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Abstract

We propose two fast covariance smoothing methods and associated software that scale up linearly 

with the number of observations per function. Most available methods and software cannot 

smooth covariance matrices of dimension J > 500; a recently introduced sandwich smoother is an 

exception but is not adapted to smooth covariance matrices of large dimensions, such as J = 10, 

000. We introduce two new methods that circumvent those problems: 1) a fast implementation of 

the sandwich smoother for covariance smoothing; and 2) a two-step procedure that first obtains 

the singular value decomposition of the data matrix and then smoothes the eigenvectors. These 

new approaches are at least an order of magnitude faster in high dimensions and drastically reduce 

computer memory requirements. The new approaches provide instantaneous (a few seconds) 

smoothing for matrices of dimension J = 10,000 and very fast (< 10 minutes) smoothing for J = 

100, 000. R functions, simulations, and data analysis provide ready to use, reproducible, and 

scalable tools for practical data analysis of noisy high-dimensional functional data.
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1 Introduction

The covariance function plays an important role in functional principal component analysis 

(fPCA), functional linear regression, and functional canonical correlation analysis (see, e.g., 

Ramsay and Silverman 2002, 2005). The major difference between the covariance function 

of functional data and the covariance matrix of multivariate data is that functional data is 

measured on the same scale, with sizable noise and possibly sampled at an irregular grid. 

Ordering of functional observations is also important, but it can easily be handled by careful 

indexing. Thus, it has become common practice in functional data analysis to estimate 
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functional principal components by diagonalizing a smoothed estimator of the covariance 

function; see, e.g., Besse and Ramsay (1986); Ramsay and Dalzell (1991); Kneip (1994); 

Besse et al. (1997); Staniswalis and Lee (1998); Yao et al. (2003, 2005).

Given a sample of functions, a simple estimate of the covariance function is the sample 

covariance. The sample covariance, its eigenvalues and eigenvectors have been shown to 

converge to their population counterparts at the optimal rate when the sample paths are 

completely observed without measurement error (Dauxois et al. 1982). However, in practice, 

data are measured at a finite number of locations and often with sizable measurement error. 

For such data the eigenvectors of the sample covariance matrix tend to be noisy, which can 

substantially reduce interpretability. Therefore, smoothing is often used to estimate the 

functional principal components; see, e.g., Besse and Ramsay (1986); Ramsay and Dalzell 

(1991); Rice and Silverman (1991); Kneip (1994); Capra and Müller (1997); Besse et al. 

(1997); Staniswalis and Lee (1998); Cardot (2000); Yao et al. (2003, 2005). There are three 

main approaches to estimating smooth functional principal components. The first approach 

is to smooth the functional principal components of the sample covariance function; for a 

detailed discussion see, for example, Rice and Silverman (1991); Capra and Müller (1997); 

Ramsay and Silverman (2005). The second is to smooth the covariance function and then 

diagonalize it; see, e.g., Besse and Ramsay (1986); Staniswalis and Lee (1998); Yao et al. 

(2003). The third is to smooth each curve and diagonalize the sample covariance function of 

the smoothed curves; see Ramsay and Silverman (2005) and the references therein. Our first 

approach is a fast bivariate smoothing method for the covariance operator which connects 

the latter two approaches. This method is a fast and new implementation of the ‘sandwich 

smoother’ in Xiao et al. (2013), with a completely different and specialized computational 

approach that improves the original algorithm’s computational efficiency by at least an order 

of magnitude. The sandwich smoother with the new implementation will be referred to as 

Fast Covariance Estimation, or FACE. Our second approach is to use smoothing spline 

smoothing of the eigenvectors obtained from a high-dimensional singular value 

decomposition of the raw data matrix and will be referred to as smooth SVD, or SSVD. To 

the best of our knowledge, this approach has not been used in the literature for low- or high-

dimensional data. Given the simplicity of SSVD, we will focus more on FACE, though 

simulations and data analysis will be based on both approaches.

The sandwich smoother provides the next level of computational scalability for bivariate 

smoothers and has significant computational advantages over bivariate P-splines (Eilers and 

Marx 2003; Marx and Eilers 2005) and thin plate regression splines (Wood 2003). This is 

achieved, essentially, by transforming the technical problem of bivariate smoothing into a 

short sequence of univariate smoothing steps. For covariance matrix smoothing, the 

sandwich smoother was shown to be much faster than local linear smoothers. However, 

adapting the sandwich smoother to fast covariance matrix smoothing in the ultrahigh 

dimensions of, for example, modern medical imaging or high density wearable sensor data, 

is not straightforward. For instance, the sandwich smoother requires the sample covariance 

matrix which can be hard to calculate and impractical to store for ultrahigh dimensions. 

While the sandwich smoother is the only available fast covariance smoother, it was never 

tested for dimensions J > 5,000 and becomes computationally impractical for J > 5,000 on 
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current standard computers. All of these dimensions are well within the range of current 

high-dimensional data.

In contrast, our novel approach, FACE, is linear in the number of functional observations 

per subject, provides instantaneous (< 1 minutes) smoothing for matrices of dimension J = 

10,000 and fast (< 10 minutes) smoothing for J = 100, 000. This is done by carefully 

exploiting the low-rank structure of the sample covariance, which allows smoothing and 

spectral decomposition of the smooth estimator of the covariance without calculating or 

storing the empirical covariance operator. The new approach is at least an order of 

magnitude faster in high dimensions and drastically reduces memory requirements; see 

Table 4 in Section 6 for a comparison of computation time. Unlike the sandwich smoother, 

FACE also efficiently estimates the covariance function, eigenfunctions, and scores.

The remainder of the paper is organized as follows. Section 2 provides the model and data 

structure. Section 3 introduces FACE and provides the associated fast algorithm. Section 4 

extends FACE to structured high-dimensional functional data and incomplete data. Section 5 

introduces SSVD, the smoothing spline smoothing of eigenvectors obtained from SVD. 

Section 6 provides simulation results. Section 7 shows how FACE works in a large study of 

sleep. Section 8 provides concluding remarks.

FACE and SSVD are now implemented as R functions “fpca.face” and “fpca2s”, 

respectively, in the publicly available package refund (Crainiceanu et al. 2013).

2 Model and data structure

Suppose that {Xi, i = 1, …, I} is a collection of independent realizations of a random 

functional process X with covariance function K(s, t), s, t ∈ [0,1]. The observed data, Yij = 

Xi(tj) + εij, are noisy proxies of Xi at the sampling points {t1, …, tJ}. We assume that εij are 

i.i.d. errors with mean zero and variance σ2, and are mutually independent of the processes 

Xi.

The sample covariance function can be computed at each pair of sampling points (tj, tℓ) by K̂

(tj, tℓ) = I−1 ∑i YijYiℓ. For ease of presentation we assume that Yij have been centered across 

subjects. The sample covariance matrix, K̂, is the J × J dimensional matrix with the (j, ℓ) 

entry equal to K̂(tj, tℓ). Covariance smoothing typically refers to applying bivariate 

smoothers to K̂. Let Yi = (Yi1, …,YiJ)T, i = 1, …, I, then , 

where Y = [Y1, …,YI] is a J × I dimensional matrix with the ith column equal to Yi. When I 

is much smaller than J, K̂ is of low rank; this low-rank structure of K̂ will be particularly 

useful for deriving fast methods for smoothing K̂.

3 FACE

The FACE estimator of the covariance matrix has the following form

(1)
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where S is a symmetric smoother matrix of dimension J × J. Because of (1), we say FACE 

has a sandwich form. We use P-splines (Eilers and Marx 1996) to construct S so that S = B 
(BT B + λP)−1 BT. Here B is the J × c design matrix {Bk(tj)}1≤j≤J,1≤k≤c, P is a symmetric 

penalty matrix of size c × c, λ is the smoothing parameter, {B1(·), …,Bc(·)} is the collection 

of B-spline basis functions, c is the number of interior knots plus the order (degree plus 1) of 

B-splines. We assume that the knots are equally spaced and use a difference penalty as in 

Eilers and Marx (1996) for the construction of P. Model (1) is a special case of the sandwich 

smoother in Xiao et al. (2013) as the two smoother matrices for FACE are identical. 

However, FACE is specialized to smooth covariance matrices and has some further 

important characteristics.

First, K̃ is guaranteed to be symmetric and positive semi-definite because K̂ is so. Second, 

the sandwich form of the smoother and the low-rank structure of the sample covariance 

matrix can be exploited to scale FACE to high and ultra high dimensional data (J > 10, 000). 

For instance, the eigen-decomposition of K̃ provides the estimates of the eigenfunctions 

associated with the covariance function. However, when J is large, both the smoother matrix 

and the sample covariance matrix are high dimensional and even storing them may become 

impractical. FACE, unlike the sandwich smoother, is designed to obtain the 

eigendecomposition of K̃ without computing the smoother matrix or the sample covariance 

matrix.

FACE depends on a single smoothing parameter, λ, which needs to be selected. The 

algorithm for selecting λ in Xiao et al. (2013) requires O(J2I) computations and can be hard 

to compute when J is large. We propose efficient smoothing parameter estimation 

algorithms that requires only O(JIc) computations; see Section 3.2 for details.

3.1 Estimation of eigenfunctions

Assuming that the covariance function K is in L2([0,1]2), Mercer’s theorem states that K 

admits an eigendecomposition K(s, t) = ∑k λkψk(s)ψk(t) where {ψk(·) : k ≥ 1} is a set of 

orthonormal basis of L2([0,1]) and λ1 ≥ λ2 ≥ ⋯ are the eigenvalues. Estimating the 

functional principal components/eigenfunctions ψk’s is one of the most fundamental tasks in 

functional data analysis and has attracted a lot of attention (Ramsay and Silverman 2005). 

Typically, interest lies in seeking the first few eigenfunctions that explain a large proportion 

of the observed variation. This is equivalent to finding the first few eigenfunctions whose 

linear combination could well approximate the random functions Xi. Computing the 

eigenfunctions of a symmetric bivariate function is generally not trivial. The common 

practice is to discretize the estimated covariance function and approximate its eigenfunctions 

by the corresponding eigenvectors (see, e.g., Yao et al. 2003). In this section, we show that 

by using FACE we can easily obtain the eigendecomposition of the smoothed covariance 

matrix K̃ in equation (1).

We start with the decomposition (BTB)−1/2P(BTB)−1/2 = Udiag(s)UT, where U is the matrix 

of eigenvectors and s is the vector of eigenvalues. Let AS = B(BTB)−1/2U. Then 

which implies that AS has orthonormal columns. It follows that  with ΣS = {Ic 
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+ λdiag(s)}−1. Let  be a c × I matrix, then . Thus 

only the c × c dimensional matrix in the parenthesis depends on the smoothing parameter; 

this observation will lead to a simple spectral decomposition of K̃. Indeed, consider the 

spectral decomposition I−1ΣSỸỸTΣS = AΣAT, where A is the c × c matrix of eigenvectors 

and Σ is the c × c diagonal matrix of eigenvalues. It follows that K̃ = (ASA)Σ(ASA)T which 

is the eigendecomposition of K̃ and shows that K̃ has no more than c nonzero eigenvalues 

(Proposition 1). Because of the dimension reduction of matrices (c × c versus J × J), this 

eigenanalysis of the smoothed covariance matrix is fast. The derivation reveals that through 

smoothing we obtain a smoothed covariance operator and its associated eigenfunctions. An 

important consequence is that the number of elements stored in memory is only O(Jc) for 

FACE, while using other bivariate smoothers requires storing the J × J dimensional 

covariance operators. This makes a dramatic difference, allows non-compromise smoothing 

of covariance matrices, and provides a transparent, easy to use method.

3.2 Selection of the smoothing parameter

We start with the following result.

Proposition 1 Assume c = o(J), then the rank of the smoothed covariance matrix K̃ is at 

most min(c, I).

This indicates that the number of knots controls the maximal rank of the smoothed 

covariance matrix, K̃, or equivalently, the number of eigenfunctions that can be extracted 

from K̃. This implies that using an insufficient number of knots may result in severely 

biased estimates of eigenfunctions and number of eigenfunctions. We propose to use a 

relatively large number of knots, e.g., 100 knots, to reduce the estimation bias and control 

overfitting by an appropriate penalty. Note that for high-dimensional data, J can be 

thousands or more and the dimension reduction by FACE is size-able. Moreover, as only a 

small number of functional principal components is typically used in practice, FACE with 

100 knots seems adequate for most applications. When the covariance function has a more 

complex structure or a larger number of functional principal components are needed, one 

may use a larger number of knots; see Ruppert (2002) and Wang et al. (2011) for 

simulations and theory. Next we focus on selecting the smoothing parameter.

We select the smoothing parameter by minimizing the pooled generalized cross validation 

(PGCV), a functional extension of the GCV (Craven and Wahba 1979),

(2)

Here ‖·‖ is the Euclidean norm of a vector. Criterion (2) was also used in Zhang and Chen 

(2007) and could be interpreted as smoothing each sample, Yi, using the same smoothing 

parameter. We argue that using criterion (2) is a reasonable practice for covariance 

estimation. An alternative but computationally hard method for selecting the smoothing 

parameter is the leave-one-curve-out cross validation (Yao et al. 2005). The following result 

indicates that PGCV can be easily calculated in high dimensions.
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Proposition 2 The PGCV in expression (2) equals to

where sk is the kth element of s, Ckk is the kth diagonal element of ỸỸT, and ‖·‖F is the 

Frobenius norm.

The result shows that , and the diagonal elements of ỸỸT need to be calculated 

only once, which requires O(IJ + cI) calculations. Thus, the FACE algorithm is fast.

FACE algorithm:

Step 1. Obtain the decomposition (BTB)−1/2P(BTB)−1/2 = Udiag(s)UT.

Step 2. Specify S by calculating and storing s and AS = B(BTB)−1/2U.

Step 3. Calculate and store .

Step 4. Select λ by minimizing PGCV in expression (2).

Step 5. Calculate ΣS = {Ic+λdiag(s)}−1.

Step 6. Construct the decomposition I−1ΣSỸỸTΣS = AΣAT.

Step 7. Construct the decomposition K̃ = (ASA)Σ(ASA)T.

The computation time of FACE is O (IJc + Jc2 + c3 + ck0), where k0 is the number of 

iterations needed for selecting the smoothing parameter, and the total required memory is O 

(IJ + I2 + Jc + c2 + k0). See Proposition 3 in the appendix for details. When c = O(I) and k0 

= o(IJ), the computation time of FACE is O(JI2 + I3) and O(JI + I2) memory units are 

required. As a comparison, if we smooth the covariance operator using other bivariate 

smoothers, then at least O(J2 + IJ) memory units are required, which dramatically reduces 

the computational efficiency of those smoothers.

3.3 Estimating the scores

Under standard regularity conditions (Karhunen 1947), Xi(t) can be written as ∑k≥1 ξikψk(t) 

where {ψk : k ≥ 1} is the set of eigenfunctions of K and  are the 

principals scores of Xi. It follows that Yi(tj) = ∑k≥1 ξikψk(tj) + εij. In practice, we may be 

interested in only the first N eigenfunctions and approximate Yi(tj) by . 

Using the estimated eigenfunctions ψ̂
k’s and eigenvalues λk̂’s from FACE, the scores of each 

Xi can be obtained by either numerical integration or as best linear unbiased predictors 

(BLUPs). FACE provides fast calculations of scores for both approaches.

Let Ỹi denote the ith column of Ỹ. Let ξi = (ξi1, …,ξiN)T and let ÂN denote the first N 

columns of A defined in Section 3.1. Let ψk = {ψk(t1), …, ψk(tJ)}T and Ψ = [ψ1, …, ψN]. The 
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matrix J−1/2Ψ is estimated by ASÂN. The method of numerical integration estimates ξik by 

.

Theorem 1 The estimated principal scores ξ̂
i = (ξ̂

i1, …, ξ̂
iN)T using numerical integration 

are , 1 ≤ i ≤ I.

We now show how to obtain the estimated BLUPs for the scores. Let 

 and εi = (εi1, …, εiJ)T. Then Yi = Ψξi + εi. The covariance 

var(ξi) = diag(λ1, …,λN) can be estimated by J−1 Σ̂
N = J−1 diag(λ1̂, …,λN̂). The variance of 

εij can be estimated by

(3)

Theorem 2 Suppose Ψ is estimated by J1/2 ASÂN, var(ξi) = diag(λ1, …,λN) is estimated by 

Σ̂
N = diag(λ̂

1, …, λ̂
N), and σ2 is estimated by σ̂2 in equation (3). Then the estimated BLUPs 

of ξi are given by , for 1 ≤ i ≤ I.

Theorems 1 and 2 provide fast approaches for calculating the principal scores using either 

numerical integration or BLUPs. These approaches combined with FACE are much faster 

because they make use of the calculations already done for estimating the eigenfunctions 

and eigenvalues. When J is large, the scores by BLUPs tend to be very close to those 

obtained by numerical integration; in the paper we only use numerical integration.

4 Extension of FACE

4.1 Structured functional data

When analyzing structured functional data such as multilevel, longitudinal, and crossed 

functional data (Di et al. 2009; Greven et al. 2010; Zipunnikov et al. 2011, 2012; Shou et al. 

2013), the covariance matrices have been shown to be of the form YHYT, where H is a 

symmetric matrix; see Shou et al. (2013) for more details. We assume H is positive semi-

definite because otherwise we can replace H by its positive counterpart. Note that if H1 is a 

matrix such that , smoothing YHYT can be done by using FACE for the 

transformed functional data YH1. This insight is particularly useful for the sleep EEG data, 

which has two visits and requires multilevel decomposition.

4.2 Incomplete data

To handle incomplete data, such as the EEG sleep data where long portions of the functions 

are unavailable, we propose an iterative approach that alternates between covariance 

smoothing using FACE and missing data prediction. Missing data are first initialized using a 

smooth estimator of each individual curve within the range of the observed data. Outside of 

the observed range the missing data are estimated as the average of all observed values for 

that particular curve. FACE is then applied to the initialized data, which produces 
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predictions of scores and functions and the procedure is then iterated. We only use the 

scores of the first N components, where N is selected by the criterion

Suppose Ψ̂ is the p × N matrix of estimated eigenvectors from FACE, Σ̂N = diag(λ̂
1, …,λ̂

N) 

is the matrix of estimated eigenvalues, and  is the estimated variance of the noise. Let yobs 

denote the observed data and ymis the missing data for a curve. Similarly, Ψ̂obs is a sub-

matrix of Ψ̂ corresponding to the observed data and Ψ̂
mis is another submatrix of Ψ̂ 

corresponding to the missing data. Then the prediction (ŷmis, ξ̂) minimizes the following

Note that if there is no missing data, the solution to this minimization problem leads to 

Theorem 2. For the next iteration we replace ymis by ŷmis and re-apply FACE to the updated 

complete data. We repeat the procedure until convergence is reached. In our experience 

convergence is very fast and typically achieved in fewer than 10 iterations.

5 The SSVD estimator and a subject-specific smoothing estimator

A second approach for estimating the eigenfunctions and eigenvalues is to decompose the 

sample covariance matrix K̂ and then smooth the eigenvectors. First let  be the 

singular value decomposition (SVD) of the data matrix Y. Here Uy is a J × I matrix with 

orthonormal columns, Vy is an I orthogonal matrix, and Dy is an I diagonal matrix. The 

columns of Uy contain all the eigenvectors of K̂ that are associated with non-zero 

eigenvalues and the set of diagonal elements of  contain all the non-zero eigenvalues 

of K̂. Thus, obtaining Uy and Dy is equivalent to the eigendecomposition of K̂. Then we 

smooth the retained eigenvectors by smoothing splines, implemented by the R function 

“smooth.spline”. SSVD avoids the direct decomposition of the sample covariance matrix 

and is computationally simpler. SSVD requires O{min(I, J)IJ} computations.

The approach of smoothing each curve and then diagonalizing the sample covariance 

function of the smoothed curves can also be efficiently implemented. First we smooth each 

curve using smoothing splines. We use the R function “smooth.spline” which requires only 

O(J) computations for a curve with J data points. Our experience is that the widely used 

function “gam” in the R package mgcv (Wood 2013) is much slower and can be 

computationally intensive with a number of curves to smooth. Then instead of directly 

diagonalizing the sample covariance of the smoothed curves, which requires O(J3) 

computations, we calculate the singular value decomposition of the I × J matrix formed by 

the smoothed curves, which requires only O(min(I,J)IJ) computations. The resulting right 

singular vectors estimate the eigenfunctions scaled by J−1/2. Without the SVD step, a brute-

force decomposition of the J × J sample covariance becomes infeasible when J is large, such 
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as 5, 000. We will refer to the this approach as S-Smooth, which, to the best of our 

knowledge, is the first computationally efficient method for covariance estimation using 

subject-specific smoothing.

We will compare SSVD, S-Smooth and FACE in terms of performance and computation 

time in the simulation study.

6 Simulation

We consider three simulation studies. In the first study we use moderately high-dimensional 

data contaminated with noise. We let J = 3,000 and I = 50, which are roughly the 

dimensions of the EEG data in Section 7.We use SSVD, S-Smooth and FACE. We did not 

evaluate other bivariate smoothers because we were unable to run them on such dimensions 

in a reasonably short time. In the second study we consider functional data where portions of 

the observed functions are missing completely at random (MCAR). This simulation is 

directly inspired by our EEG data where long portions of the functions are missing. In the 

last study we assess the computation time of FACE and compare it with that of SSVD and 

S-Smooth. We also provide the computation time of the sandwich smoother (Xiao et al., 

2013). We use R code that is made available with this paper. All simulations are run on 

modest, widely available computational resources: an Intel Core i5 2.4 GHz Mac with 8 

gigabytes of random access memory.

6.1 Complete data

We consider the following covariance functions:

1&2
Finite basis expansion.  where ψℓ’s are 

eigenfunctions and λℓ’s are eigenvalues. We choose λℓ = 0.5ℓ−1 for ℓ =1,2,3 and 

there are two sets of eigenfunctions: case 1: 

 and ; and case 2: 

 and 

.

3
Brownian motion.  with eigenvalues 

 and eigenfunctions .

4
Brownian bridge.  with eigenvalues  and 

eigenfunctions .

5 Matérn covariance structure. The Matérn covariance function
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with range ϕ = 0.07 and order ν = 1. Here Kν is the modified Bessel function of 

order ν. The top three eigenvalues for this covariance function are 0.209, 0.179 

and 0.143.

We generate data at {1/J,2/J, …,1} with J = 3,000 and add i.i.d.  (0,σ2) errors to the data. 

We let

which implies that the signal to noise ratio in the data is 1. The number of curves is I = 50 

and for each covariance function 200 datasets are drawn.

We compare the performance of the three methods to estimate: (1) the covariance matrix; 

(2) the eigenfunctions; and (3) the eigenvalues. For simplicity, we only consider the top 

three eigenvalues/eigenfunctions. For FACE we use 100 knots; for SSVD and S-Smooth we 

use smoothing splines, implemented through the R function ‘smooth.spline’. Figure 1 

displays, for one simulated data set for each case, the true and estimated eigenfunctions 

using SSVD and FACE, as well as the estimated eigenfunctions without smoothing.

We see from Figure 1 that the smoothed eigenfunctions are very similar and the estimated 

eigenfunctions without smoothing are quite noisy. The results are expected as all smoothing-

based methods are designed to account for the noise in the data and the discrepancy between 

the estimated and the true eigenfunctions is mainly due to the variation in the random 

functions. Table 1 provides the mean integrated squared errors (MISE) of the estimated 

eigenfunctions indicating that FACE and S-Smooth have better performance than SSVD. 

For case 5, the smoothed eigenfunctions for all methods are far from the true eigenfunctions. 

This is not surprising because for this case the eigenvalues are close to each other and it is 

known that the accuracy of eigenfunction estimation also depends on the gap between 

consecutive eigenvalues; see for example, Bunea and Xiao (2013). In terms of covariance 

estimation, Table 2 suggests that SSVD is outperformed by the other two methods. 

However, the simplicity and robustness of SSVD may actually make it quite popular in 

applications.

Figure 2 shows boxplots of estimated eigenvalues that are centered and standardized, λ̂
k/λk − 

1. The SSVD method works well for cases 1 and 2, where the true covariance has only three 

non-zero eigenvalues, but tends to overestimate the eigenvalues for the other three cases, 

where the covariance function has an infinite number of non-zero eigenvalues. In contrast, 

the FACE and S-Smooth estimators underestimate the eigenvalues for the simple cases 1 

and 3 but are much closer to the true eigenvalues for the more complex cases. Table 3 

provides the average mean squared errors (AMSEs) of λ̂
k/λk − 1 for k = 1,2, 3, and indicates 

that S-Smooth and FACE tend to estimate the eigenvalues more accurately.

6.2 Incomplete data

In Section 4.2 we extended FACE for incomplete data, and here we illustrate the extension 

with a simulation.We use the same simulation setting in Section 6.1 except that for each 
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subject we allow for portions of observations missing completely at random. For simplicity 

we fix the length of each portion so that 0.065J consecutive observations are missing. We 

allow one subject to miss either 1, 2, or 3 portions with equal probabilities so that in 

expectation 13% of the data are missing. Note that the real data we will consider later also 

has about 13% measurements missing.

In Figure 2, boxplots of the estimated eigenvalues are shown. The MISEs of the estimated 

covariance function and estimated eigenfunctions and the AMSEs of the estimated 

eigenvalues appear in Tables 2, 1 and 3, respectively. The simulation results show that the 

performance of FACE degrades only marginally.

6.3 Computation time

We record the computation time of FACE for various combinations of J and I. All other 

settings remain the same as in the first simulation study and we use the eigenfunctions from 

case 1. For comparison the computation times of SSVD, S-Smooth and the sandwich 

smoother (Xiao et al. 2013) are also given. Table 4 summarizes the results and shows that 

FACE is fast even with high-dimensional data while the computation time of the sandwich 

smoother increases dramatically with J, the dimension of the problem. For example it took 

FACE only 5 seconds to smooth a 10,000 by 10,000 dimensional matrix for 500 subjects, 

while the sandwich smoother did not run on our computer. While SSVD, S-Smooth and 

FACE are all fast to compute, FACE is computationally faster when I =500.We note that S-

Smooth has additional problems when data are missing, though a method similar to FACE 

may be devised. Ultimately, we prefer the self-contained, fast, and flexible FACE approach.

Although we do not run FACE on ultrahigh-dimensional data, we can obtain a rough 

estimate of the computation time by the formula O(JIc). Table 4 shows that FACE with 500 

knots takes 5 seconds on data with (J, I) = (10000,500). For data with J equal to 100,000 and 

I equal to 2,000, FACE with 500 knots should take 4 minutes to compute, without taking 

into account the time for loading data into the computer memory. Our code was written and 

run in R, so a faster implementation of FACE may be possible on other software platforms.

7 Example

The Sleep Heart Health Study (SHHS) is a large-scale study of sleep and its association with 

health-related outcomes. Thousands of subjects enrolled in SHHS underwent two in-home 

polysomnograms (PSGs) at multiple visits. Two-channel electroencephalographs (EEG), 

part of the PSG, were collected at a frequency of 125Hz, or 125 observations per second for 

each subject, visit and channel. We model the proportion of δ-power which is a summary 

measure of the spectrum of the EEG signal. More details on δ-power can be found in 

Crainiceanu et al. (2009) and Di et al. (2009). The data contain 51 subjects with sleep-

disordered breathing (SDB) and 51 matched controls; see Crainiceanu et al. (2012) and 

Swihart et al. (2012) for details on how the pairs were matched. An important feature of the 

EEG data is that long consecutive portions of observations, which indicate wake periods, are 

missing. Figure 3 displays data from 2 matched pairs. In total about 13% of the data is 

missing.
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Similar to Crainiceanu et al. (2012), we consider the following statistical model. The data 

for proportion of δ-power are pairs of curves {YiA(t),YiC(t)}, where i denotes subject, t = t1, 

…, tJ (J = 2,880) denotes the time measured in 5-second intervals in a 4-hour sleep interval 

from sleep onset, A stands for apneic and C stands for control. The model is

(4)

where μA(t) and μC(t) are mean functions of proportions of δ-power, Xi(t) is a functional 

process with mean 0 and continuous covariance operator KX (·, ·), UiA(t) and UiC(t) are 

functional processes with mean 0 and continuous covariance operator KU(·, ·), and εiA(t), 

εiC(t) are measurement errors with mean 0 and variance σ2. The random processes 

Xi,UiA,UiC, εiA and εiC are assumed to be mutually independent. Here Xi accounts for the 

between-pair correlation of the data while UiA and UiC model the within-pair correlation. 

The Multilevel Functional Principal Component Analysis (MFPCA) (Di et al. 2009) can be 

used to analyze data with model (4). One crucial step of MFPCA is to smooth two estimated 

covariance operators which in this example are 2880 × 2880 matrices.

Smoothing large covariance operators of dimension 2880 × 2880 can be computationally 

expensive. We tried bivariate thin plate regression splines and used the R function ‘bam’ in 

the mgcv package (Wood 2013) with 35 equally-spaced knots for each axis. The smoothing 

parameter was automatically selected by ‘bam’ with the option ‘GCV.cp’. Running time for 

thin plate regression splines was three hours. Because the two covariance operators take the 

form in Section 4.1 (see the details in Appendix B), we applied FACE, which ran in less 

than 10 seconds with 100 knots. Note that we also tried thin plate splines with 100 knots in 

mgcv, which was still running after 10 hours. Figure 4 displays the first three eigenfunctions 

for KX and KU, using both methods. As a comparison, the eigenfunctions using SSVD are 

also shown. For the SSVD method, to handle incomplete data the SVD step was replaced by 

a brute-force decomposition of the two 2880 × 2880 covariance operators. Figure 4 shows 

that the top eigenfunctions obtained from the two bivariate smoothing methods are quite 

different, except for the first eigenfunctions on the top row. The estimated eigenfunctions 

using FACE in general resemble those by SSVD with some subtle differences, while thin 

plate splines in this example seem to over-smooth the data, probably because we were 

forced to use a smaller number of knots.

The smoothed eigenfunctions from FACE using PGCV (red solid lines in Figure 4) appear 

undersmooth. This may be due to the well reported tendency of GCV to undersmooth as 

well as to the noisy and complex nature of the data. A common way to combat this problem 

is to use modified GCV (modified PGCV for our case) where tr(S) in (2) is multiplied by a 

constant α that is greater than 1; see Cummins et al. (2001) and Kim and Gu (2004) for such 

practices for smoothing splines. Similar practice has also been proposed for AIC in 

Shinohara et al. (2014). We re-ran the FACE method with α = 2 and the resulting estimates 

(green solid lines in Figure 4) appear more satisfactory. In this case, the direct smoothing 

approach of the eigenfunctions (Rice and Silverman 1991; Capra and Müller 1997; Ramsay 

and Silverman 2005) might provide good results. However, the missing data issue and the 

computational difficulty associated with large J make the approach difficult to use.
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Table 5 provides estimated eigenvalues of KX and KU. Compared to FACE (with α = 2), thin 

plate splines over-shrink significantly the eigenvalues, especially those of the between pair 

covariance. The results from FACE in Table 5 show that the proportion of variability 

explained by KX, the between-pair variation, is 14.40/(14.40 + 22.75) ≈ 38.8%.

8 Discussion

In this paper we developed a fast covariance estimation (FACE) method that could 

significantly alleviate the computational difficulty of bivariate smoothing and 

eigendecomposition of large covariance matrices in FPCA for high-dimensional data. 

Because bivariate smoothing and eigendecomposition of covariance matrices are integral 

parts of FPCA, our method could increase the scope and applicability of FPCA for high-

dimensional data. For instance, with FACE, one may consider incorporating high-

dimensional functional predictors into the penalized functional regression model of 

Goldsmith et al. (2011).

The proposed FACE method can be regarded as a two-step procedure such as S-Smooth 

(see, e.g., Besse and Ramsay 1986; Ramsay and Dalzell 1991; Besse et al. 1997; Cardot 

2000; Zhang and Chen 2007). Indeed, if we first smooth data at the subject level Ŷi = SYi, i 

= 1, …, I, then it is easy to show that the empirical covariance estimator of the Ŷi is equal to 

e K̃. There are, however, important computational differences between FACE and the 

current two-step procedures. First, the fast algorithm in Section 3.2 enables FACE to select 

efficiently the smoothing parameter. Second, FACE could work with structured functional 

data and allow for different smoothing for each covariance operator. Third, FACE can be 

easily extended for incomplete data where long consecutive portions of data are missing 

while it is unclear how a two-step procedure could be used for such data.

The second approach, SSVD, is very simple and reasonable, though some problems remain 

open, especially in applications with missing data. Another drawback of SSVD is that the 

smoothed eigenvectors are not necessarily orthogonal, though the fast Gram-Schmidt 

algorithm could easily be applied to the smooth vectors. Overall, we found that using a 

combination of FACE and SSVD provides a reasonable and practical starting point for 

smoothing covariance operators for high dimensional functional data, structured or 

unstructured.

In this paper we have only considered the case when the sampling points are the same for all 

subjects. Assume now for the ith sample that we observe Yi = {Yi(ti1), …,Yi(tiJi)}T, where 

tij, j = 1, …,Ji can be different across subjects. In this case the empirical estimator of the 

covariance operator does not have a decomposable form. Consider the scenario when 

subjects are densely sampled and all Ji’s are large. Using the idea from Di et al. (2009), we 

can undersmooth each Yi using, for example, a kernel smoother with a small bandwidth or a 

regression spline. FACE can then be applied on the under-smoothed estimates evaluated at 

an equally spaced grid, {Ŷ1, …,ŶI}. Extension of FACE to the sparse design scenario 

remains a difficult open problem.
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A Appendix: Proofs

Proof of Proposition 1: The design matrix B is of full rank (Xiao et al. 2012). Hence BTB is 

invertible and AS is of rank c. ΣS is a diagonal matrix with all elements greater than 0 and Ỹ 

is of rank at most min(c, I). Hence  has a rank at most min(c, 

I) and the proposition follows.

Proof of Proposition 2: First of all, tr(S) = tr(ΣS) which is easy to calculate. We now 

compute . Because 

,

It can be shown that . Hence 

. Similarly, we derive tr(SYYT) = 

tr(ΣSỸỸT). We have . It follows that

Proposition 3 The computation time of FACE is O (IJc + Jc2 + c3 + ck0), where k0 is the 

number of iterations needed for selecting the smoothing parameter (see Section 3.2), and the 

total required computer memory is O (JI + I2 + Jc + c2 + k0) memory units.

Proof of Proposition 3: We need to compute or store the following quantities: X, B, BTB, 

(BTB)−1/2, P, (BTB)−1/2P(BTB)−1/2, AS, Ỹ, A, U, and ASA. For the computational 

complexity, BTB, AS = B(BTB)−1/2U, and ASA require O(Jc2) computations; (BTB)−1/2, P, 

(BTB)−1/2P(BTB)−1/2, A, and U require O(c3) computations;  requires O(JIc) 

computations. So in total, O(JIc + Jc2 + c3) computations are required. For the memory 

burden, the loading of Y requires O(JI) memory units, computer of B and ASA requires 

O(Jc) memory units, and other objects require O(c2) memory units.

Proof of Theorem 1:We have . 

Proof of Theorem 2: Let ÃN denote the first N columns of ASA, then ÃN = ASÂ. The 

estimated BLUPs for ξi (Ruppert et al. 2003) is
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The inverse matrix in the above equality can be replaced by the following (Seber (2007), 

page 309, equality b(i)),

It follows that

B Appendix: Empirical covariance operators for KX and KU

Let I denote the number of pairs of cases and controls. For simplicity, we assume estimates 

of μA(t) and μC(t) have been subtracted from YiA and YiC, respectively. Let YiA = (YiA(t1), 

…,YiA(tT))T and YiC = (YiC(t1), …,YiC(tJ))T. By Zipunnikov et al. (2011), we have estimates 

of the covariance operators,

and

Let YA = [Y1A, …,YnA], YC = [Y1C, …,YnC] and Y = [YA,YC]. Then Y is of dimension J × 

2I. It can be shown that K̂
X = YHXYT and K̂

U = YHUYT, where
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Fig. 1. 
True and estimated eigenfunctions for three cases each with one simulated data set. Each 

row corresponds to one simulated data set. Each box shows the true eigenfunction (blue dot-

dashed lines), the estimated eigenfunction using FACE (red solid lines), the estimated 

eigenfunction using SSVD (cyan dashed lines), and the estimated eigenfunction without 

smoothing (black dotted lines). We do not show the estimates from S-Smooth and FACE 

(incomplete data) because they are almost identical to these from FACE and SSVD.
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Fig. 2. 
Boxplots of the centered and standardized estimated eigenvalues, λ̂

k/λk − 1. The top panel is 

for case 2, the middle panel is for case 4, and the bottom panel is for case 5. The zero is 

shown by the solid red line. Case 1 is similar to case 2 and case 3 is similar to case 4, and 

hence are not shown.
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Fig. 3. 
Data for two matched pairs of case and controls in the Sleep Heart Health Study. The red 

lines are for cases while the black are for controls. For simplicity only the last observation in 

each minute of the 4-hour interval is shown.
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Fig. 4. 
The eigenfunctions associated with the top three eigenvalues of KX and KU for the Sleep 

Heart Health Study data. The left column is for KX and the right one is for KU. The red and 

green solid lines correspond to the FACE approach using the original and modified GCV, 

respectively. The black dashed lines are for thin plate splines, and the cyan dotted lines are 

for SSVD.
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Table 2

100×MISEs of the three methods for estimating the covariance function. The incomplete data has about 13% 

observations missing.

SSVD S-Smooth FACE FACE
incomplete data

Case 1 9.34 8.96 8.94 8.93

Case 2 8.96 8.64 8.62 8.69

Case 3 1.22 0.76 0.76 0.76

Case 4 0.11 0.07 0.07 0.08

Case 5 2.69 1.98 1.98 2.18
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Table 5

Estimated eigenvalues of KX and KU. All eigenvalues are multiplied by J to refer to the variation in the data 

explained by the eigenfunctions. The row ‘all’ refers to the sum of all positive eigenvalues.

Eigenfunction SSVD FACE Thin Plate Splines

KX

1 4.31 3.92 1.91

2 2.64 2.66 0.50

3 1.88 1.35 0.31

all 48.14 14.40 2.81

KU

1 8.84 6.33 6.75

2 5.69 3.18 2.55

3 5.03 2.86 2.04

all 107.95 22.75 12.95
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