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Abstract

The NMDA receptor antagonist ketamine can improve major depressive disorder (MDD) within 

hours. To evaluate the putative role of glutamatergic and GABAergic systems in ketamine’s 

antidepressant action, medial prefrontal cortical (mPFC) levels of glutamate + glutamine (Glx) and 

γ-aminobutyric acid (GABA) were measured before, during, and after ketamine administration 

using proton magnetic resonance spectroscopy. Ketamine (0.5 mg/kg i.v.) was administered to 

eleven depressed patients with MDD. Glx and GABA mPFC responses were measured as ratios 

relative to unsuppressed voxel tissue water (W) successfully in 8/11 patients. Ten of 11 patients 

remitted (50% reduction in 24-item Hamilton Depression Rating Scale and total ≤ 10) within 230 

minutes of commencing ketamine. mPFC Glx/W and GABA/W peaked at 37.8%±7.5% and 
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38.0%±9.1% above baseline in ~26 minutes. Mean areas under the curve (AUC) for Glx/W (p = 

0.025) and GABA/W (p = 0.005) increased and correlated (r = 0.796; p=0.018). Clinical 

improvement correlated with 90-minute norketamine concentration (df=6, r=−0.78, p=0.023), but 

no other measures.

Rapid increases in Glx and GABA in MDD following ketamine administration support the 

postulated antidepressant role of glutamate and for the first time raises the question of GABA’s 

role in the antidepressant action of ketamine. These data support the hypothesis
1
 that ketamine 

administration may cause an initial increase in glutamate that potentially activates mammalian 

target of rapamycin (mTOR) pathway via AMPA receptors, since ketamine blocks NMDA 

receptors. The role of the contemporaneous surge in GABA remains to be determined.
2
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Introduction

Major depressive disorder (MDD) affects approximately 14.8 million American adults. 

Contributing to the disease burden is the multi-week lag in onset of antidepressant effect and 

the fact that only about one third of patients remit after 6–8 weeks. A single subanesthetic 

dose of ketamine, a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, based on 

two meta-analyses
3, 4 of ketamine’s antidepressant effect in randomized placebo-controlled 

trials (10 trials and 246 patients total; 6 trials and 163 patients overlapped; 34 patients had 

bipolar disorder), produces an antidepressant effect in hours to days with standardized mean 

differences of −0.91 and 0.9. These findings held true even in previously treatment-resistant 

depression. Although studies have examined the duration of antidepressant response to a 

single ketamine dose
5
 and following repeated ketamine infusions,

6, 7 the number of 

completed short and long-term controlled and dose-dependent studies is insufficient to 

establish ketamine as a treatment for general clinical use. However, given the promise of 

ketamine’s efficacy as a rapid-acting antidepressant, identification of ketamine’s mechanism 

of action may permit development of a new class of fast-acting antidepressants.

To date, most studies of ketamine’s antidepressant action have been conducted in animals. 

Ketamine activates the mTOR pathway
8, 9 via glutamatergic α-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA) receptors. mTOR activation increases synaptic 

proteins and sprouting of new synaptic spines in prefrontal cortex (PFC) within hours, 

consistent with the time-course of its antidepressant effect.
1
 The mTOR signaling pathway 

in hippocampal neurons
10

 activated by glutamatergic synaptic activity
11, 12

 is required for 

long-term potentiation (LTP),
10, 12, 13

 long-term depression (LTD)
14

 and memory 

consolidation.
15

 Deficits in mTOR expression and in several mTOR-dependent translation 

initiation factors are reported in prefrontal cortex (PFC) in MDD postmortem, suggesting 

that this ketamine target may also be part of the pathogenesis of MDD.
16

 In vivo brain 

proton magnetic resonance spectroscopy (1H MRS) studies in healthy volunteers report 

increased glutamine
17

 and unchanged
18

 or increased glutamate
19

 levels in response to 

ketamine administration. A study in depressed patients
20

 found no effect of ketamine on 
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glutamatergic compounds. Thus, it remains unclear how ketamine enhances glutamatergic 

signaling in MDD in vivo.

This pilot study sought to test the hypothesis that ketamine administration in depressed 

patients produces a rapid, robust surge in glutamatergic compounds in medial PFC (mPFC), 

as observed in rodent studies.
21, 22 1H MRS was used to dynamically measure the time-

course of brain glutamatergic response to ketamine (via the combined resonance of 

glutamate + glutamine, or Glx) from baseline through 40 minutes of infusion to 

approximately 30 minutes after infusion in depressed DSM IV-defined MDD patients. An 

exploratory objective was to synchronously measure ketamine’s effect on brain γ-

aminobutyric acid (GABA), reported to be low in severe MDD.
23–25

 GABAergic 

abnormalities associated with MDD include low GABA in cerebrospinal fluid
26

 and 

plasma
27, 28

 and are consistent with magnetic resonance spectroscopy (MRS) findings of 

low brain GABA levels.
23, 24, 29–31

Materials and Methods

Patients

All subjects provided written informed consent as approved by the Institutional Review 

Board prior to participation. Eleven outpatients (eight female) with mean age of 38.8 ± 12.8 

years participated and met DSM-IV criteria for major depressive episode (MDE) and MDD, 

scoring at least 16 on the 17-item Hamilton Depression Rating Scale (HDRS-17) (mean 

score= 20.7± 3.7). All participants were free of psychotropic medications for at least 14 days 

prior to scanning, off fluoxetine for 6 weeks and off serotonin depleting drugs for 3 months.

Patients were excluded for: lack of capacity; history of other major Axis I disorders; suicidal 

ideation with a plan or intent or attempted suicide within the preceding 6 months; current or 

past drug or alcohol dependence; prior use of ketamine; electroconvulsive therapy in the 

preceding three months; having a first-degree relative with a psychotic disorder (for subjects 

under age 33); any significant active physical illness; previous loss of consciousness for 

more than a few minutes that required medical evaluation; pregnancy or intent to conceive 

during study participation or having ferromagnetic implants or other magnetic resonance 

imaging (MRI) contraindications. Medical history, physical examination and standard blood 

tests (including urinalysis and toxicology) confirmed the absence of active physical illness, 

pregnancy and drug use. Prior treatment for depression was a requirement for inclusion; 

treatment resistance was not.

Study Design

Subjects fasted for approximately 8 hours prior to scanning. Baseline ratings were 

administered within 24-hours of scanning [24-item Hamilton Depression Rating Scale 

(HDRS-24), Beck Depression Inventory (BDI), Profile of Mood States (POMS), Young 

Mania Rating Scale (YMRS) and the Brief Psychiatric Rating Scale (BPRS)].

Prior to ketamine administration, patients were positioned in the MRI scanner. After 

structural MRI and baseline 1H MRS scans, 0.5 mg/kg of ketamine hydrochloride in saline 

was administered intravenously over approximately 40 minutes. Six 1H MRS data frames 
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were acquired, each of ~13-minute duration: one pre-ketamine, four during the 40-minute 

ketamine infusion, and one after the ketamine infusion. The POMS was completed 80 and 

110 minutes after initiation of the ketamine infusion. Blood samples were obtained from a 

second venous line at 90 minutes and 120 minutes post-ketamine for levels of ketamine, 

norketamine and dehydronorketamine.

Baseline psychiatric ratings were repeated 230 minutes post-ketamine infusion, excluding 

items not expected to change (eg: sleep). HDRS-24 was also administered 24 hours post-

infusion. Remission was defined as ≥50% improvement from baseline and a total score of 

≤10. Response was defined as ≥50% improvement.
5
 The HDRS-24 was the primary 

outcome measure, as in most other ketamine studies.
5
 The BPRS was administered at 

baseline and at 230 minutes post-infusion to monitor potential adverse effects of ketamine. 

The POMS was used to measure clinical state during the first 230 minutes post-infusion 

because it is better suited for short-term (hours) re-administration.
32, 33

MRI and MRS Data Acquisition

Neuroimaging data were acquired on a General Electric Signa EXCITE 3.0T MR scanner 

using commercial 8-channel phased-array head coil. A three-plane localizer imaging series 

was obtained, followed by a volumetric T1 weighed spoiled gradient-recalled (SPGR) echo 

acquisition (TE=2.86ms, TR=7.12 ms, flip angle = 9°, field of view = 256×256 mm2, image 

matrix size = 256×256, slice thickness 1 mm; voxel size 1×1×1 mm3). Next, in vivo brain 

spectra of the GABA and combined resonance of glutamate and glutamine (Glx) were 

recorded from a 3.0×2.5×.2.5-cm3 mPFC voxel (Figure 1A, B) using the standard J-edited 

spin echo difference method.
34, 35

 A pair of frequency-selective inversion pulses was 

inserted into the standard point-resolved spectroscopy (PRESS) method and then applied to 

the GABA C-3 resonance at 1.9 ppm on alternate scans using TE/TR 68/1500ms. This 

resulted in two subspectra (Figure 1C, traces [a] and [b]) in which the GABA C-4 resonance 

at 3.03 ppm and Glx C-2 at 3.71 ppm were alternately inverted. Subtracting these two 

subspectra yielded a spectrum consisting of only the edited GABA C-4 and Glx C-2 

resonances, with all overlapping resonances eliminated (Figure 1B). Data were acquired in 

13-minute frames using 256 interleaved excitations (512 total) with the editing pulse 

alternatingly on or off. The resultant raw 8-channel phased-array coil data were combined 

into a single regular free-induction decay signal using the coil sensitivity factors derived 

from the unsuppressed water signal acquired with each receiver coil. The magnetic field 

homogeneity for all acquisitions was required to be less than ≤20 Hz, as assessed by the full 

width at half of the unsuppressed water resonance.

Areas under the Glx and GABA peaks, which are proportional to their concentrations, were 

obtained as illustrated in Figure 1C (traces [a-f]) by fitting each resonance to a Gauss-

Lorentz (i.e., pseudo-Voigt) function in the frequency-domain using a Levenberg-Marquardt 

nonlinear least-squares minimization routine written in IDL (ITT EXELIS, McLean, VA). 

The levels of Glx and GABA in the edited spectra were then expressed as ratios of peak 

areas relative to the simultaneously acquired and similarly fitted unsuppressed voxel water 

signal (W)—a commonly used
36, 37, 38–40

 method with high test-retest reliability.
41
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Plasma Ketamine, Norketamine and Dehydronorketamine

Plasma ketamine, norketamine and dehydronorketamine were assayed by liquid 

chromatographic (LC) procedure with UV detection. Within-day coefficient of variation of 

ketamine, norketamine and dehydronorketamine did not exceed 12.8% (range 2000–5ng/

mL), (n=12 for each of seven concentrations). Day-to-day variation of ketamine and 

norketamine quality controls at 1250, 250, and 50ng/mL did not exceed 4.3 and 3.4%, 

respectively (n=11 days). For dehydronorketamine, day-to-day variation at 500, 100 and 20 

ng/mL did not exceed 8.8% (n=11 days). The minimum quantifiable limits were set at 

10ng/mL for both ketamine and norketamine, and 5ng/mL for dehydronorketamine (such 

low levels were not seen in this study).

Statistical Analysis

Linear mixed-effects models tested for: (1) effect of time point on POMS score with time 

point as a (categorical) fixed effect and subject as a random effect; (2) ketamine’s effect on 

log-transformed Glx/W and GABA/W levels, with subject as a random effect and each 13-

minute MRS frames as a fixed effect. Correlations were calculated using Pearson product 

moment. MRS outcome measures were log-transformed to ensure normality of distribution, 

sphericity and compound symmetry. A first-order autoregressive covariance structure was 

applied to account for time dependency within subjects.

Results

Effect of Ketamine on MDD Symptoms

Ten of 11 subjects met criteria for remission by 230 minutes post-infusion, 9/11 at 24 hrs 

post-infusion and 7/10 at three days. HDRS-24 and BDI scores declined dramatically 24 

hours post-ketamine (F=52.5; df=1,10; p<0.0001 and F=21.7; df=1,10; p=0.0009, 

respectively) (Figure 2B–C).

POMS total score (Figure 2A) declined rapidly (F=18.0; df=4,35; p<0.0001), reached a 

nadir at 230 minutes, and remained low 24 hours later. Notably, POMS sub-score vigor 
gradually increased in contrast to total score and confusion decreased comparably to the 

total score (Table 3).

BPRS scores (Figure 3) declined from baseline to 230 minutes post-ketamine infusion (F= 

26.2; df=1,10; p=.0004). There were decreases in BPRS sub-scores 
42

 anxiety-depression 
(F=33.5; df=1,10; p=.0002) and anergia (F=9.8; df=1,10; p=.01),. Psychotic symptom sub-

scores remained stable or declined after infusion. No patient’s thought disturbance score 

changed from baseline after ketamine infusion. Subjects experienced mild or no adverse 

cognitive or dissociative effects (Table 3). There was no correlation between change in 

BPRS score and change in Glx or GABA levels.

Response of mPFC Glx and GABA to Ketamine

MRS data for three subjects were excluded from all analyses due to head motion, manifested 

as distorted peak phases and large residual water resonance in difference spectra, which 

degraded spectral quality. For the remaining subjects, there was a main effect of ketamine 
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infusion on Glx/W (F=6.16; df=5,31; p=0.0004), that post-hoc analysis attributed to higher 

Glx/W in MRS frame 1 (p=0.037), frame 2 (p=0.001), and frame 3 (p=0.027) compared 

with the baseline frame (Figure 3A). For GABA/W there was a main effect of ketamine 

infusion (F=2.90; df=5,31; p=0.029) and post hoc analysis indicated higher GABA/W in 

MRS frame 1 (p=0.036) and frame 2 (p=0.031) compared with the baseline frame (Figure 

3A).

The peak frame for each subject revealed a 38% ± 8% (mean ± SD) increase in Glx/W from 

baseline and a 38% ± 9% increase in GABA/W from baseline. The time points for these 

peak values, obtained by averaging the mid-time point of the frame of each peak, were 28 

± 8 and 26 ± 21 minutes from the start of infusion for Glx/W and GABA/W, respectively. 

When responses to ketamine were quantified as area under the curve (AUC), both Glx/W 

and GABA/W increases were statistically significant: Glx/W AUC was 0.013 ± 0.01 (SD) 

(one sample t-test: t = 2.8479, df = 7, p = 0.025); and GABA/W AUC was 0.016 ± 0.01 (t = 

4.0841, df = 7, p = 0.005) (Figure 3B). The correlation between AUCs of Glx/W and 

GABA/W was 0.796 (p=0.018).

Vital Signs and Clinical/Imaging/Ketamine Level Correlations

Neither Glx/W nor GABA/W changes correlated with clinical response to ketamine. Of 

ketamine and its two active metabolites, norketamine and dehydronorketamine, measured at 

two time points (see Table 3), only norketamine concentration at 90 minutes correlated with 

clinical outcome (df= 6; r= −0.78; p= 0.023; uncorrected) expressed as a percent change in 

HDRS-24 scores. No effects were observed on blood pressure, heart rate, oxygen saturation, 

or conscious state during and after the ketamine infusion.

Discussion

This is the first study to report rapid and robust in vivo increases in both mPFC Glx and 

GABA in response to intravenous administration of a single subanesthetic dose of ketamine 

for treatment of MDD. A prior study failed to detect an effect of ketamine in depressed 

subjects.
20

 While differences in MRS methods cannot be ruled out as an explanation of this 

discrepancy, MRS data in the prior study were acquired after completion of the ketamine 

infusion, and comport with our study, which found that most of the Glx and GABA 

responses to be dissipated by the end of infusion. Consistent with our findings, two studies 

in healthy volunteers also reported increases in glutamine
17

 and glutamate
19

 levels, and one 

study did not.
18

 The infusion methods used in the studies with positive findings may have 

produced higher ketamine blood levels than those achieved in the negative study and caused 

a more robust glutamatergic response in healthy volunteers. This highlights the need for 

future studies of the glutamatergic response.

A rapid increase in Glx in response to ketamine is consistent with microdialysis rodent 

studies
21,43

 that found a 250% increase in extracellular glutamate levels in response to 

ketamine administration at 40 minutes compared to baseline, and using 13-C labeled glucose 

found that 13-C enrichment of Glu-C4 increased roughly 18% from baseline, significantly 

more than in saline-control rats. The relatively modest increase of de novo glutamate 

synthesis measured by incorporation of 13-C labeled glucose into the carbon backbone of 
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glutamate belies the substantial increase in extracellular glutamate by microdialysis. These 

findings support a role for the glutamatergic system in the rapid antidepressant action of 

ketamine.

We also observed a parallel increase in total tissue GABA (as measured by 1H MRS) in 

MDD in response to ketamine in depressed subjects that is consistent with animal studies.
22 

The potential role of GABA in the antidepressant action of ketamine is an area for future 

research.

We also confirm previous reports of rapid remission of MDD in response to ketamine.
44 

POMS scores declined more than 50% improvement within one hour of initiating the 

ketamine infusion (Figure 2A). Remission rates observed in this open study are comparable 

with those in previous studies (e.g.
5
), or perhaps better because this study’s subjects were 

younger, had shorter duration of illness, fewer previous MDEs, and were less treatment-

resistant.

Norketamine levels, which showed substantial variance at 90 minutes (in contrast to 

ketamine), correlated negatively with HDRS-24 scores 24 hours after ketamine infusion. 

Plasma ketamine and dehydronorketamine did not correlate with clinical outcome or with 

Glx/W or GABA/W changes. Since norketamine levels were relatively high, their correlation 

with antidepressant effect suggests that norketamine may be a long-lived and active 

metabolite due to slow conversion to dehydronorketamine, and thus may have a more 

pronounced role in blocking NMDA receptors. The absence of a correlation of ketamine 

level with clinical response or the Glx or GABA response may be due, in part, to the 

standardized dose given to all subjects, which minimized variance in ketamine blood levels, 

and to the generally robust clinical response exhibited by most subjects in the study. A dose-

finding study, using a wider range of doses, may clarify how ketamine and its active 

metabolite levels relate to glutamate and GABA responses and to antidepressant action.

The nearly 40% increase in the concentration of both Glx and GABA may be explained by 

changes in brain glucose utilization. Following ketamine administration in patients with 

bipolar disorder, an increase in regional metabolic rate of glucose (rMRGlu) correlated with 

improvement in depressive symptoms in the right ventral striatum.
45

 The cerebral metabolic 

rate for glucose in human brain is approximately 0.4 μmol/min/g tissue and turnover of 

glutamate is approximately 0.8 μmol/min/g tissue.
46

 Virtually all the glucose that enters the 

brain is metabolized through glutamate since one molecule of glucose gives rise to two 

molecules of acetyl-CoA, which enter the tricarboxylic acid cycle (TCA) to become α-

ketoglutarate and then glutamate. In most cells of the body, glutamate is in equilibrium with 

a-ketoglutarate (a-KG) as it is continuously reconverted and then metabolized through the 

TCA cycle. However, in glutamatergic neurons, the enzyme aspartate aminotransferase 

(which aminates a-KG to glutamate) has much higher activity than the enzyme a-KG 

dehydrogenase, which can lead to an accumulation of intracellular glutamate.
47

 In 

GABAergic neurons, this same process feeds GABA synthesis because glutamate is the 

precursor of GABA. The robust correlation between Glx and GABA increases supports the 

hypothesis that glucose utilization drives the increase in both neurotransmitters.

Milak et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Preclinical studies indicate that ketamine’s antidepressant action may depend on activation 

of glutamatergic AMPA receptors
8
 and the downstream mTOR pathway.

1
 Our findings 

support the model
1
 positing that ketamine causes a rapid increase in cortical glutamate 

through an unknown mechanism that, in combination with blockade of NMDA receptors by 

ketamine, diverts glutamate signaling to AMPA receptors. AMPA activation leads to the 

downstream activation of the mTOR pathway, leading to increased BDNF release,
48–51 

dendritic protein synthesis,
1
 mushroom spine formation and associated downstream 

effects.
52–54

 Other NMDA receptor antagonists exhibit antidepressant effects,
55–64

 and 

monoaminergic antidepressants and modulators of metabotropic glutamatergic receptors 

with antidepressant effects also reduce NMDA signal transduction.
54, 65–71

 The 

glutamatergic system may also be a target for treatment of depression because it is abnormal 

in major depression.
72, 73

 A 1H-MRS study reported glutamate deficits in anterior cingulate 

cortex (ACC) in MDD.
74

 Conversely, higher glutamate in cerebrospinal fluid (CSF) has 

been reported and a cytotoxic role for glutamate transmission via NMDA receptors has been 

implicated in the loss of mature granule cells in dentate gyrus and glia in hippocampus and 

in amygdala.
75

Our finding of a parallel GABA elevation following ketamine administration is a novel 

observation. Though the mechanism is uncertain, the synchronous surge in this inhibitory 

neurotransmitter could limit ketamine-mediated glutamate release and reduce excessive 

spread of glutamatergic excitation. CSF,
26

 plasma
27, 28

 and in vivo brain GABA 

levels
23–25, 30

 are reported in MDD during depression; but not when not depressed.
78 

GABA(B) receptor agonists and positive modulators have antidepressant-like effects in 

rodent depression models
79, 80

 and antidepressant treatment (SSRI or ECT) normalizes 

GABAergic deficits in MDD patients.
81–84

 Postmortem studies report fewer GABA neurons 

in MDD and bipolar disorder and a GABAergic deficit may be a part of the pathophysiology 

of major depressive episodes.
75,85, 86

 GABAergic deficits are found postmortem with 

decreased density of calbindin immunoreactive GABA neurons in MDD compared with 

controls.
87

 GABA(A) receptor deficits have also been demonstrated postmortem in the 

brains of MDD suicides.
88

 Olfactory bulbectomy and learned helplessness models in rodents 

have shown deficits in GABAergic function.
76,77

 GABAergic system involvement in the 

pathophysiology of MDD also may involve a complex interplay between GABA and Glu 

that is more abnormal in TRD depression.

This pilot proof of concept study has a small sample size, but all subjects were medication-

free and the measured clinical effects of ketamine were robust. While overall neurochemical 

effect of ketamine was statistically significant, lack of effect on Glx or GABA in some 

patients (Figure 3B) calls for further investigation via larger randomized controlled trials. 1H 

MRS measures total tissue levels, including intracellular, synaptic, and vesicular levels, but 

not transmission or shifts from one compartment to another, which limits interpretation. The 

tissue concentration of GABA requires relatively large voxels for reliable quantification; 

consequently, associated partial volume effects could make measurement more difficult, but 

since this is a within-subject design, partial volume effects were stable throughout the 

infusion. The Glx peak consists of the combined resonances of glutamate and glutamine; 

however, we recently reported that the Glx measured by the J-editing technique contains 
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mainly glutamate, and little or no glutamine.
92

 The contribution of macromolecules known 

to co-edit with GABA was not taken into account and is a potential confound.

Our findings require replication in a larger sample using a wider range of ketamine doses, 

which will generate a more complete dose response curve and more effectively reveal 

correlations, including determining if Glx or GABA responses are predictors of 

antidepressant response. Such a multi-dose study with a larger sample size would also allow 

for further analyses of covariates in antidepressant response to ketamine such as sex 

differences, as a preclinical study
93

 found gonadal hormones enhanced antidepressant-like 

effects of ketamine in female rats. The effect on Glx and GABA observed in this study is an 

early effect that may or may not be the initial step in antidepressant effect, though animal 

data with mTOR suggest that AMPA effects of glutamate initiate the antidepressant cascade. 

Lack of a relationship between a proximal drug effect and clinical response is common in 

the study of the action of psychotropic medications. For example, SSRIs require occupancy 

of at least 80% of transporter sites and MAOIs need to block at least 80% of MAO in order 

to work.
94,95

 Greater occupancy does not correlate with antidepressant response but there is 

little doubt that this initial pharmacological effect is needed for an antidepressant effect.

Conclusion

This pilot study found rapid and comparably robust increases in glutamatergic compounds 

and GABA in most MDD patients in response to ketamine antidepressant treatment of 

MDD, which supports the potential involvement of these amino acid neurotransmitters in the 

antidepressant action of ketamine. Further studies are needed to clarify the relationship 

between clinical response, glutamate and GABA levels and ketamine dose.
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Figure 1. 
(A) Axial and (B) sagittal localizer images showing the size and location of the mPFC voxel 

of interest. (C) Demonstration of in vivo human brain GABA and Glx detection by 1H MRS: 

(a) and (b), single-voxel subspectra acquired in 13.4 minutes with the editing pulse on and 

off and 256 (512 total) interleaved averages; spectrum (c), difference between spectra (a) and 

(b) showing the edited brain GABA and Glx resonances; spectrum (d), model fitting of 

spectrum (c) to obtain the GABA and Glx peak areas; spectrum (e), individual components 

of the fits; spectrum (f), residual of the difference between spectra (c) and (d). 

Abbreviations: GABA, γ-aminobutyric acid; Glx, glutamate + glutamine; NAA, N-acetyl-

aspartate; tCho, total choline; tCr, total creatine; MPFC, medial prefrontal cortex.
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Figure 2. 
Figure 2A. Profile of Mood States (POMS) total score, 24 hours pre-ketamine infusion, 80, 

110 and 230 minutes after ketamine infusion and 24 hours after ketamine infusion. Error 

bars denote standard error of the mean.

Figure 2B. 18 Item Hamilton Depression Rating Scale (HDRS-18) total score, 24 hours pre-

ketamine infusion, 230 minutes after ketamine infusion and 24 hours after ketamine 

infusion. Error bars denote standard error of the mean.

Figure 2C. 19 Item Beck Depression Inventory (BDI) total score, 24 hours pre-ketamine 

infusion, 230 minutes after ketamine infusion and 24 hours after ketamine infusion. Error 

bars denote standard error of the mean.
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Figure 3. 
Figure 3A. Magnetic Resonance Spectroscopy Measurement of GABA/water and Glx/water 

concentrations in Medial Prefrontal Cortex in Major Depressive Disorder before (baseline 

frame), during (frame 1–4-) and after (frame 5–6) an intravenous ketamine infusion (40 

minutes duration). Frame duration was 13:20 minutes. Asterisks denote statistically 

significant group increases in GABA and Glx concentrations relative to pre-ketamine 

baseline levels.

Abbreviations: GABA/W, mean of water-corrected γ-aminobutyric acid level; Glx/W, mean 

of water-corrected glutamate + glutamine level. Error bars denote standard deviation from 

the mean.

Figure 3B. Individual subjects’ Glx/W and GABA/W responses to ketamine as measured by 

the area under the curve. Abbreviations: AUC, area under the curve; GABA/W, water-

corrected γ-aminobutyric acid level; Glx/W, sum of water-corrected glutamate + glutamine 

level.
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Table 3

Change over time in BPRS and POMS sub-scores.

Scale Sub-Score F-Value DF P-Value

POMS

Tension 16.1 3, 38 <0.0001

Depression 16.5 3, 38 <0.0001

Anger 9.5 3, 38 0.0001

Fatigue 18.0 3, 38 <0.0001

Confusion 16.1 3, 38 <0.0001

Vigor 7.1 3, 38 0.0007

BPRS

Anxiety-Depression 33.5 1, 10 0.0002

Anergia 9.8 1, 10 0.01

Thought Disturbance p=1, all values are equal.

Activation 1.9 1, 10 0.20

Hostile-Suspiciousness 3.2 1, 10 0.10

Abbreviations: POMS, Profile of Mood States; BPRS; Brief Psychiatric Rating Scale.
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