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Abstract
Rationale Lithium is an effective treatment for bipolar disor-
der, but safety issues complicate its clinical use. The antioxi-
dant drug, ebselen, may be a possible lithium-mimetic based
on its ability to inhibit inositol monophosphatase (IMPase), an
action which it shares with lithium.
Objectives Our primary aim was to determine whether
ebselen lowered levels of inositol in the human brain. We also
assessed the effect of ebselen on other brain neurometabolites,
including glutathione, glutamate, glutamine, and glutamate +
glutamine (Glx)
Methods Twenty healthy volunteers were tested on two occa-
sions receiving either ebselen (3600 mg over 24 h) or identical
placebo in a double-blind, random-order, crossover design.
Two hours after the final dose of ebselen/placebo, participants
underwent proton magnetic resonance spectroscopy (1H
MRS) at 7 tesla (T) with voxels placed in the anterior cingulate
and occipital cortex. Neurometabolite levels were calculated
using an unsuppressed water signal as a reference and corrected
for individual cerebrospinal fluid content in the voxel.

Results Ebselen produced no effect on neurometabolite levels
in the occipital cortex. In the anterior cingulate cortex, ebselen
lowered concentrations of inositol (p = 0.028, Cohen’s
d=0.60) as well as those of glutathione (p=0.033, d=0.58),
glutamine (p=0.024, d=0.62), glutamate (p=0.01, d=0.73),
and Glx (p=0.001, d=1.0).
Conclusions The study suggests that ebselen produces a func-
tional inhibition of IMPase in the human brain. The effect of
ebselen to lower glutamate is consistent with its reported abil-
ity to inhibit the enzyme, glutaminase. Ebselen may have po-
tential as a repurposed treatment for bipolar disorder.
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Introduction

Six decades after its introduction as a treatment for acute ma-
nia, lithium remains the most efficacious treatment for bipolar
disorder. As a prophylactic agent, lithium prevents both mania
and depression and is the only psychotropic drug shown reli-
ably to decrease suicidal behavior (Miura et al. 2014; Cipriani
et al. 2013; Geddes et al. 2010). However, lithium treatment
has several drawbacks including poor tolerance, a narrow ther-
apeutic window, longer-term toxicity, particularly for the kid-
ney, and the risk of teratogenicity (McKnight et al. 2012;
Shine et al. 2015). Therefore, a form of drug treatment which
has the efficacy of lithium without its toxicity would be a
worthwhile development.

Rational design of a lithium-like mood stabilizer could be
pursued based on its mechanism of action, but lithium’s ther-
apeutic target remains unclear. Based on clinically relevant
lithium concentrations (0.6–1.2 mM), the two most likely

* Philip J. Cowen
phil.cowen@psych.ox.ac.uk

1 Department of Psychiatry,Warneford Hospital, University of Oxford,
Oxford OX3 7JX, UK

2 Department of Pharmacology, University of Oxford, Mansfield
Road, Oxford OX1 3QT, UK

3 The Oxford Centre for Functional MRI of the Brain, Nuffield
Department of Clinical Neurosciences, John Radcliffe Hospital,
University of Oxford, Oxford OX3 9DU, UK

4 Current Address: Centre for Neuroimaging Studies, PO 089,
De Crespigny Park, London SE5 8AF, UK

Psychopharmacology (2016) 233:1097–1104
DOI 10.1007/s00213-015-4189-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00213-015-4189-2&domain=pdf


targets are glycogen synthase kinase 3 and inositol
monophosphatase (IMPase) (Berridge et al. 1989; Belmaker
et al. 1996; Agam et al. 2009). Recently, we reported inhibi-
tion of IMPase by ebselen (IC50 1.5 μM), a bioavailable an-
tioxidant drug that has been tested in humans for other dis-
eases including post-stroke neuroprotection and noise-
induced hearing loss (Singh et al. 2013; Lynch and Kil
2009; Azad and Tomar 2014).

We found in animals that ebselen administration lowered
brain myo-inositol levels, consistent with functional inhibition
of IMPase (Singh et al. 2013), and subsequently in a healthy
volunteer study, showed that three 600-mg doses of ebselen
over 24 h lowered levels of myo-inositol in the anterior cin-
gulate cortex but not in the occipital cortex as measured by
magnetic resonance spectroscopy (MRS) at 3 T (Singh et al.
2015). The aim of the present study was to replicate this find-
ing using a higher dose of ebselen and at a higher field
strength (7 T). MRS at 7 T was chosen because the increase
in signal to noise ratio (SNR) and spectral resolution allow for
more precise metabolite quantification as well as the clear
identification of separate glutamate and glutamine resonances
as compared to 3 T (Tkáč et al. 2009). Assessment of the
effects of ebselen on brain glutamate concentration is of inter-
est because ebselen is reported to inhibit the glutamate-
synthesizing enzyme, glutaminase, in vitro (Thomas et al.
2013).

Methods

Participants and study design

Ethical approval for the study was obtained from the National
Research Ethics Service Committee (NRES), South-Central
Oxford B. Twenty healthy volunteers (7 females, 13 males,
mean age 25.1 years, range 20–38 years; mean BMI 22.7 kg/
m2, range 18.7–30.0 kg/m2) were included in the study after
giving full informed written consent. Exclusion criteria in-
cluded a history of any DSM-IV Axis I psychiatric disorder
(determined using the Standard Clinical Interview for
Diagnostic and Statistical Manual for Mental Health
Disorders—Fourth Edition), significant current medical con-
dition, current regular medication (apart from the contracep-
tive pill), pregnancy or lactation, heavy smoking (defined as
more than five cigarettes per day), having taken part in another
study involving an investigational drug within the last
3 months, and contraindications to MRI scanning.
Participants were asked to maintain stable exercise and diet
as well as refrain from alcohol during study participation.

Ebselen capsules and identical matching placebo (contain-
ing microcrystalline cellulose) were purchased from Shasun
pharmaceuticals Ltd. Participants were tested twice (7 days
apart) receiving on one occasion ebselen and on the other,

placebo in a random-order, double-blind, crossover design.
Ebselen was administered in 6× 200 mg capsules in three
doses given over 2 days. On the day before the scan visit,
participants were asked to take the first dose at 1 pm and the
second dose at 10 pm. The final dose was taken 2 h prior to the
MRI scan session. Participants were sent text message re-
minders a few minutes before they were due to take medica-
tion and were asked to confirm receiving the messages.

Proton magnetic resonance spectroscopy

Proton magnetic resonance spectroscopy (1H MRS) scanning
took place at the Functional Magnetic Resonance Imaging of
the Brain (FMRIB) Centre. Scanning was performed on a 7 T
Siemens MAGNETOM scanner (Siemens, Erlangen,
Germany) equipped with a Nova Medical 32 channel receive
array head coil. Spectra were measured from two 8-ml voxels,
one in the anterior cingulate cortex and the other in the occip-
ital cortex (Fig. 1). Voxels were positioned manually by ref-
erence to 1-mm isotropic T1-MPRAGE image. To ensure re-
producibility of voxel placement during both 1H MRS scan
visits, screenshots of each anatomical region showing voxel
placement in three planes were taken from each subject during
the first visit. These were used to guide voxel placement dur-
ing the second visit.

First- and second-order shims were first adjusted by
gradient-echo shimming (Shah et al. 2009). The second step
involved only fine adjustment of first order shims using
FASTMAP (Gruetter and Tkáč 2000). Spectra were acquired
using a Stimulated Echo Acquisition Mode (STEAM) pulse
sequence (TE=11 ms, TR=5 s, number of transients =64)
with variable power radiofrequency pulses with optimized
relaxation delay (VAPOR) water suppression and outer vol-
ume saturation (Emir et al. 2012). Unsuppressed water spectra
acquired from the same voxel were used to remove residual
eddy current effects and to reconstruct the phased array
spectra.

Metabolites were quantified using LCModel (Provencher,
2001). The model spectra of aspartate (Asp), ascorbate/
vi tamin C (Asc), glycerophosphochol ine (GPC),
phosphocholine (PC), creatine (Cr), phosphocreatine (PCr),
γ-aminobutyric acid (GABA), glucose (Glc), glutamine
(Gln), glutamate (Glu), glutathione (GSH), myo-inositol
( m y o - I n s ) , N - a c e t y l a s p a r t a t e ( N A A ) , N -
acetylaspartylglutamate (NAAG), phosphoethanolamine
(PE), scyllo-inositol (scyllo-Ins), and taurine (Tau) were gen-
erated based on previously reported chemical shifts and cou-
pling constants (Govindaraju et al. 2000; Tkáč 2008) by using
GAMMA/PyGAMMA simulation library of VeSPA for car-
rying out the density matrix formalism (VErsatile Simulation,
Pulses and Analysis) (Soher et al. 2011). Simulations were
performed with the same RF pulses and sequence timings as
that on the 7 T system. A macromolecule spectrum acquired
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from the occipital cortex, using an inversion recovery se-
quence (TR=3 s, TE=11 ms, inversion time TI=0.685 s),
was included in the model spectra. Metabolite concentrations
were obtained relative to an unsuppressed water spectrum
acquired from the same VOI assuming a water content of
82 % for the occipital cortex and anterior cingulate, which
primarily contain gray matter.

The MPRAGE images were segmented using FAST
(FMRIB’s Automated Segmentation Tool, part of the FSL
toolbox) to determine CSF fraction (fCSF) in the voxels
(Zhang et al. 2001). Concentrations were then corrected for
CSF fraction with the following formula: [Mcorr] = [M] · (1/[1
− fCSF]), where [Mcorr] = corrected concentration and
[M]=metabolite concentration from LCModel output. Pairs
of MRS spectra with a difference in full width at half-
maximum (FWHM) difference of >0.01 ppm were excluded
(three for the anterior cingulate cortex, none for the occipital
cortex).

Metabolites quantified with Cramér-Rao lower bounds
(CRLB, estimated error of the metabolite quantification)
>50 % were classified as not detected. As a secondary filter
to select reliable metabolite concentrations, only metabolites
quantified with CRLB ≤50 % in at least half of the spectra
from a brain region were reported. If the correlation between
two metabolites was consistently high (correlation coefficient

<−0.5) in a given region, their sum was reported, such as
Glc+Tau, NAA+NAAG (tNAA, total NAA), Cr+PCr (tCr,
total creatine), and GPC+PC (tCho, total choline).

Statistics

Statistical analyses were performed in SPSS version 22.
Differences in metabolite concentrations between placebo
and ebselen administration were determined using separate
multivariate analysis of variance (MANOVA) for the anterior
cingulate cortex and occipital cortex. Significant effects on the
MANOVA were followed up with post hoc paired sample t
test. The change in myo-inositol concentration was taken as
the primary end point.

Results

The ebselen treatment was well tolerated and no participant
dropped out of the study (the neuropsychological effects of
ebselen treatment will be described in a separate report). MRS
voxel placement and representative spectra from the anterior
cingulate cortex (ACC) and occipital cortex (OCC) are shown
in Fig. 1. For the ACC, we obtained 19 pairs of measurements
(no measurements were obtained from one subject due to

Fig. 1 Voxel placement and representative spectra from the anterior
cingulate cortex (ACC) and occipital cortex (OCC). Each acquired
spectrum (64 averages) is overlaid with the metabolite fit from
LCModel (red line) with major peaks labeled. The difference between

the metabolite fit and underlying spectrum is shown below as a residual,
which remains small and uniform indicating a high quality spectral fit.
tCR total creatine, Insmyo-inositol, Cho choline, Glu glutamate, NAA N-
acetylaspartate
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technical difficulty). Three pairs of spectra with an FWHM
difference >0.01 ppm were excluded, resulting in 16 pairs
being included in the analysis. For the OCC, all 20 pairs of
measurements were included in the analysis. All the spectra
were of high quality, with average signal to noise ratio (SNR)
of 39.97±1.04 (mean±SEM), linewidth of 9.60±0.34 Hz for
the ACC and SNR of 45.65±0.92, linewidth 9.62±0.12 Hz
for the OCC. All the metabolites of interest were quantified at
an average CRLB of <15 %, consistent with high quality data
at ultra high-field imaging.

The MANOVA for the anterior cingulate cortex (Wilks
Lamda) showed a main effect of ebselen treatment
(F=12.48; p=0.003) and a significant interaction between
treatment and neurometabolite (F=3.38; p=0.044). Follow-
up pairwise comparisons revealed that ebselen decreased ino-
sitol concentrations within this region (Table 1, Fig. 2). There
were also significant reductions in glutathione, glutamine, glu-
tamate, and Glx (Fig. 3), the latter being a composite of glu-
tamate and glutamine. There was no change in concentrations
of γ-aminobutyric acid (GABA) or total N-acetylaspartate
(NAA) (Table 1).

The MANOVA for the occipital cortex (Wilks’ Lamda)
showed neither a main effect of ebselen treatment (F=0.01;
p=0.93) nor a significant interaction between treatment and
neurometabolite (F=0.99; p=0.47) (Table 2).

Discussion

As in our previous MRS study at 3 T (Singh et al. 2015),
ebselen treatment in healthy volunteers produced a small but
significant reduction in myo-inositol in the anterior cingulate
cortex but not in the occipital cortex. Interestingly, the extent
of the reduction (about 4 %) was very similar in both studies,

suggesting a lack of dose-response of this particular effect at
the two doses of ebselen used (1800 vs 3600mg over 24 h). In
animal studies, ebselen also lowers myo-inositol in the brain
presumably through its ability to inhibit IMPase (Singh et al.
2013).

The brain is thought to be relatively impermeable to the
influx of inositol from plasma which means that myo-
inositol in the brain needs to be synthesized from glucose-6-
phosphate via myo-inositol 1-phosphate (Berridge et al.
1982). Blockade of IMPase prevents the subsequent dephos-
phorylation of myo-inositol 1-phosphate to inositol and in
animals treated with an IMPase inhibitor such as lithium; con-
centrations of myo-inositol 1-phosphate are increased while
those of myo-inositol are lowered (Allison et al. 1971; 1976).
This effect would be expected to disrupt neurotransmission
using the phosphoinositide cycle as a second messenger, and
this has been postulated to be the basis of the therapeutic
action of lithium (Berridge et al. 1982).

Whether, in humans, lithium lowers brain levels of myo-
inositol, as measured by MRS, is controversial (Silverstone
et al. 1996; Davanzo et al. 2001; Machado-Vieira et al.
2015). However, the change in myo-inositol concentration
we identified in both our MRS studies of ebselen is small
and apparently shows some regional specificity. If the same
applies to lithium treatment, it might make detection of this
effect difficult. Another issue is that as well as its role in the
phosphoinositide cycle and second messenger signaling, a
pool of free myo-inositol is present in astroctyes where it
appears to function as an osmolyte (Brand et al. 1993).
Thus, while our findings suggest that ebselen inhibits
IMPase in humans, further work will be needed to demon-
strate that this effect has functional consequences for neuro-
transmission linked to the phosphoinositide cycle. In animals,
for example, ebselen treatment inhibits behavioral responses
mediated by 5-HT2A and 5-HT2C, receptors, both of which
employ the phosphoinositide cycle as second messengers
(Singh et al. 2013; Antoniadou et al. 2015).

The finding that ebselen lowers GSH was unexpected be-
cause ebselen was developed as a glutathione peroxidase
(GPx) mimetic which should facilitate the reduction of oxida-
tive species (Azad and Tomar 2014). Animal studies suggest
that ebselen has anti-inflammatory properties in a variety of
models, and an in vitro study of simulated neuronal ischemia
reported that ebselen treatment resulted in increased glutathi-
one levels and improved neuronal viability (Pawlas and
Malecki 2007). Oxidative stress has been suggested to be
relevant to the development of schizophrenia, and
Cabungcal and colleagues (2014) have shown that ebselen
administered during adolescence reversed subsequent behav-
ioral deficits in an animal model of schizophrenia. In patients
with bipolar disorder, glutathione levels are reportedly lower
in both plasma and post mortem brain tissue from the frontal
cortex (Rosa et al. 2014; Gawryluk et al. 2011), showing the

Table 1 Absolute metabolite concentrations (μmol/g) given as mean
± SEM, in the anterior cingulate cortex following treatment with ebselen
(3600 mg over 24 h) or placebo of inositol, N-acetylaspartate (NAA),
glutathione (GSH), γ-aminobutyric acid (GABA), glutamate,
glutamine, and Glx. The averages of the linewidth (Hz) and signal to
noise ratio (SNR) have also been reported

Placebo Ebselen Significance—paired t test

Inositol 7.82 ± 0.15 7.53 ± 0.14 0.028

NAA 10.53 ± 0.23 10.49 ± 0.26 0.789

GSH 1.31± 0.043 1.17 ± 0.07 0.033

GABA 2.04± 0.08 2.04 ± 0.07 0.984

Glutamate 11.66± 0.17 11.34± 0.15 0.010

Glutamine 3.60 ± 0.10 3.37 ± 0.10 0.024

Glx 15.26 ± 0.19 14.71 ± 0.18 0.001

Linewidth 9.66 ± 0.53 9.55 ± 0.43 0.743

SNR 39.5 ± 1.4 40.4 ± 1.6 0.264

1100 Psychopharmacology (2016) 233:1097–1104



possible importance of oxidative stress in the pathophysiology
of this condition.

The function of GPx is to catalyze the conversion of reac-
tive oxidative species using reduced GSH as a substrate; this
results in the conversion of GSH to glutathione disulfide

(GSSG). In the healthy brain, virtually, all GSH is present in
the reduced form. Thus, although GSSG has an MRS signal
distinct from that of GSH, it is estimated that under normal
conditions, the contribution of GSSG to the MRS profile is
negligible (Satoh and Yoshioka 2006). It is possible, however,

Fig. 2 Anterior cingulate cortex
concentrations of inositol
(μmol/g) following treatment
with ebselen (3600 mg over 24 h)
or placebo in 16 individual
subjects. Ebselen treatment
resulted in a significant decrease
in inositol (p = 0.028, paired t
test). Black dotted line represents
mean (and standard error) for
group at each visit

Fig. 3 Anterior cingulate cortex
concentrations of Glx (μmol/g)
following treatment with ebselen
(3600 mg over 24 h) or placebo in
16 individual subjects. Ebselen
treatment resulted in a significant
decrease in Glx (p= 0.001, paired
t test).Black dotted line represents
mean (and standard error) for
group at each visit

Psychopharmacology (2016) 233:1097–1104 1101



that if the GPx-like activity produced by ebselen resulted in a
significantly increased conversion of GSH to GSSG, GSH
levels might be lowered when examined by MRS. Finally,
GSH synthesis requires glutamate (Berk et al. 2008) and so
the effect of ebselen to lower glutamate (see below) might
have played a role in decreasing GSH concentration.
However, the change in GSH that we saw with ebselen was
small, and not predicted, and may represent a chance finding,

We also found that ebselen lowered Glx and its two major
components, glutamate and glutamine, following ebselen
treatment. This might indicate reduced activity at glutamate
synapses, which would be of interest in view of the proposed
role of ebselen in neuroprotection (Azad and Tomar 2014).
For example, ebselen decreased glutamate release in rat brain
synaptosomes and protected cerebellar granule cells from
glutamate-induced excitotoxicity (Porciúncula et al. 2001;
Nogueira et al. 2002)

Ebselen potently inhibits, glutaminase (Ki 15 nM), an en-
zyme that plays a key role in converting glutamine to gluta-
mate; therefore, inhibition of glutaminase by ebselen would be
expected to lower glutamate levels (Thomas et al. 2013).
Whether this could also lead to lower levels of glutamine is
unclear. However, because glutamine is derived from synap-
tically released glutamate which has been taken up by glia, it is
possible that if less glutamate were available for release,
levels of glutamine would fall as a consequence (Yüksel and
Öngür 2010). Yüksel and Öngür (2010) suggest that Glx can
be considered as representing the total amount of glutamate
available for synaptic and metabolic activities, and it appears
that ebselen treatment significantly diminishes this pool.

The ability of ebselen to lower indices of glutamate activity
is of interest in view of the reported increase in Glx in patients
with bipolar disorder (Gigante et al. 2012). This is in striking
contrast to unipolar depressed patients where Glx levels in
anterior brain regions tend to be decreased relative to healthy

controls (Luykx et al. 2012). Indeed, it has been suggested that
Glx levels, as measured by MRS, might distinguish bipolar
from unipolar depression (Taylor 2014). It also suggests that
ebselen might be useful in the treatment of bipolar depression
which is often refractory to current medications (Vázquez
et al. 2014). The effect of lithium treatment onMRS glutamate
levels has been little studied, but a recent longitudinal inves-
tigation by Machado-Vieira et al. (2015) in bipolar depressed
patients reported an increase in glutamate and Glx in the an-
terior cingulate cortex after 6 weeks lithium treatment. This
suggests a striking difference between lithium and ebselen in
their effect on glutamatergic mechanisms.

As in our previous study, in contrast to the effects of
ebselen on brain neurochemicals in the anterior cingulate cor-
tex, we found no changes in the occipital cortex. At first sight,
this is puzzling because one might expect effects of a drug
such as ebselen, which targets a second messenger system
linked to several different neurotransmitters, to be manifested
widely in the brain. We suggest two possible explanations.
First, the effect of ebeselen on levels of myo-inositol, for ex-
ample, might depend on the amount of phosphinositol-linked
neurotransmission in particular brain regions and be more
obvious in regions where such second messenger systems
are present in high concentration. Second, the effects of
ebselen might be more readily detectable when neurons in
the voxel under study are in a state of activation. In this con-
text, our MRS measures were made when participants were
lying at rest inside the MR camera with their eyes closed. The
activity of the occipital cortex in this situation would be ex-
pected to be low. However, anterior brain regions with their
role in cognition would probably be more active, particularly
if they form part of the default mode network which, in some
studies, is the case for the anterior cingulate cortex (Greicius
et al. 2003; Sheline et al. 2009).

A criticism of our study is that we did not apply statistical
correction for the number of comparisons made in the MRS
data. However, we did employ prior multivariate ANOVA,
which in the anterior cingulate cortex showed a significant
main effect of ebselen treatment and a treatment by metabolite
interaction. Moreover, the decrease in inositol following
ebselen was predicted both on theoretical grounds and from
our previous study. Finally, the decrease in Glx in the anterior
cingulate cortex, although modest in extent, was highly sig-
nificant. However, replication of these effects, perhaps in a
patient group, is clearly important. Another methodological
shortcoming, which could be addressed in future work, is that
we did not control for stage of the menstrual cycle in the
female participants in the study.

In conclusion, we have confirmed that ebselen decreases
myo-inositol concentration in the human brain indicating
functional blockade of IMPase at the doses employed.
Consistent with its reported inhibitory action on glutaminase,
ebselen also lowers indices of glutamate activity. Both these

Table 2 Absolute metabolite concentrations (μmol/g) given as mean
± SEM, in the occipital cortex following treatment with ebselen (3600mg
over 24 h) or placebo of inositol, N-acetyl-aspartate (NAA), glutathione
(GSH), γ-aminobutyric acid (GABA), glutamate, glutamine, and Glx.
The averages of the linewidth (in Hz) and signal to noise ratio (SNR)
have also been reported

Placebo Ebselen Significance—paired t test

Inositol 6.66 ± 0.14 6.69 ± 0.15 0.651

NAA 11.95± 0.17 11.88± 0.15 0.567

GSH 0.95± 0.03 0.93 ± 0.03 0.570

GABA 1.79± 0.07 1.85 ± 0.06 0.314

Glutamate 9.32 ± 0.14 9.27 ± 0.15 0.610

Glutamine 2.80 ± 0.08 2.83 ± 0.08 0.770

Glx 12.13 ± 0.17 12.10 ± 0.15 0.843

Linewidth 9.66 ± 0.17 9.58 ± 0.17 0.748

SNR 46.1 ± 1.3 45.3 ± 1.4 0.484
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actions suggest a potential use for ebselen in the treatment of
bipolar disorder.
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