become a health problem. In fact, it has been shown that
tumors unable to induce angiogenesis cannot grow larger than 1 mm in radius approximately
[1]. In the avascular stage of tumor growth, that is, prior to the recruitment of new vasculature,
the tumor feeds on nutrients that diffuse to its surface. Tumors consume much more nutrients
than healthy cells and the nourishment cannot penetrate deep into the lesion. This produces a
heterogeneous distribution of nutrients inside the tumor, primarily controlled by the distance
to the tumor surface. On the basis of this nutrient distribution, the tumor may be divided into
three regions, namely, the necrotic core, the hypoxic zone, and the proliferative rim (see Fig 1).
In the proliferative rim, cells have enough nutrient to divide rapidly, while in the necrotic core
the nutrient levels are so low that cells die from starvation, generating necrotic debris that
remains inside the tumor due to the scarcity of lymphatic and blood capillaries. In the hypoxic
zone, however, tumor cells become temporarily quiescent and eventually apoptotic if no
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additional nutrient becomes available. To circumvent this situation, hypoxic tumor cells secrete
growth factors that precipitate angiogenesis. Well-known examples of these factors are vascular
endothelial growth factor (VEGF, [2]), basic fibroblast growth factor (bFGF, [3]), angiopoietin
2 (Ang-2, [4]), thrombospondin-1 (TSP-1, [5]), or chemokines [6]. While some of them are
pro-angiogenic and promote proliferation and migration of endothelial cells, others are anti-
angiogenic and favor vessel stability and endothelial cell dormancy. Under physiological condi-
tions, their overall effect maintains endothelial cell homeostasis and prevent angiogenesis. The
tumor angiogenic factors released by hypoxic tumor cells, however, disturb this equilibrium
between pro- and anti-angiogenic factors and trigger the angiogenesis cascade [7]. Although
the angiogenesis process is exceedingly complex (see [8, 9] for reviews), at this stage, we will
just say that the new capillaries grow towards the tumor, mainly following the signals of the
growth factors. Capillaries are lined by endothelial cells and the growth of new sprouts requires
these cells to migrate and proliferate. In fact, when tumor-produced growth factors reach endo-
thelial cells they differentiate into two phenotypes, namely, stalk endothelial cells (SECs) and

Fig 1. Vascular tumor growth. The top left part represents a relatively small tumor which is undergoing the vascular switch. The tumor is radially divided into
three parts, which represent the proliferative rim (outer ring), the hypoxic zone (mid part), and the necrotic core (inner area). A small area of the tumor is
surrounded by a gray solid line whose interior is zoomed in. In the zoomed-in area, we can observe tumoral cells colored with different brown tones,
according to their condition of necrotic, hypoxic, or proliferative cells. The red area shows the capillaries, which are lined by endothelial cells as shown in the
plot. The new sprouts are led by tip endothelial cells (TECs), which are endowed with filopodia to better explore their surroundings [10, 15]. The picture also
shows how the capillaries release nutrients that diffuse throughout the tissue. Similarly, hypoxic cells release vascular endothelial growth factor (VEGF),
which eventually binds to surface receptors located in the membrane of endothelial cells (VEGFR). Finally, the figure shows how TECs overexpress the
protein Delta-like ligand 4 (Dll4). This protein binds to the Notch receptors of nearby endothelial cells, preventing them from also becoming TECs [12, 13].

doi:10.1371/journal.pone.0149422.g001
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tip endothelial cells (TECs), which are associated to the proliferative and migratory cells,
respectively [10, 11]. More specifically, during angiogenesis, VEGF and Notch signaling path-
ways are involved in the differentiation of TECs and SECs in the vascular endothelium. Under
the stimulation of VEGF, the expression of Delta-like ligand 4 (Dll4) is up-regulated in TECs.
Dll4 binds to Notch receptors of nearby endothelial cells which, in turn, reduces their VEGF-
receptor expression, consequently suppressing their TEC phenotype [12, 13]. Experimental
evidence shows that TECs lead to sprouting vessels and migrate along the gradient of tumor-
produced growth factors while adjacent SECs generate the trunk of the new vessels and main-
tain connectivity with the parental vessels [14]. Furthermore, TECs develop slender cytoplas-
matic protrusions called filopodia that survey the cell microenvironment and facilitate the
migration [10, 15]. After new capillaries are formed, the vascular network gradually remodels
and evolves to achieve successful functionality. When the tumor becomes well-vascularized,
the new blood vessels provide cancerous cells with sufficient nutrients and a means to escape
and colonize other tissues, which is potentially very harmful. Some tumor types are more vas-
cularized than others. For example, prostatic carcinomas are usually highly vascularized, while
lung carcinomas are not [16]. However, even well-vascularized tumors are riddled with regions
subjected to acute and chronic hypoxia [17]. It may also be surprising that if the tumor angio-
genesis process is altered by permitting the growth of more sprouts than would naturally be
formed, the tumor becomes more hypoxic and grows slower [18]. Our model tries to address
these queries and establish a predictive tool that can pose new questions to be probed
experimentally.

From a technical point of view, one of the most difficult obstacles to develop a model for
coupled tumor growth and angiogenesis is the need to bridge, at least to some extent, the cellu-
lar and tissue scales. This may be one of the reasons why most existing models deal with either
vascular or avascular growth, but do not account for both phenomena in the same theory. A
related difficulty stems from the fact that tumor growth has been primarily modeled using con-
tinuum models, while discrete methods prevail in angiogenesis modeling. Here, we present a
model in which capillaries are resolved to full scale and interact with tumors in a fully-coupled
manner.

A Brief Bibliographic Survey
Early models of avascular growth tried to reproduce the features observed in multicellular
tumor spheroids [19], in particular the differentiation between the proliferative rim, the hyp-
oxic zone, and the necrotic core. Chaplain and Britton presented a predictive model to examine
the steady-state profile of the growth inhibitory factor in spheroids [20], and Byrne and Chap-
lain studied the stability of steady, radially-symmetric solutions with respect to perturbations
[21, 22] by assuming the three distinct layers. However, detailed experimental investigations
showed that the transitions between the three layers could be gradual, rather than sharp [23].
This led to mathematical models in which the layers were defined by continuum densities of
proliferative, quiescent, and dead cells [24, 25]. Some other models of avascular growth focus
on reproducing different features, such as, for example growth saturation or cell movement
[26–29].

From a methodological point of view, the mixture theory has been a useful framework
within the continuum modeling of avascular growth [30–32]. More recently, a new approach
based on the multiphase porous media mechanics theory, has also been proposed [33–35].
Another framework which has produced very relevant results is that provided by the phase-
field method [36–41], which we also employ here. The literature is also rich on discrete models
belonging to the class of cellular automata or agent-based methods that have tried to model
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avascular growth by considering cell-cell interactions, cell-matrix interactions, and the effect of
the microenvironment [42–44].

Vascular growth modeling has attracted significant interest in the last few years. Prime
examples include the work of Frieboes et al [45, 46], which couples phase fields to describe
tumor growth with discrete random walks to model angiogenesis. We also mention the ten-
species model of Lima et al [47], which was recently proposed. Multiscale techniques have also
proven important on the development of vascular growth theories, as shown in [48]. Signifi-
cant examples within the cellular automata framework were given in [49–51]. Other important
work includes [52–58].

Methods

Mathematical Model
In this section, we propose a phenomenological model for the coupled dynamics of tumor
growth and angiogenesis. Our model is chiefly continuous, although it also involves discrete
agents representing TECs. The discrete agents are seamlessly integrated as part of one of the
continuous fields using the concept of template functions [59]. This yields a virtually continu-
ous model, whose solution may be numerically approximated using a partial-differential equa-
tion (PDE) solver with minor changes only. For the purely-continuous part of our model, we
will use classical reaction-diffusion equations to describe the dynamics of chemical substances
and phase-field equations to model tumor and capillary growth. The phase-field theory is a
mathematical formalism to derive models for problems with moving interfaces [60–62]. Phase
fields may be thought of as smooth functions, which act as markers of the location of a feature
of interest, where the word feature should be understood in a broad sense. In classical applica-
tions of phase fields, e.g., in mechanics, the phase field may define, for instance, the location of
a particular component in multicomponent flows or the spatial distribution of crystallites
(grains) in a polycrystalline material. Here, we use phase fields as markers of the location of dif-
ferent cell types. In particular, we use two phase fields, one to mark the location of tumor cells
(ϕ 2 [0, 1]) and another one to define the position of endothelial cells (c 2 [−1, 1]). Also within
the purely continuous description, we use two additional functions, namely, σ and f. The func-
tion σ 2 [0, 1] represents the concentration of a generic substance, which is assumed to drive
tumor growth. This quantity may play the role of a vital nutrient (e.g., oxygen or glucose), a
growth factor, or another chemical controlling tumor proliferation. For simplicity, in what fol-
lows, we will refer to σ as nutrient concentration. The function f 2 [0, 1] defines the concentra-
tion of a generic substance which represents the balance between the pro- and anti-angiogenic
factors. This conceptualization simplifies the biochemical interactions that take place in tumor
angiogenesis, in which a number of substances released by hypoxic tumor cells reach the sur-
face receptors of endothelial cells. Some of these chemicals favor angiogenesis (e.g., VEGF or
bFGF), while others preclude the generation of new sprouts in one way or another (e.g., TSP-1
or Ang-2). The net result of these intricate molecular mechanisms (see [7] for details) is that
hypoxic cells are able to pull endothelial cells out of their tightly-controlled homeostatic condi-
tion by unbalancing the angiogenic factor equilibrium towards angiogenesis [9]. Thus, the
unknown f represents the net pro-angiogenic contribution of all these substances. In what fol-
lows, we will simply refer to f as tumor angiogenic factor (TAF). Our model also makes use of
discrete agents which represent TECs. Due to their migratory phenotype, TECs lead the way of
new sprouts following cues of different types. The template functions that we use are simple
approximations to a phase field that represents the location of an individual cell [59, 63]. The
discrete elements are mesh-free in the sense that they are independent from the spatial discreti-
zation. Due to the migratory nature of TECs, the discrete agents are advected using a suitable
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velocity. Essentially, the velocity depends on chemotactic cues and certain conditions on the
microenvironment of the cell, which replicates the fact that TECs explore their surroundings
using filopodia. All the details about the governing equations are given in what follows.

Tumor (ϕ). The tumor location is described by a PDE governing the evolution of the
phase field ϕ. As we will explain later, the equation governing ϕ naturally produces smooth but
thin transitions between two constant states which identify cancerous and host tissue. As a con-
sequence of the use of phase fields in the model, the tumor dynamics occurs mainly at the
interface between malignant and host cells. We believe this hypothesis is plausible, since in
non-invasive solid cancer, tumoral cells cluster forming highly-packed masses with a well-
defined interface. Also, due to the scarcity of both lymphatic and blood vessels inside the
tumor, it seems reasonable to assume that the dynamics occurs mainly at the interface. The
usual starting point to derive a phase-field equation is a free-energy functional. In this study,
we define the tumor free energy as

C�ð�;r�; sÞ ¼ Cs
�ðr�Þ þCch

� ð�; sÞ; ð1Þ

whereCs
� is the tumor surface free energy andCch

� is the tumor chemical free energy. The

phase-field equation is defined in such a way that, if the nutrient concentration is kept fixed,
the free energyCϕ decreases with time along solutions of the equation. This procedure is often
referred to as gradient dynamics [64]. In Eq (1), the tumor surface free energy is defined as

Cs
�ðr�Þ ¼ 1

2
l2

�jr�j2; ð2Þ

where λϕ is a positive constant proportional to the interface width and |�| denotes the magni-
tude of a vector. The tumor chemical free energy is given by

Cch
� ð�; sÞ ¼ gð�Þ þmðsÞhð�Þ; ð3Þ

where

gð�Þ ¼ �2ð1� �Þ2; hð�Þ ¼ �2ð3� 2�Þ; mðsÞ ¼ �2

3:01p
arctan ð15ðs� sh�vÞÞ: ð4Þ

Here, σh−v represents the value of the nutrient concentration that defines the threshold between

hypoxic and viable tumor cells. The left panel of Fig 2 shows a plot ofCch
� , whereas the middle

and right panels show plots of g(ϕ), h(ϕ), andm(σ). Note that g(ϕ) is a symmetric function
with two local minima. Functions with this structure are typically referred to as double-well

potentials. The termm(σ)h(ϕ) introduces a non-symmetric perturbation inCch
� , whose magni-

tude depends on the value of the nutrient concentration, as shown in Fig 2. The functionm(σ)
is usually called tilting function and must verify the condition |m(σ)|< 1/3. For the particular
form ofm that we use, this implies that the denominator in front of the arctan must be greater
than 3π. Although other choices are possible, for simplicity we just take a value of 3.01π. The
specific form ofm has little impact on the results (see [62] for details). The fulfillment of the

condition |m(σ)|< 1/3 guarantees that the potentialCch
� achieves local minima at ϕ = 0 and ϕ

= 1 for all σ> 0. This suggests that the solution will be driven to these constant states, which
represent, respectively, the host and cancerous tissue. Note, however, that the energy levels
achieved at the local minima are different from each other when σ 6¼ σh−v. When σ< σh−v (i.e.,
m> 0) the energy level is lower at ϕ = 0, and as a consequence, the host tissue is energetically
preferred. When σ> σh−v (i.e.,m< 0), the opposite situation occurs and the phase-field equa-
tion will favor tumor growth. Using the tumor free energy and the concept of gradient
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dynamics, we derive the following non-conserved phase-field equation for the tumor evolution

@�

@t
¼ M�ðl2�D�� m�ð�; sÞÞ; ð5Þ

where m� ¼ @Cch
� =@�, andMϕ is a positive constant that represents the tumor mobility. Eq (5)

controls the tumor dynamics, which is strongly dependent on the nutrient distribution. The
nutrient, in turn, is released by capillaries whose location depends, among other things, on the
TAF distribution. This makes the problem fully coupled.

Nutrient (σ). We assume that the nutrient is supplied by capillaries, diffuses throughout
the tissue, and is consumed by tumor and host cells at a different rate. This is modeled by the
reaction-diffusion equation

@s
@t

¼ r � ðDsrsÞ þ Vc
pð1� sÞcHðcÞS � VT

u s�� VH
u sHð1� �Þ; ð6Þ

where Dσ is the nutrient diffusion constant, Vc
p is the nutrient production rate at the capillaries,

Hð�Þ is a smoothed-out Heaviside step function, while VT
u and VH

u are the uptake rates of nutri-
ent by cancerous and host tissue, respectively. A common assumption that we also adopt here
is that VT

u >> VH
u (see Table 1). The consumption term VH

u sHð1� �Þ implicitly assumes that
the host tissue and the capillaries have the same uptake rate of nutrient. Finally, the dimension-
less quantity S is a crude measure of the structure and density of the capillary network. Assum-
ing that at a given time, the vasculature in the tissue is composed by n capillaries of lengths
fligni¼1, the value of S is given by

S ¼ lmaxPn
i¼1 li

; where lmax ¼ max
1�i�n

ðliÞ: ð7Þ

The expression of S given by Eq (7) is often used in experimental research on angiogenesis to
characterize a capillary network [65]. Data indicate that, as the network becomes more intri-
cate, the value of S decreases. In our model, this implies that the nutrient production is effec-
tively reduced when the vasculature becomes denser [see Eq (6)], a fact supported by abundant
experimental evidence [18]. Although this observation is not completely understood, the

Fig 2. Chemical free energy of the tumor. The tumor chemical free energy,Cch
� , is defined as a double-well potential formed by the sum of a symmetric

contribution (g) and a non-symmetric function (h). The latter is multiplied by a tilting functionm, that depends on the nutrient concentration. On the right hand
side of the plot, σn−h and σh−v represent values of the nutrient concentration that define, respectively, the necrotic-hypoxic and hypoxic-viable thresholds.

doi:10.1371/journal.pone.0149422.g002
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reduced nutrient production of intricate networks is often attributed to the leakiness and tortu-
osity of dense, tumor-induced vascular networks.

Capillaries (c). Capillaries are defined by a phase-field c which maps the concentration of
endothelial cells to [−1, 1] and implicitly defines their location. The phase-field equation that
governs c naturally develops areas in which c = 1 (tissue occupied by capillaries) and c = −1
(capillary-free tissue). Following prior work [59, 66], we model the evolution of the phase-field
c using the equation

@c
@t

¼ r � ðMcrðmcðcÞ � l2cDcÞÞ þ Bpðf ÞcHðcÞ; ð8Þ

whereMc is the mobility of the capillaries, λc is a positive constant related to the width of the
capillary wall, Bpðf Þ is the proliferation rate of endothelial cells as a function of the TAF con-

centration f, and μc(c) = c3−c is the derivative of the double-well potential

Cch
c ðcÞ ¼

c4

4
� c2

2
: ð9Þ

Note thatCch
c is a symmetric double-well potential with two local minima at c = −1 and c = 1.

Therefore, Eq (8) resembles a Cahn-Hilliard-type equation [67] with a reaction term that
depends on the TAF concentration. In particular, inside the capillaries, where c� 1, the reac-
tion term reduces to

Bpðf Þ ¼
(Bpf if f < fp

Bpfp if f � fp
; ð10Þ

Table 1. In silico values of the parameters used in the proposedmodel.

Parameter Symbol In silico value

Diffusion coefficient of the tumor Mϕ 0.3

Interface width of tumor λϕ 2
ffiffiffi
2

p

Diffusion coefficient of the nutrient Dσ 30

Production rate of nutrient Vc
p 1

Uptake rate of nutrient by tumor VT
u 6 × 10−3

Uptake rate of nutrient by host tissue VH
u 6 × 10−4

Necrotic/hypoxic-cell threshold σn-h 0.2

Hypoxic/viable-cell threshold σh-v 0.4

TAF condition for highest proliferation fp 0.3

Mobility of capillaries Mc 1

Interface width of capillaries λc 1

Proliferation rate of endothelial cells Bp 1.401

TEC radius R 4

Condition 1 for TEC (de)activation cact 0.9

Condition 2 for TEC (de)activation fact 0.001

Chemotatic constant χ 7.28

Dll4 effective distance δ4 80

Diffusion coefficient of TAF Df 100

Uptake rate of TAF by capillaries Bu 6.25

Parameters related to angiogenesis are obtained from [59].

doi:10.1371/journal.pone.0149422.t001
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where fp is a constant representing a threshold value at which proliferation saturates to its max-
imum rate defined by Bp fp. Eq (8) may be thought of as the model that controls the dynamics
of stalk endothelial cells, which are those with a proliferative phenotype. As anticipated before,
TECs, which have a migratory phenotype, are modeled separately using discrete agents that we
eventually integrate in the field c.

Tip endothelial cells (TECs). The tumor angiogenic factor can drive a phenotypic change
in endothelial cells when it binds to their surface receptors. In fact, some privileged cells
(TECs) acquire a migratory phenotype and lead the growth of new capillaries. It is known that
in order to create functional networks with a moderate amount of sprouts, the number of tip
endothelial cells in a region is negatively regulated by a factor called Delta-like ligand 4 (Dll4)
[68]. This factor is overexpressed by TECs and binds to the Notch receptors of nearby endothe-
lial cells, preventing them from becoming tip endothelial cells (see Fig 1). Hence, only a selec-
tion of endothelial cells generate new sprouts. The remaining endothelial cells affected by
tumor angiogenic factor become proliferative, and their dynamics is controlled by Eq (8). For
supporting experimental evidence, the reader is referred to [10, 11, 14].

TECs are characterized by protrusions called filopodia through which they probe the condi-
tions of their microenvironment (see, e.g., [69]). The expression of tumor angiogenic factor
receptors is higher on filopodia than in regular cell membrane. Consequently, filopodia
enhance the tip endothelial cell chemical sensitivity towards TAF and facilitate their migration
following chemotactic cues. In addition, filopodia permit tip endothelial cells to detect nearby
capillaries [15]. There is experimental evidence showing that when a nearby capillary is
detected, tip endothelial cells alter their migration towards them to form loops through anasto-
moses that eventually enhance blood flow and tissue oxygenation. For these reasons, tip endo-
thelial cells are modeled here as circular (with radius R), mesh-free, discrete agents that can get
activated and deactivated, spread filopodia, move following chemotactic gradients of tumor
angiogenic factor, detect nearby capillaries, and anastomose with them. In particular, a new tip
endothelial cell is activated (deactivated) if the following conditions are met (not met) at a
point:

1. c� cact, which guarantees that the point is inside a capillary;

2. f� fact, which establishes the minimum TAF concentration to trigger the activation; and

3. the distance to any other tip endothelial cell is larger than δ4, which assures sparser, more
functional networks.

The last condition represents a simple model of the Delta/Notch signaling pathway. By pre-
venting TECs to be formed in the surroundings of another active tip cell, we encode the essen-
tial mechanism whereby Dll4 controls the density of the vascular network. In what follows, we
call δ4 effective Dll4 distance. Note that the process is deterministic, except for a rather insignif-
icant detail. Whenever exist several points satisfying conditions 1, 2, and 3 listed above we
choose one randomly.

When the above conditions are met, active TECs migrate with a velocity given by the
expression

v ¼ w
rf
jrf jJ ð�Þ; where J ð�Þ ¼ 0:45½tanhð50ð0:5� �ÞÞ þ 1� þ 0:1: ð11Þ

Here, χ is the chemotactic constant. The velocity v follows gradients of TAF and J ð�Þ is a
function that takes values in the interval (0, 1) and incorporates the observation that capillaries
can penetrate the tumor, but they do so at a velocity significantly smaller than that of TECs
migrating in the surrounding tissue. The function J ð�Þmay be thought of as a translated,
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scaled, and smoothed-out Heaviside function. For large ϕ (inside the tumor), J ð�Þ takes
approximately the value 0.1, while for small ϕ (outside the tumor) it is approximately equal to
1. For intermediate values, J ð�Þ provides a quick, but smooth transition between 0.1 and 1.

In addition, once TECs have migrated more than four times their radius away from their
parent vessel, the value of c is checked at a set of points that mimic filopodia. If any of these val-
ues is positive, then a capillary is detected and the TEC migrates in that direction until it anas-
tomoses and gets deactivated [70].

Tumor angiogenic factor (f). In our model, TAF is released by hypoxic malignant cells,
diffuses throughout the tissue, and is consumed by endothelial cells, as expressed by the reac-
tion-diffusion equation

@f
@t

¼ r � ðDfrf Þ þ �ð1� f ÞGðsÞ � BufcHðcÞ: ð12Þ

Here Df is the diffusion constant, Bu is the uptake rate of TAF by capillaries, and G is the secre-
tion rate of tumor angiogenic factor released by tumor cells. Since TAF is chiefly released by
hypoxic tumor cells, we define G as a hill function of σ. More specifically,

GðsÞ ¼ 0:02ffiffiffiffiffiffi
2p

p exp �125 s� sn�h þ sh�v

2

� �2
 !

; ð13Þ

where σn-h is the value of the nutrient concentration that defines the threshold between necrotic
and hypoxic tumor cells. Fig 3 shows a plot of G and illustrates how TAF is mainly released in the
hypoxic region of the tumor, that is, where the nutrient concentration is between σn-h and σh-v.

Computational Method
The numerical solution of the equations that govern our model poses significant computational
challenges due to strong non-linearities, stiffness in space and time, and the presence of fourth-
order derivatives. Although the equations can be solved on square geometries using classical
finite-difference methods, we employ highly-efficient algorithms that will eventually permit us
to perform three-dimensional computations on larger-scale, realistic tissue geometries. Our
computational technology is based on isogeometric analysis [71], a recent generalization of the
finite element method that excels by its two- and three-dimensional geometric flexibility,
robustness, and higher-order accuracy and continuity [72, 73]. Isogeometric analysis has
proven a very efficient technology to discretize differential equations involving higher-order

Fig 3. Secretion rate of tumor angiogenic factor (GðsÞ). Tumor angiogenic factor is released by hypoxic tumor cells, that is, those whose nutrient
availability is not enough for proliferation, but higher than the apoptotic threshold (σn-h > σ > σh-v).

doi:10.1371/journal.pone.0149422.g003
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operators and giving rise to thin layers in the solution [74–76], which are challenges similar to
those posed by our current model for vascular tumor growth. In particular, we benefit from iso-

geometric analysis using C1-continuous basis functions, which permit a straightforward discre-
tization of fourth-order differential operators without introducing additional degrees of
freedom [77, 78]. To perform the time discretization, we use the generalized-α algorithm,
which is a second-order accurate and A-stable method with optimal dissipation properties
[79]. To speed up the computations, we use an adaptive time-step selection algorithm based on
the ideas presented in [80, 81].

Finally, the discrete agents representing TECs are seamlessly integrated with the phase field
that defines capillaries using the concept of template functions. The phase-field is just a marker
of the location of capillaries and the agents represent individual cells which are assumed to
have circular shape. Therefore, we define simple approximations to a phase field representing a
single circular cell and use that as a template which moves following TECs. Our template func-
tions are smoothed-out radial Heaviside functions which take approximately the value +1
inside the circular cell and −1 elsewhere. Using these ideas, our model can be solved numeri-
cally using a standard PDE solver with minor changes only.

Results
Here, we present numerical results which illustrate two important features of our model. First,
we show that our theory naturally predicts the shift from avascular to vascular growth by trig-
gering angiogenesis. This example also shows that if angiogenesis is blocked, the tumor reaches
a maximum size, and then gradually regresses, as shown in experiments [1]. Second, our model
reproduces a recently-observed phenomenon in vascularized tumors in which cancer growth is
hindered by down-regulating the Delta/Notch pathway. This hampers the control that Dll4
exerts on the creation of new TECs, leading to denser and more inefficient vascular networks,
which in turn give rise to smaller tumors.

Simulation Setup
To perform the computations, we non-dimensionalize the equations using a length scale
L = 1.25 µm and a time scale T = 1562.5 s. These scales may be used to find the values of the
physical parameters from the in silico quantities reported in Table 1, which are the values used
in the computations. We perform our computations on a rectangular tissue of 2625 µm × 2025
µm. We place an initial circular tumor at the center of the domain and two horizontal capillar-
ies in the bottom and top boundaries, as shown in Fig 4. Boundary conditions are also taken to
maintain symmetry, so that we can perform the computations on a quarter of the domain Oq

(bottom right quadrant). The mesh is composed of 512 × 256 quadratic elements. The radius
of the initial tumor is Rt = 625 µm and the capillaries are supposed to be initially straight with a
constant width of 25 µm. Therefore, the value of c is set to −1 everywhere in Oq, except in the
stripe region at the bottom, where is set to 1. The size of the initial tumor corresponds to that
of a typical human carcinoma which can no longer feed on the nutrients that diffuse to its sur-
face and has to trigger angiogenesis to grow further. The initial source of nutrient is the capil-
lary at the bottom, where σ takes the value 1. We assume that, initially, the tumor has a circular
necrotic core concentric to the tumor and with a radius Rn = 0.45Rt, where σ = 0. Everywhere
else in the tissue, σ = 0.45.

Avascular Versus Vascular Tumor Growth
In this example, we initially simulate the blockade of angiogenesis by freezing Eqs (8) and (12),
and not allowing the activation of TECs. As a consequence, the vascular network reduces to the
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initial capillary, which is the only source of nutrient. It may be easily seen that, in this case,
S ¼ 1 throughout the simulation. Fig 5 shows the solution at time t = 1054 days. The top left
part of the figure, which corresponds to the tumor, is accompanied by contour lines of the
tumor interface at different times to observe the evolution of the lesion. On the top right, the
inset shows the time evolution of the tumor area. It may be observed that the tumor grows
slightly at the beginning and then regresses slowly due to its inability to trigger angiogenesis.
The initial growth is small (*10%) and occurs at short time scales. It is a consequence of the
initial nutrient distribution, which is just a crude approximation to the actual one. The eventual
regression occurs at very long time scales, but at usual experimental time scales (see the top-
right inset in Fig 5) the tumor volume remains constant. In the top-right inset, we have used

Fig 4. Problem setup. The domain of the problem represents a rectangular tissue of size 2625 µm × 2025 µmwith a circular initial tumor (brown) and two
capillaries (red). Using the symmetries of this setup, the simulations may be performed on a quarter of the tissue, the domainΩq.

doi:10.1371/journal.pone.0149422.g004
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the same time span that will be employed in the vascular-growth simulation, for comparison
purposes. However, the contour lines on the top-left figure show that the tumor volume
remains fairly constant for intermediate time scales (see, for example, the contour line for
t = 208 days). Thus, our results are consistent with the experimental observation indicating
that the tumor becomes dormant when is unable to trigger angiogenesis. The bottom part of
Fig 5 shows the nutrient distribution at time t = 1054 days. At this point, the nutrient has
achieved a quasi-steady configuration, which corresponds to the expected situation. In particu-
lar, the nutrient is maximum at the source and then decreases gradually with the distance to
the capillary. It may be observed that the threshold value σh−v is achieved at a distance to the
capillary of approximately 200 µm, which is consistent with abundant experimental evidence.
The nutrient concentration further away from the capillary is lower than σh−v, and in particu-
lar, is very low inside the tumor as one would expect.

Now, we repeat the same computation using all the equations in our theory and allowing
the tumor to trigger angiogenesis naturally as predicted by the model. Fig 6 shows the predic-
tion of the model at time t = 5.1 days. The result clearly shows that the tumor quickly triggers
angiogenesis, providing hypoxic cells with additional nutrients that can sustain their growth.
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Fig 5. Simulation of avascular tumor growth. The amount of nutrient (blue scale) released from the capillary at the bottom edge is not enough for tumor
cells to proliferate. Thus, the tumor remains at a constant size within usual experimental time scales (tumor area graph) and shrinks at very long time scales
(brown contour lines). By day 1054 (solid brown), the tumor radius has been reduced to approximately 67% of its initial value.

doi:10.1371/journal.pone.0149422.g005
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To induce angiogenesis, hypoxic cells release TAF [see Eq (12)], which is not shown in the plot
for clarity. The capillaries are represented in the figure by red areas, which delimit the zones in
which c� 1. The simulation clearly shows the experimental observation that angiogenesis
occurs at much shorter time scales than tumor growth. In fact, the vascular network changes
significantly in the same time lapse in which the tumor grows approximately 10% (see Fig 6).
The top right inset shows the time evolution of the tumor area. This curve suggests three stages
in tumor growth. At the beginning, the tumor grows slightly due to the nutrient that was ini-
tially in the tissue. Once this nutrient has been consumed, the tumor becomes hypoxic and
starts to shrink, but also releases TAF which will later reach the capillaries and trigger angio-
genesis. Once the newly-created capillaries are sufficiently close to the tumor, malignant cells
start to receive nutrients and proliferate, giving rise to the third growth stage observed in the
evolution of the tumor area. An important feature that the model predicts is that even after
angiogenesis, a large part of the tumor is necrotic or hypoxic, as observed in experiments [17,
82]. We note, however, that there is also experimental evidence showing that the central necro-
sis disappears in small tumor spheroids [83]. In S1 Text and S1 Fig in the Supporting

Fig 6. Simulation of vascular tumor. Hypoxic tumor cells (dark brown; see color scales in the bottom left corner) release tumor angiogenic factor (not
shown in the plot for clarity) that promotes the growth of capillaries (red). The new vasculature brings additional nutrients (blue scale) to the tumor favoring its
growth (see the tumor area evolution in the top right inset). The top left inset shows through contour lines the time evolution of the tumor and the capillaries
that have penetrated it. The bottom right inset shows a tip endothelial cell that is about to anastomose with other capillary and the nutrient distribution in the
surroundings of the neovasculature. As expected, the nutrient concentration decreases with the distance to the capillaries.

doi:10.1371/journal.pone.0149422.g006
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Information, we provide an additional numerical example that shows how our model repro-
duces this experimental observation, too.

In Fig 6, we have divided the tumor based on the amount of nutrient available. We distin-
guish three areas, namely, the necrotic core, the hypoxic zone, and the proliferative rim. These
areas are represented using different brown hues (see the tumor color scale on the bottom left
of Fig 6). The inset on the bottom right shows a TEC that stopped following the chemotatic
cues because its filopodia detected a nearby capillary. As a consequence, the TEC altered its
migration towards the capillary and will eventually anastomose with it. In addition, the inset
shows how the nutrient is released by newly-created capillaries and diffuses throughout the
surrounding tissue. The top left inset shows another important feature of vascular growth pre-
dicted by the model. It may be observed how the capillaries slowly penetrate the tumor while
malignant cells proliferate in their surroundings giving rise to a phenomenon that resembles
vessel cooption [84].

Blockade of Dll4 Signaling Inhibits Tumor Growth
In this section, we observe the effects of down-regulating the Delta/Notch pathway on vascular
tumor growth by using the proposed model. As stated in [18, 85–88], blockade of the Delta/
Notch pathway resulted in remarkably increased tumor vascularity, associated with enhanced
angiogenic branching. However, this increased vascularity was non-productive due to poor
perfusion. To show that our model reproduces this observation, we perform two computations.
The first one, shown in the top panels of Fig 7, uses again the parameters reported in Table 1.
The second one, plotted in the mid panels of Fig 7, uses the same values for all the parameters
except the Dll4 effective distance, which takes the value δ4 = 55. Thus, we model the down-reg-
ulation of Dll4 by allowing TECs to be created closer to each other. It may be easily observed
that when δ4 is smaller, the vascular network is denser. This is also reflected in the bottom-left
subplot, which represents the time evolution of the capillary area. As indicated before, we use
the quantity S, defined in Eq (7), as a crude measure of the vascular network functionality. The
bottom-right subplot shows that S ¼ 1 initially, and until new capillaries grow (t* 3 days).
Then, the value of S gradually decreases, reducing the effective nutrient supply in capillaries as
shown in Eq (6). At a given time, the value of S is smaller when the Delta/Notch pathway is
down regulated, as expected. As a measure of tumor growth, we use the quantity gre = (At −
A0)/A0, where At is the tumor area at time t, while A0 is the initial tumor area. In the mid panel
of the bottom row of Fig 7, we plot the time evolution of the tumor area for both values of δ4.
The curves have a similar structure to that shown in Fig 6, with three different regimes. First,
the tumor undergoes a slight avascular growth until the nutrient given in the initial condition
is consumed. Then, the tumor becomes hypoxic, releases pro-angiogenic factors, and shrinks
slightly until the newly-created capillaries are able to provide nutrients to the tumor. After that,
vascular growth begins. The plot also shows the final value of the relative growth gre, showing
that the tumor grows more slowly when Dll4 is blocked, even if the vascular network is denser.
This confirms that our model predicts the experimental findings in [18, 85].

Discussion
We presented a model for coupled tumor growth and angiogenesis. The model resolves the
capillaries to full scale, without introducing upscaled quantities such as, for example, microvas-
cular density. Our computations show that the model can be used to study both avascular and
vascular growth. In the avascular case, that is, when the tumor is not able to promote angiogen-
esis, our model predicts a slowly-shrinking, almost-dormant tumor due to its lack of access to
nutrient. However, in the vascular case, the model naturally predicts the angiogenesis switch.
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Fig 7. Simulation of tumor-growth reduction by blocking Dll4. The simulation in the top row shows snapshots of the tumor (brown scale), capillaries
(red), and nutrient concentration (blue scale) for a typical value of the effective Dll4 distance, namely δ4 = 80. Note that on the right hand side panels we
removed the capillaries to allow for a clearer observation of the nutrient distribution. The mid row shows the results of an analogous simulation in which the
effective Dll4 distance has been reduced to δ4 = 55 to simulate the negative regulation of the Dll4 signaling pathway. As expected, the simulation shows a
denser vascular network. The bottom left panel quantitatively illustrates this point. The denser vascular network, however, does not lead to faster tumor
growth, but the opposite (see the bottom central panel). This phenomenon has been observed experimentally and is a consequence of the reduced transport
functionality of the vascular network. In our model, the transport capacity is measured by the quantity S [see Eq (7)], whose time evolution is shown in the
bottom right panel.

doi:10.1371/journal.pone.0149422.g007
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Under this circumstances, the tumor has the ability to create a new exclusively-dedicated vas-
cular network by means of induced angiogenesis that facilitates cancerous cell fast replication.
Furthermore, the time evolution of the tumor area reveals the presence of an avascular stage
the precedes the fully development of the new capillaries, during which the lesion presents a
slow size reduction. It is only when the nutrient reaches the tumor through the new capillaries
that the angiogenesis switch is effective and the vascular stage starts, triggering a fast lesion
growth. Our theory also predicted a known phenomenon in vascular growth which consists of
hindering tumor growth by negatively regulating the Delta/Notch signaling pathway. Our sim-
ulations show how a defective vascular network with an increased number of capillaries
counter-intuitively decelerates rather than boosts tumor growth.

We believe our work opens new possibilities for those interested in exploring computation-
ally complex scenarios in which tumors and capillaries interact. A significant problem that
could be explored with our model is that of vessel cooption, which was observed experimentally
[84]. In vessel cooption, the usual avascular to vascular transition enabled by angiogenesis is
altered. Indeed, some tumors do not begin as avascular masses, but initially grow coopting
existing blood vessels. The coopted host vasculature does not experience angiogenesis immedi-
ately, but regresses producing hypoxia and necrosis in the tumor. Eventually, the tumor trig-
gers angiogenesis and continues its growth.

Finally, an important research topic that we plan to explore in the future is the application
of our model to larger systems, ideally including three-dimensional, patient-specific tissue
geometries and parameters.

Supporting Information
S1 Text. Disappearance of central necrosis in small tumor spheroids. Additional numerical
example that reproduces the experiments reported in [83], where the authors observe the dis-
appearance of the central necrosis after vascularization of tumor spheroids of size approxi-
mately 3 times smaller than those considered in the main text of the paper.
(PDF)

S1 Fig. Disappearance of central necrosis in small tumor spheroids. Top-left: Geometry of
the computational domain. Top-right: Time evolution of the necrotic area. Bottom-left: Ini-
tially, the necrotic core grows after angiogenesis. Bottom-right: Later on, the necrotic core
shrinks until its complete disappearance. The two bottom sub-figures are both zoomed in from
the dashed rectangle shown in the top-left panel. The tumor is plotted in solid brown color and
the capillaries are shown in solid red color.
(EPS)
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