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Summary

APOBEC family cytidine deaminases have been recently implicated as powerful mutators of 

cancer genomes. How APOBECs, which are ssDNA specific enzymes, gain access to 

chromosomal DNA is unclear. To ascertain the chromosomal ssDNA substrates of the APOBECs, 

we expressed APOBEC3A and APOBEC3B, the two most probable APOBECs mediating cancer 

mutagenesis, in a yeast model system. We demonstrate, using mutation reporters and whole 

genome sequencing, that APOBEC3A- and APOBEC3B-induced mutagenesis primarily results 

from the deamination of the lagging strand template during DNA replication. Moreover, our 

results indicate that both genetic deficiencies in replication fork-stabilizing proteins and chemical 

induction of replication stress greatly augment the mutagenesis of APOBEC3A and 3B. Taken 

together, these results strongly indicate that ssDNA formed during DNA lagging strand synthesis 

is a major substrate for APOBECs and may be the principal substrate in human cancers 

experiencing replication stress.

Introduction

Exposure to DNA damaging agents or deficiencies in DNA repair pathways commonly 

cause somatic mutations that underlie cellular transformation and carcinogenesis [reviewed 

in (Jackson and Bartek, 2009)]. We and others have recently identified the family of 

apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) cytidine 

deaminases as an endogenous source of DNA damage that mutagenizes many human 

cancers (Burns et al., 2013a, Nik-Zainal et al., 2012, Roberts et al., 2013, Burns et al., 
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2013b, Roberts et al., 2012). These enzymes normally function within lipoprotein 

metabolism (Teng et al., 1993) and the immune system to restrict viral and retrotransposable 

elements [reviewed in (Refsland and Harris, 2013)]. However, if unrestrained, APOBEC 

enzymes can also act as potent mutators of chromosomal DNA, where they deaminate 

cytidines preferentially within the trinucleotide sequences, TCA and TCT (referred to 

collectively as TCW; the mutated base is underlined) (Refsland and Harris, 2013). 

Consequently, APOBEC-mutagenized tumors contain an over-abundance of C to T and C to 

G substitutions within TCW sequences (Roberts et al., 2013, Alexandrov et al., 2013, Burns 

et al., 2013b). This mutation signature is widespread among many human cancer types, 

occurring prominently in bladder, cervical, head and neck, breast, lung, and esophageal 

cancers, and can account for up to 70% of the total mutation load within a tumor 

(Alexandrov et al., 2013, Roberts et al., 2013, Saraconi et al., 2014, Burns et al., 2013b).

While it is accepted that APOBEC cytidine deaminases likely cause the extensive 

mutagenesis of TCW sequences in cancer, the identity of the responsible APOBECs and 

their chromosomal substrates are still under debate. Both APOBEC3A (A3A) and 

APOBEC3B (A3B) have access to the nucleus (Bogerd et al., 2006), can mutagenize human 

genes (Burns et al., 2013a, Thielen et al., 2010, Caval et al., 2014), and have elevated 

mRNA levels in human cancers, with A3B expression correlating more strongly than A3A 

expression with the total mutation load across multiple cancer types (Burns et al., 2013b, 

Roberts et al., 2013). Additionally, A3B has been shown to be the major source of 

deaminase activity and mutagenesis in a panel of human breast cancer cell lines (Burns et 

al., 2013a). However, a human polymorphism that involves the deletion of A3B predisposes 

individuals to breast cancers (Kidd et al., 2007, Komatsu et al., 2008, Xuan et al., 2013). 

This deletion has been shown to stabilize the A3A mRNA (Caval et al., 2014), suggesting 

that increased A3A expression may cause the cancer predisposition. Additional analysis of 

the sequence specificities of A3A and A3B in a yeast model system indicate that these 

enzymes prefer different nucleotides at the −2 position, targeting YTCW and RTCW, 

respectively (where Y = C or T; R = G or A). Both of these motifs are over-represented in 

APOBEC-mutagenized tumors, with specific tumors having either an A3A- or A3B-like 

mutation signature (Chan et al., 2015). Based on these observations, A3A and A3B are 

currently prime candidates as cancer mutators. However, an association of APOBEC1 

expression with over-representation of TCW mutations in esophageal cancers (Saraconi et 

al., 2014) suggests that additional APOBECs may also be involved in mutagenesis in some 

cancers.

Biochemically, APOBEC family members prefer single stranded (ss) DNA as their substrate 

(Bransteitter et al., 2003, Suspene et al., 2004, Yu et al., 2004, Chen et al., 2006). Thus, 

double stranded chromosomal DNA should remain protected from these enzymes. However, 

normal cellular processes such as transcription, replication, and DNA repair frequently 

produce ssDNA intermediates that could serve as substrates for APOBEC-induced 

deamination, leading to the generation of mutations. Members of the human APOBEC 

family, including activation induced cytidine deaminase (AID) (Chaudhuri et al., 2003, Liu 

et al., 2008, Peters and Storb, 1996, Ramiro et al., 2003, Taylor et al., 2014) and 

APOBEC3G (A3G) (Taylor et al., 2014), as well as APOBEC homologs in lamprey (Lada et 

al., 2015), have all been shown to induce mutations with specificity to transcribed regions. 
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Moreover, many APOBECs have been shown to deaminate ssDNA processively, resulting 

in the formation of closely spaced ‘mutation clusters’ (Pham et al., 2007). The induction of 

mutation clusters in yeast through expression of these enzymes is dependent on activity of 

the uracil DNA glycosylase Ung1, indicating that in addition to transcription intermediates, 

DNA repair intermediates can also serve as substrates (Taylor et al., 2013). In human cells, 

an A3A-induced increase in γ-H2AX foci requires cells to be in S-phase (Landry et al., 

2011, Narvaiza et al., 2012), suggesting that this enzyme may deaminate ssDNA formed 

during DNA replication and ultimately induce DNA double strand breaks (DSBs) via 

subsequent enzymatic processing of the deoxyuridine by base excision repair. Nevertheless, 

the chromosomal substrates for A3A- and A3B-induced mutagenesis, remain undefined.

Here, we show that A3A and A3B mutagenize chromosomal DNA by deaminating the 

lagging strand template during DNA replication. Expression of either A3A or A3B in 

Saccharomyces cerevisiae caused strand-biased mutations in mutation reporters located to 

each side of a single, well-defined origin of replication. Similar strand-biased mutations 

were also present surrounding origins throughout the genome as evaluated by whole genome 

sequencing. A3A- and A3B-induced mutations 5′ of origins were primarily G to A 

substitutions, while 3′ of origins C to T substitutions predominated. This pattern of 

mutagenesis is consistent with deamination of ssDNA on the lagging strand template. 

Genetic deficiencies in proteins involved in replication fork stability (i.e. Rfa1 or Tof1) 

greatly augmented the mutagenicity of A3A and A3B, as did chemical inhibition of 

replication by hydroxyurea (HU). Thus, A3A and A3B enzymes may capitalize on the 

constant proliferation and/or replication stress occurring in cancers to mediate their 

mutagenic effects.

Results

To determine the targets of A3A- and A3B-induced mutagenesis, we generated codon-

optimized constructs and expressed these enzymes within strains of the yeast S. cerevisiae, 

which contained an array of forward mutation reporters (ADE2, URA3, and CAN1) inserted 

into the LYS2 gene on chromosome II. The A3A and A3B expression constructs produced 

similar amounts of their respective APOBEC mRNA (Figure S1) and were mutagenic, 

increasing the CAN1 mutation frequency approximately 2- to 189-fold compared to a vector 

only control (Figure 1A). As expected, deletion of the uracil-DNA glycosylase, Ung1, in 

A3A- and A3B-expressing strains further increased the CAN1 mutation frequency 7- to 29-

fold, confirming that A3A and A3B expression was inducing mutations by deamination of 

cytidine to uridine within chromosomal DNA. We subsequently sequenced canavanine-

resistant (CanR) clonal isolates from ung1Δ strains (to assess all APOBEC-induced 

deamination events) to identify the mutations that inactivated CAN1. Both A3A and A3B 

induced strand-biased mutations within their favored sequence motif (Figure 1B) (i.e. TCW 

or WGA on the opposite DNA strand). If A3A and A3B target transcriptional intermediates 

in CAN1, as has been shown for AID and A3G, the direction of CAN1 transcription would 

render the top DNA strand single stranded and A3A and A3B would produce C to T 

substitutions (Figure 1C). Surprisingly, both A3A and A3B produced predominantly G to A 

substitutions (Figure 1D and Table S1). This result indicates that these enzymes 
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deaminated only the bottom DNA strand in the CAN1 gene. Thus, A3A and A3B appear to 

target a source of ssDNA other than transcription in this region of the yeast genome.

The DNA template present during lagging strand synthesis is an additional source of ssDNA 

(reviewed in (Balakrishnan and Bambara, 2011)) that may serve as an alternative substrate 

for A3A and A3B within CAN1. Within this yeast strain, CAN1 is asymmetrically positioned 

between two neighboring origins of replication, being located 16 kB 5′ of a well-defined 

origin of replication, ARS216 and 57 kB 3′ of ARS215. Therefore, most replication forks 

traveling through CAN1 will originate from ARS216 and produce templating ssDNA during 

lagging strand synthesis on the bottom DNA stand. Consequently, deamination of this strand 

would result in G to A substitutions, which is consistent with our observed mutation 

spectrum. To test if A3A and A3B preferentially deaminate ssDNA formed in the lagging 

strand template, we expressed these enzymes in an isogenic yeast strain previously 

engineered to investigate the ability of the DNA alkylating agent, methyl methanesulfonate, 

to induce replication-associated mutation clusters (Roberts et al., 2012). The array of 

forward mutation reporters in this strain is positioned in an intergenic region 7 kB 3′ of 

ARS216 and 134 kB 5′ of the neighboring downstream origin, ARS220. Consequently, 

replication proceeds through CAN1 in this location in the opposite direction, causing lagging 

strand-associated ssDNA to be formed on the top DNA strand (Figure 1C). Thus, mutations 

in CAN1 stemming from DNA damage accumulating in replication-associated ssDNA are 

expected to be complementary base substitutions in each strain. Expression of A3A and 

A3B caused similar CanR frequencies with the CAN1 gene positioned 3′ of ARS216 (Figure 
1A) as was observed with the reporter 5′ of the origin. However, sequencing of CanR 

mutants in the 3′ location produced a spectrum consisting predominantly of C to T 

substitutions (Figure 1D and Table S1), which is consistent with replication-associated 

ssDNA being the primary target of A3A and A3B within this locus. Similar strand-bias 

mutations consistent with the deamination of ssDNA in the lagging strand template also 

occurred in UNG proficient cells (Figure 1D and Table S1). This indicates that even with 

active repair of APOBEC-induced deoxyuridine, the formation of these lesions in 

replication-associated ssDNA is the major source of mutations in this system.

To ensure our results using the CAN1 reporter system were universal and not affected by 

specifics of the location of the reporter, we next assessed whether A3A and A3B 

mutagenized the lagging strand template elsewhere in the yeast genome. To do this, we 

constructed homozygous diploid ung1Δ yeast strains containing A3A and A3B expression 

cassettes integrated into the LEU2 gene on chromosome III. These stains enable 

maintenance of the expression constructs without selection, as well as accumulation of a 

significant number of APOBEC-induced mutations whose distribution is less likely to be 

altered by purifying selection (Lujan et al., 2014). We subsequently propagated outgrowth 

lines of these yeast for three months (~900 generations) and sequenced the genomes of 

independent clonal isolates to determine the location and identity of the APOBEC-induced 

mutations (Figure 2A and Table S2). Through this prolonged growth, A3A and A3B 

induced an estimated 0.09 and 0.16 mutations per genome per generation, respectively 

(Table S2). A3B-induced C to T and G to A mutations occurred in nearly equal abundance 

within genes transcribed on the top strand as well as in genes transcribed on the bottom 
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strand (Figure 2B), indicating that deamination of the single stranded non-transcribed strand 

occurs infrequently. A3A expression induced a statistically significant (p<0.02 by two-tailed 

chi-square test), but slightly favors C to T mutations on the non-transcribed strand, 

indicating that this enzyme is capable of deaminating transcriptional intermediates at a low 

level. When we grouped mutations according to their relative distance between neighboring 

origins, both A3A and A3B predominantly induced C to T substitutions 3′ of origins and G 

to A substitutions to the 5′ side of origins (Figure 2C). This pattern occurred despite an 

equal representation of the APOBEC target motif between DNA strands across the genome 

(Figure 2C), and indicates that the lagging strand template, not the non-transcribed strand of 

genes, is the primary substrate for A3A and A3B in this system.

During cancer development, dysfunctional replication forks are common due to hyper-

initiation of replication, which results in replication stress [reviewed in (Macheret and 

Halazonetis, 2015, Hills and Diffley, 2014)]. We therefore evaluated whether the loss of 

replication fork integrity provided additional opportunity for A3A and A3B to deaminate 

chromosomal DNA. We first assessed APOBEC-induced mutagenesis within yeast 

containing a hypomorphic RFA1 allele (t33; S373P). RFA1 encodes the large subunit of the 

ssDNA binding protein, Replication Protein A (RPA), which binds and protects the lagging 

strand template during DNA replication. Rfa1-t33 has been shown to have reduced ssDNA 

binding capacity compared to the wild type protein due to a point mutation in the DNA 

binding domain (Deng et al., 2014). Expression of either A3A or A3B in rfa1-t33 ung1Δ 

strains resulted in 2- to 6-fold higher CanR frequencies compared to ung1Δ strains (Figure 
3A). The CAN1 mutation spectra on either side of ARS216 in rfa1-t33 ung1Δ strains 

retained an enrichment of substitutions at TCW sequences as well as strand-biased G to A 

changes 5′ and C to T changes 3′ of the origin (Figure 3B and Table S1). These results 

indicate that the increase in A3A- and A3B-induced mutagenesis in rfa1-t33 ung1Δ strains is 

the result of A3A and A3B acting on a more exposed lagging strand template. Thus, 

although A3A and A3B can access the lagging strand template, components of the 

replication fork complex provide some protection against these enzymes during normal 

replication. Surprisingly, we observed within rfa1-t33 ung1Δ strains a significant increase in 

the number of CanR mutants containing multiple APOBEC-induced mutations (p=0.01 by 

Fisher's Exact Test) (Table 1 and Table S1). Some CanR isolates contained up to 6 strand-

coordinated mutations which were likely induced in a single event, suggesting that loss of 

full RPA functionality may facilitate the processivity of APOBEC enzymes (Lada et al., 

2011, Pham et al., 2007). We tested an additional null strain to determine whether the 

increased APOBEC-induced mutagenesis observed in the rfa1-t33 strains is generalizable to 

any deficiency in replication fork stability. Tof1 functions with Csm3 at the replication fork 

to prevent uncoupling of the replicative polymerases from the MCM helicase, and deletions 

of these factors have been shown to result in the accumulation of replication-associated 

ssDNA in response to HU treatment (Katou et al., 2003). As in rfa1-t33 strains, A3A and 

A3B both induced 4- to 14-fold more CanR mutants in tof1Δ ung1Δ strains than in ung1Δ 

strains (Figure 3A) confirming that general loss of replication fork integrity increases the 

susceptibility of forks to APOBEC-induced deamination. Interestingly, sequencing of CAN1 

in the tof1Δ ung1Δ strain revealed strand-biased mutations 3′ of ARS216, while C to T and 

G to A mutations occurred equally 5′ of the origin (Figure 3B and Table S1). This result 
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suggests that A3A and A3B either gain access to ssDNA formed on both the leading and 

lagging strands in the absence of Tof1 (Katou et al., 2003) or that altered origin firing and 

replication fork progression in the tof1 null strains (Tourriere et al., 2005, Hayano et al., 

2011) enables more forks originating from ARS215 to replicate the 5′ positioned CAN1 

gene.

In addition to genetic replication fork defects, replication stress can be induced by exposure 

to drugs like HU (Zeman and Cimprich, 2014). HU inhibits the activity of ribonucleotide 

reductase, resulting in decreased deoxyribonucleotide pools and slowed DNA synthesis 

(Bianchi et al., 1986, Slater, 1973). We therefore decided to test whether replication stress 

with a fully competent replisome could augment APOBEC mutagenesis. We treated ung1Δ 

yeast strains containing either a vector control plasmid or A3A and A3B expression 

plasmids with HU for three days. Over this period, HU treated yeast displayed a dose-

dependent decrease in cell growth indicating a slowing of replication and induction of 

replication stress (Figure 4A). In ung1Δ strains containing either A3A or A3B, HU 

treatment dramatically increased mutagenesis up to 8-fold over non-treated controls and 10- 

to 186-fold over corresponding vector transformed ung1Δ strains (Figure 4B). The mutation 

spectra in HU-treated strains maintained a strand-biased signature consistent with A3A and 

A3B mutagenizing the lagging strand template 3′ of ARS216. As seen in the tof1Δ ung1Δ 

strains, however, the mutational strand-bias 5′ of the origin was lost (Figure 4C and Table 
S1). This loss of strand-bias could result from HU treatment inducing ssDNA on both the 

leading and lagging strands through the functional uncoupling of the MCM helicase and 

replicative polymerases. However, for the HU treatment to differentially alter the mutation 

spectra in the two CAN1 locations, ssDNA would have to be formed in the lagging strand in 

a region specific manner. Alternatively, the loss of strand bias 5′ of ARS216 could be due to 

HU disrupting the timing of origin firing and the kinetics of replication (Poli et al., 2012), 

which could allow more forks originating from ARS215 to replicate CAN1. The synergistic 

elevation of CAN1 mutation frequency in HU treated yeast expressing A3A or A3B thus 

likely resulted from HU treatment increasing the amount of ssDNA substrate available to 

these enzymes. As in rfa1-t33 ung1Δ strains, several CanR isolates contained multiple 

strand-coordinated mutations within CAN1 (Table 1 and Table S1), reminiscent of 

previously reported DNA damage-induced mutation clusters and the APOBEC-induced 

kataegis events observed in human tumors (Nik-Zainal et al., 2012, Roberts et al., 2012). 

Therefore, chemically-induced replication stress greatly augments APOBEC mutagenesis, 

suggesting that other forms of replication stress that occur during carcinogenesis may 

likewise facilitate the extensive editing of tumor genomes by these enzymes.

Discussion

Using both mutation reporter systems and whole genome sequencing, we have shown that 

A3A and A3B, the two most likely enzymes involved in the APOBEC-induced mutagenesis 

observed in cancer, strongly mutagenize the lagging strand template during DNA 

replication. In addition, mutations identified by whole genome sequencing lacked a strong 

transcriptional strand-bias. This observation indicates that A3A- and A3B-induced 

deamination of transcriptional intermediates is limited within this system and that ssDNA 

formed during lagging strand synthesis is the primary substrate for these enzymes. Other 
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APOBEC enzymes have been shown to be capable of deaminating ssDNA formed during 

transcription. AID-induced deamination of immunoglobulin genes is dependent on 

transcription of the immunoglobulin locus (Peters and Storb, 1996) and AID-induced 

mutation frequencies can be greatly elevated by increasing the transcription level of 

mutation reporters in E. coli (Ramiro et al., 2003). In biochemical assays, AID, A3G, and 

A3A deamination can be made dependent on transcription of the target DNA (Pham et al., 

2003, Pham et al., 2007, Pham et al., 2013, Love et al., 2012). Moreover, expression of AID 

or A3G in yeast yields an enrichment of mutations at active RNA polymerase pre-initiation 

sites (Taylor et al., 2014). These effects may be facilitated by extremely high levels of 

transcription, pausing of RNA polymerase, and formation of R-loops and secondary 

structures that would increase the size and time a transcribed region is single stranded. As 

such instances are likely limited to specific subsets of genes, the contribution of 

transcription-associated ssDNA to the overall distribution of APOBEC-induced mutations 

may be small. Supporting this, our global analysis of A3A- and A3B-induced mutations 

detected a small, but significant transcriptional strand-bias for A3A-induced mutations. 

Moreover, recent whole genome analyses of A3G-induced mutations in E. coli likewise 

observed a predominance of mutations originating from the deamination of cytidine in the 

lagging strand template over the non-transcribed strands of genes, regardless of uracil DNA 

glycosylase status (Bhagwat et al., 2016).

The mechanistic basis for how A3A and A3B choose their substrates is currently unclear. 

AID's specificity for transcription-associated ssDNA appears to be facilitated by interactions 

with multiple proteins present in the transcription apparatus (Chaudhuri et al., 2004, Pavri et 

al., 2010, Willmann et al., 2012) as well as long non-coding RNAs transcribed from the 

immunoglobulin switch regions (Zheng et al., 2015). In the absence of direct recruitment to 

a specific ssDNA substrate, the activity of the majority of APOBECs may be dictated by the 

abundance and persistence of the ssDNA intermediate. As transcription bubbles are 

relatively small (~10-20 nucleotides) (Pal et al., 2005, Choder and Aloni, 1988), APOBEC 

mutagenesis of transcription intermediates would appear to be limited. In comparison, both 

lagging strand synthesis and the homology-directed repair (HR) of DSBs produce 

significantly larger stretches of ssDNA (approximately 200 nucleotides [(Smith and 

Whitehouse, 2012) and references within] and 1-2 kilobases (Zhou et al., 2014, Chung et al., 

2010), respectively) that A3A and A3B can mutagenize. Although HR resection tracks may 

produce more ssDNA per single DSB than the synthesis of one Okazaki fragment, the 

number of DSBs in a cell is likely very small compared to the number of Okazaki fragments 

formed during each round of DNA replication. Thus, the lagging strand template the favored 

substrate of multiple APOBEC enzymes based solely on the amount of ssDNA generated.

The susceptibility of ssDNA replication intermediates to A3A and A3B may be one of the 

key factors enabling the extensive APOBEC mutagenesis observed in many cancer types. 

The mutation spectra of other cancer mutagens, like UV light and tobacco smoke, display 

transcription-associated strand-biases presumably due to the favored repair of the 

transcribed stand by transcription-coupled nucleotide excision repair (Alexandrov et al., 

2013). However, a small transcription related strand-bias among APOBEC mutations has 

only been observed specifically in highly expressed genes in two bladder cancer patients 
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(Nordentoft et al., 2014). Recent analyses of the distribution of APOBEC signature 

mutations in breast and lung cancers have revealed that these mutations are enriched in 

gene-rich, early replicating regions of the genome (Kazanov et al., 2015). However, within 

these regions, APOBEC-induced mutations occurred equally in transcribed and non-

transcribed DNA as well as on the transcribed and non-transcribed strands. More extensive 

computational analysis of 590 whole genome sequenced tumors from 14 tumor types 

revealed that overall APOBEC signature cancer mutations display strand-bias, but that these 

biases are more consistent with the enzymes deaminating cytidines within ssDNA on the 

lagging strand template than deamination of the non-transcribed strand during transcription 

(Haradhvala et al., 2016). This suggests that as in yeast and E. coli, replication and not 

transcription is the predominant APOBEC substrate within human tumors.

APOBEC-induced mutations could thus accumulate simply because of the large number of 

cell divisions and accompanying DNA replication that highly proliferative cancer cells 

undergo (Shibata and Lieber, 2010). Replication stress conditions that occur frequently in 

tumors likely further exacerbate this effect. Activation of oncogenes like Cyclin E or H-Ras 

during cancer development dysregulate the coordination of replication origin firing 

[reviewed in (Macheret and Halazonetis, 2015, Hills and Diffley, 2014)]. Consequently, 

many tumor cells over-replicate their genomes, which can result in the exhaustion of factors 

that maintain fork stability, and formation of even higher amounts of ssDNA (Toledo et al., 

2013). Our results indicate that genetic disruption of replication fork integrity or chemical 

induction of replication stress facilitates A3A and A3B mutagenesis, indicating that 

oncogene-induced replication stress may do so as well. Supporting this, human tumors likely 

experiencing replication stress due to the mutation or silencing of the tumor-suppressor, 

FHIT, have reportedly higher numbers of APOBEC signature mutations in lung 

adenocarcinoma (Waters et al., 2015). Additionally, overexpression of the breast cancer-

associated oncogene human epidermal growth factor-2 (Her2) in mice elevates DNA 

damage response signaling in tumors, which is an indicator of increased replication stress 

(Reddy et al., 2010). This observation coupled with our results indicating that replication 

stress increases A3A- and A3B-induced mutagenesis offer a possible explanation for the fact 

that breast cancers experiencing the overexpression of Her2 have been shown to have more 

APOBEC-signature mutations than other breast cancer subtypes (Roberts et al., 2013). Thus, 

the dysregulation of APOBEC expression and significant availability of their ideal substrate 

due to hyper-replication may produce a “perfect storm” enabling extreme mutagenesis in 

human cancer.

Experimental Procedures

Construction of Expression Plasmids

The expression plasmids used in this study were constructed from the centromeric yeast 

expression plasmid, pCM252 (Belli et al., 1998). The TRP1 selectable marker of pCM252 

was exchanged for hygromycin resistance by co-transforming yeast with the plasmid and a 

HygroMX cassette, PCR amplified with the forward and reverse primers, 5′-

AGGGCATTGGTGACTATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGGC

AGCTTGG AGTCGTACGCTGCAGGTCGAC and 5′-
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TAATCTAAGCGCATCACCAACATTTTCTGGCGTCAGTCCACCAGCTAACATAAA

ATGTAAGC TTCGATGAATTCGAGCTCG. Hygromycin-resistant, tryptophan-

auxotrophic transformants where selected to identify isolates containing recombined plasmid 

(named pySR419) where the HygroMX cartridge had replaced TRP1 through homologous 

recombination. Pure plasmid was subsequently isolated and proper integration of HygroMX 

verified by restriction digest. A3A and A3B cDNAs were codon-optimized for expression in 

yeast and synthesized as gene blocks with appended 5′StuI and 3′ClaI restriction sites 

(DNA2.0, Menlo Park, CA). These gene blocks were digested, cloned into the StuI and ClaI 

sites of pySR419, and the resulting plasmids were sequenced to verify the integrity of A3A 

and A3B.

Yeast Strains and Culture

All yeast strain utilized in this study were constructed in the CG379 genetic background, a 

derivative of S288C (Morrison et al., 1991). Detailed descriptions of strain constructions can 

be found the supplemental experimental procedures. The genotypes of each strain used is 

listed in Table S3. Yeast were grown using standard techniques described in (Sherman et 

al., 1986) on standard rich media (YPDA) or synthetic complete (SC) media.

Determination of Mutation Frequencies

For all experiments measuring APOBEC-induced mutations, A3A and A3B were expressed 

at basal levels (i.e. without induction) from a tetracycline inducible promoter. To determine 

CanR frequencies for clonal strains transformed with either an empty vector control, A3A 

expression plasmid, or A3B expression plasmid, ~200 yeast cells were plated on YPDA 

media supplemented either with hygromycin (to select for maintenance of the plasmid) or 

hygromycin and HU and grown at 30°C for three days. Afterward, independent colonies 

were re-suspended in water and plated on synthetic complete media or SC-arginine 

supplemented with 0.006% canavanine (to select for CAN1 mutants) at appropriate dilutions 

to yield clearly independent colonies. Colonies were allowed to grow on selective and 

complete media for three days at 30°C and subsequently imaged and counted using Quantity 

One software (Bio-Rad, Hercules, CA). The frequency of CanR mutants was calculated 

using the4 following formula:

The medians of each the independent replicates were compared pairwise between different 

experimental conditions using the Mann-Whitney Rank Test.

CAN1 Mutation Spectra

Following three days growth at 30°C on YPDA media containing either hygromycin or 

hygromycin and HU, independent colonies of ung1Δ strains transformed with either A3A or 

A3B expression constructs were replica plated to SC-arginine media supplemented with 

0.006% canavanine and allowed to grow at 30°C for an additional three days. A single CanR 

papillae was selected per independent colony and was additionally clonally isolated by 
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single cell streaking. Genomic DNA was isolated from these clones and the CAN1 gene was 

PCR amplified (primers listed in Table S4). CAN1 PCR products were Sanger sequenced 

(Eton Biosciences, San Diego, CA and GenScript, Piscataway, NJ) and mutations 

inactivating CAN1 (Table S1) identified using the Geneious software package (Biomatters 

Limited). The preferred trinucleotide sequences mutated in CAN1 following A3A or A3B 

expression were generated using webLogo (http://weblogo.berkeley.edu/logo.cgi) (Crooks et 

al., 2004).

Whole Genome Sequencing and Mutation Calling

The accumulation of APOBEC-induced mutations was conducted similar to (Lujan et al., 

2014). Briefly, ~200 diploid yeast cells deficient in ung1 and containing A3A or A3B 

integrated into the LEU2 locus of chromosome III were plated on rich media and grown at 

30°C for three days. 10-20 independent colonies for each yeast strain were selected and 

passaged through bottlenecks for three months (~900 generations) on rich media at 30°C to 

establish outgrowth lines. After the three month growth period, a single clonal isolate from 

each line was obtained. Total genomic DNA was isolated from these clones as well as from 

a sample of the bulk yeast prior to passaging (time zero). These genomic DNAs were 

subjected to high throughput paired-end sequencing similar to (Roberts et al., 2012) on an 

Illumina HiSeq2500 (San Diego, CA). Raw sequencing reads can be accessed from the 

NCBI short read archive database under accession number SRP067952. Paired-end reads 

were mapped with CLC genomics Workbench 7.5 (Qiagen) using default settings at greater 

than 50x coverage to a reference of ySR128 based on the publically available S288C 

reference (obtained from the Saccharomyces Genome Database, http://

www.yeastgenome.org) and constructed as in (Roberts et al., 2012). Reads mapping to 

multiple locations in the genome were discarded. Mutations were called similarly to 

(Sakofsky et al., 2014). Briefly, homozygous and heterozygous mutations were identified as 

base differences relative to the reference sequence that occurred in greater than 45% of 

reads. All mutations were covered by at least 9 reads. Due to being likely mapping artifacts, 

mutations occurring in regions annotated as “Repeat Regions” and “LTR” in the S288C S. 

cerevisiae reference were removed from analysis as were mutations that occur at positions 

where mapping of reads from a non-mutagenized reference strain resulted in greater than 

20% of reads containing non-reference sequence. Mutations that occurred in strains prior to 

outgrowth (identified as mutations occurring in the time zero sample) were also removed.

Analyses of Whole Genome Mutation Distribution

The position of genes and origins of replication were obtained from the annotations in the 

S288C reference UCSC sacCer2 (downloaded from NCBI on June 16, 2008) and converted 

into the coordinates of the ySR128 reference. APOBEC-induced mutations were placed into 

groups based upon whether they occurred in genes transcribed on the top or bottom DNA 

strand, and their location in relationship to the percent distance between neighboring origins. 

The number of C to T substitutions was compared to the number of G to A substitutions and 

the frequency of the favored APOBEC target sequence.
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Statistical analyses

All statistical analysis were conducted as described in the text using the Graphpad Prism 

software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. APOBEC3A and 3B induce strand-bias mutations around ARS216
(A) Frequencies of canavanine-resistance (CanR) induced in WT and ung1Δ yeast following 

transformation with vector control plasmid, A3A expression plasmid, or A3B expression 

plasmid. CanR frequency was determined in isogenic strains with the CAN1 gene located 

either 16 kB 5′ of the origin of replication, ARS216, or 7 kB 3′ of ARS216. Horizontal bars 

and numeric values indicate the median frequency of six or seven independent replicates. 

Statistical significance was determined by two-tailed non-parametric Mann-Whitney Rank 

test. See also Figure S1. (B) Sequence logo describing the favored trinucleotide sequences 
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mutated by A3A (top) and A3B (bottom) in ung1Δ yeast. See also Table S1. (C) Specific 

deamination of ssDNA formed in a transcription bubble would result in C to T transitions 

(red ball) within CAN1 regardless of whether the gene is positioned 5′ or 3′ of ARS216. In 

contrast, deamination of ssDNA formed during lagging strand synthesis would result in G to 

A substitutions (green ball) 5′ and C to T substitutions 3′ or the origin. (D) The number of G 

to A (green) and C to T (red) substitutions induced in the CAN1 gene (located 5′ and 3′ of 

ARS216) by A3A and A3B in ung1Δ and UNG1 yeast as determined by sequencing 

independent CanR isolates. P-values were determined using a one-tailed g-test goodness-of-

fit comparing the ratio of C to T substitutions to G to A substitutions to an expected 1:1 

ratio. See also Table S1.
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Figure 2. Genome-wide strand-bias of A3A and A3B mutations between neighboring origins of 
replication
(A) Distribution of C to T (red) and G to A (green) mutations induced by A3A (top) and 

A3B (bottom). Yeast chromosomes are displayed in gray. (B) The relative abundance of 

A3A- and A3B-induced C to T mutations (red) and G to A mutations (green) in yeast genes 

+/− 500 nucleotides transcribed on the bottom strand (B) or the top strand (T). P-values were 

determined using a two-tailed chi-square test comparing the numbers of each mutation type 

to the number of A3A- and A3B-targeted TC (red) or GA (green) dinucleotides occurring in 

these regions. (C) The relative abundance of A3A- and A3B-induced C to T mutations (red) 
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and G to A mutations (green) according to the fractional distance between neighboring 

replication origins. Lines represent linear trend lines fitting the fractional abundance of C to 

T (red) and G to A (green) mutations across the entire fractional distance between 

neighboring origins. A statistical significance of p<0.0001 was determined by comparing the 

number of each mutation type in each decile bin to the corresponding abundance of TC or 

GA dinucleotides, by chi-square test. See also Table S2.
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Figure 3. Deletion of replication fork stability factors exacerbates A3A- and A3B-induced 
mutagenesis around ARS216
(A) Frequencies of CanR induced in wild type, rfa1-t33, tof1Δ, ung1Δ, rfa1-t33 ung1Δ, and 

tof1Δ ung1Δ yeast following transformation with vector control plasmid, A3A expression 

plasmid, or A3B expression plasmid. Horizontal bars and numeric values indicate the 

median frequency of six or seven independent replicates. P-values were determined by two-

tailed non-parametric Mann-Whitney Rank test. (B) The number of G to A (green) and C to 

T (red) substitutions induced in the CAN1 gene (located 5′ and 3′ of ARS216) by A3A and 
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A3B in ung1Δ yeast in the genetic backgrounds mentioned in (A) as determined by 

sequencing independent CanR isolates. P-values were determined using a two-tailed Fisher's 

Exact test comparing the ratio of C to T substitutions to G to A substitutions between 

indicated genotypes. See also Table S1.
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Figure 4. Chemically-induced replication stress augments A3A- and A3B-induced mutagenesis
(A) HU treatment causes a dose-dependent decrease in cell growth in ung1Δ yeast. Shown 

are medians and ranges for 18 independent replicates at each HU dose. P-values were 

determined by two-tailed non-parametric Mann-Whitney Rank test comparing untreated 

yeast to yeast treated with 50 mM HU. (B) Frequencies of CanR induced in ung1Δ yeast 

treated with 0, 12.5, 25, or 50 mM HU following transformation with vector control 

plasmid, A3A expression plasmid, or A3B expression plasmid. Horizontal bars and numeric 

values indicate the median frequency of six or seven independent replicates. P-values were 
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determined by two-tailed non-parametric Mann-Whitney Rank test. (C) The number of G to 

A (green) and C to T (red) substitutions induced in the CAN1 gene by A3A and A3B in 

untreated or 50mM HU treated ung1Δ yeast as determined by sequencing independent CanR 

isolates. P-values were determined using a two-tailed Fisher's Exact test comparing the ratio 

of C to T substitutions to G to A substitutions between indicated treatments. See also Table 
S1.
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Table 1

Summary of CAN1 sequencing results in strains expressing A3A and A3B

Source of replication stress combined with A3A or A3B expression in ung1Δ strains

None 50mM HU rfa1-t33 tof1Δ 

Total CanR mutants sequenced 190 122 108 120

CanR mutants with APOBEC signature mutation(s) 188 116 106 120

Frequency of multiple strand-coordinated 
APOBEC-signature mutations

0.011 0.025 0.056 0.008

Number of mutations present in each CanR mutant 
with multiple strand-coordinated APOBEC-
signature mutations

2, 2 2, 2, 6 2, 2, 2, 2, 2, 5, 6 2
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