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Self-Adaptive Spike-Time-
Dependent Plasticity of Metal-
Oxide Memristors
M. Prezioso1, F. Merrikh Bayat1, B. Hoskins1, K. Likharev2 & D. Strukov1

Metal-oxide memristors have emerged as promising candidates for hardware implementation of 
artificial synapses – the key components of high-performance, analog neuromorphic networks - due to 
their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic 
networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it 
is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major 
challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, 
the elementary change of a synaptic weight in an artificial hardware synapse depends not only on 
the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) 
value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-
adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the 
initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2−x memristors 
integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been 
complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-
and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted 
for quantitatively correct description of our memristors.

In biological neural systems, neurons communicate with each other with action potential pulses - “neural spikes1”. 
While some of the network activity information is encoded in the average spiking rate, many experiments in 
neurobiology suggest that the timing of individual spikes matters, and is essential for coordinated processing 
of temporal and spatial information2,3. Indeed, encoding information with single spikes or inter-spike intervals 
provides a higher information capacity than the firing-rate codes which represent only the average spiking activ-
ity4. These observations motivated the development of spiking neuromorphic hardware circuits which explicitly 
model neural spikes1,4. An additional motivation5–7 for pursuing spiking neuromorphic networks is their higher 
energy efficiency, recently demonstrated in a very large system8.

In the simplest spiking neuromorphic networks, each neuron is modeled as a leaky-integrate-and-fire unit, 
which integrates incoming spikes and fires its own spike when the integrated action potential reaches a cer-
tain threshold1. The fired spike, weighed according to the strengths of the corresponding synapses, is applied 
to the input of other neurons. Additionally, the fired spike is also propagated backwards to the input synapses 
to provide their weights’ adaptation – for example, according to the spike-timing-dependent-plasticity (STDP) 
rule9–12, which ensures Hebb-like learning9. For the most common STDP type, found for example in Layer 5 of 
the neocortex13, the synaptic weight is increased if the post-synaptic spike follows soon after the pre-synaptic one 
(implying their causal relation), is decreased if their timing order is opposite (implying a random coincidence of 
the spikes), and is virtually unaltered if the time interval Δ t between the spikes is larger than a few milliseconds.

The STDP-enabling hardware based on traditional integrated circuit technologies, in which synaptic weight 
values are stored, for example, in digital static-random access memories8, or as analog charges in switched capac-
itor structures7, can hardly ensure the network density necessary for cortex-scale systems. On the other hand, 
the values may be stored as conductivities of very compact, two-terminal, nonvolatile devices, “memristors”, 
which may be scaled down to ensure such density14–16. This is why, following several suggestions of STDP imple-
mentation in memristors, using various shapes of pre- and post-synaptic pulses17–22, there has been a recent 
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surge of experimental demonstrations of the STDP functionality in organic23–26, complex-oxide27, sulfide28,29, 
silicon-oxide30, hafnium-oxide31 and phase-change32 devices.

In this work we have shown that in metal-oxide memristors STDP may be self-adaptive, excluding the need in 
the continuous adjustment of the average conductance of each device.

Results
All experiments were carried out with Pt/Al2O3/TiO2−x/Ti/Pt memristors integrated in 12 ×  12 crossbar cir-
cuits (Fig. 1a) – see the Methods section for fabrication details. Figure 1b shows a typical switching hysteresis 
of a crossbar-integrated memristor at a quasi-DC symmetric voltage sweep. The ON/OFF current ratio meas-
ured at a non-disturbing bias of 0.2 V is close to 10. The results of a detailed electrical characterization of these 
crossbar-integrated devices, including their switching endurance of at least 5,000 cycles, projected retention time 
in excess of 10 years, and low variability of forming and switching voltages, were reported earlier33.

In the first set of experiments, we have implemented three different biologically-plausible “STDP windows”, i.e. 
the dependences of the synaptic weight change on the time interval Δ t between the pre- and post-synaptic spikes 
(Fig. 2). In particular, getting each experimental point shown on the bottom panels (g, h, i) of Fig. 2 involved three 
steps. First, memristor’s conductance G, which represents its synaptic weight and was measured at 0.2 V, was 
set to an initial value G0 ≈  33 μ S, using a simple but efficient tuning algorithm34. Pre-synaptic and post-synaptic 
pulses of the waveforms shown on one of the top panels (a, b, c) of Fig. 2, selected following the recommendations 
of Ref. 21, were then applied to the top and bottom wires leading to the selected memristor inside the crossbar, 
with a certain delay Δ t between the pulses, while the remaining lines of the crossbar were kept grounded. Finally, 
after the pulse application, the new value of memristor’s conductance was measured and its change calculated. 
The experiment was repeated 10 times for each particular Δ t, every time resetting the device to the same initial 
conductance with 10% accuracy. As Fig. 2 shows, these three different spike shapes result in three different rep-
resentative STDP window shapes found in various biological synapses13. Other window shapes, e.g., those which 
correspond to Δ t sign flip (and hence may be used for the anti-Hebbian rule implementation), may be readily 
obtained by changing switching polarity and/or modifying pulse timings.

The initial conductance of 33 μ S, chosen for the described set of experiments, crudely corresponds to the 
geometrical mean of two extreme conductance values for the considered memristors. In the second set of tests, 
the experiment with waveforms corresponding to the first STDP window (Fig. 2g) was repeated for several differ-
ent initial values G0 of conductance, spanning the whole dynamic range of our memristors. As this Fig. 3a shows, 
that STDP for G0 =  33 μ S is balanced, i.e. the maximum change in conductance is roughly the same for positive 
and negative Δ t values. On the other hand, there is no increase in conductance when its initial value is close to its 
maximum value, and no decrease in conductance in the opposite case, i.e. when G0 is close to device’s minimum 
conductance. Such saturation in the switching dynamics is typical for many types of memristors15,16,33–35.

This strong dependence of memristor’s plasticity on its initial state might cause concerns about the possible 
need in continuous external tuning of each device, which would make large-scale spiking networks impracticable. 
To investigate this issue, we have carried out numerical simulation of the STDP adaptation, using an analytical, 
phenomenological (“compact”) model of the experimentally observed conductance change for the particular 
STDP window shown in Fig. 2g. It has turned out that the change is well described by the following product:
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Figure 1.  Metal-oxide memristive devices. (a) SEM image of the active area of a memristive crossbar, with 
the particular inputs used in the STDP experiment shown on the margins. (b) Typical I-V curve of a memristor 
after its forming, with the dashed lines indicating the effective set and reset thresholds.
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where a, b, c and d are fitting parameters. (In some publications36,37, such functions are called “multiplicative”; 
note, however, that though at each of the two intervals of Δ t, Δ G is indeed a product of separate functions of G0 
and Δ t, globally it is not, since according to Eq. (3), function Λ G depends not only on G0, but also on Δ t – via its 
sign. Due to this reason, the plots of Δ G as a function of Δ t, shown with the continuous surface in Fig. 3b, are 
not globally self-similar.) As the dots in Fig. 3 show, this function, with an appropriate choice of the fitting param-
eters, describes the experimentally observed behavior very reasonably - see also Fig. S1 and its discussion in 
Supplementary Information for additional details. Moreover, we believe that such G0-dependent STDP behavior 
may be expected for many types of memristive devices with saturating switching dynamics15,16,33–35.

Using the STDP model so verified, we have simulated the time evolution of memristor conductances in a sim-
ple, generic neuromorphic network with just one soma, described with the leaky-integrate-and-fire model, and 
100 input synapses (Fig. 4). The network was fed with similar spikes of the shape shown with black lines in Fig. 2a, 
with random, independent, Poisson-distributed initiation times with 14 Hz average spiking rate. As Fig. 4d shows, 
memristor conductances eventually evolve to a stable bell-curve distribution independent of their initial values, 

Figure 2.  Experimental results for spike-time-dependent plasticity. Implemented STDP windows similar 
to those typical for biological synapses: in Layer 5 (the left column) and Layer 4 (the middle column) of the 
neocortex, and in GABAergic synapses (the right column). (a–c) The used shapes of pre-synaptic (“pre”, black 
lines) and post-synaptic (“post”, red lines) voltage pulses. (d–f) The time maxima and minima of the net voltage 
applied to the memristor, as functions of the time interval Δ t between the pre- and post-synaptic pulses. (g–i) 
The experimentally measured STDP windows, i.e. the changes of memristor’s conductance as functions of Δ t. 
The red points and black error bars show, respectively, the averages and the standard deviations of the results 
over 10 experiments for each value of Δ t. In these experiments, the initial memristor conductance G0 was 
always close to 33 μ S.
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with the peak of the distribution centered in the intermediate value of the dynamic range. This is not quite sur-
prising, because our model qualitatively corresponds to the typical STDP behavior observed in biology11,38, and 
also to phenomenological “multiplicative” models that predict similar self-adaptation36,37, which is deemed nec-
essary for long-term stability of spiking neural networks. (As illustrated by the bottom panel of Fig. 4d, so-called 
“additive” STDP models, in which Δ G is independent of G0

36, cannot ensure such self-adaptation.)

Figure 3.  Modeling spike-time-dependent plasticity. (a) The experimentally measured STDP window 
function (circles), for the waveforms shown in Fig. 2a, for several initial values G0 =  25, 50, 75 and 100 μ S 
together with the results of its fitting with Eqs. (1–3) (dash-dot lines) and (b) the resulting 3D surface. The inset 
table in panel (b) shows the used fitting parameters.

Figure 4.  Self-adaptation of spike-time-dependent plasticity. Simulation of memristor self-tuning in a 
simple spiking network, using Eqs. (1–3) for STDP description. (a) The simulated network; (b) its equivalent 
circuit; (c) typical input and output spiking activity; and (d) the initial and final distributions of conductances, 
averaged over 10 runs, for several values of the initial conductance G0. On panel (c), the top graph uses grey 
color coding to shows the spike initiation times. On panel (d), three middle figures show the final distribution 
of conductances for three values of G0, after 60 s of simulated time. The bottom figure of panel (d) shows the 
final weight distribution for the hypothetical “additive” STDP model, obtained by artificially setting λ G =  1. The 
neuron parameters are as follows: R =  4 kΩ , C =  1 μ F, activation threshold Ut =  0.5 V.
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Discussion
The demonstrated dependence of the STDP window on the applied voltage waveforms (cf. panels (a–c) and (g–i) 
of Fig. 2) may be readily explained by taking into account that memristor’s conductance changes mostly when 
the net voltage applied to the device exceeds certain switching threshold voltage – see the dashed lines in Fig. 1b 
and panels (d–f) of Fig. 2. As the result, the conductance change Δ G semi-quantitatively follows either the time 
maximum or the time minimum of the applied waveforms – whichever exceeds the corresponding threshold 
more. Panels (d–f) show these voltage extremal values for the used waveforms (a–c); their comparison with the 
corresponding experimental STDP windows shown in panels (g–i) indeed confirms their similarity. Some slight 
deviations from this correspondence, for example, the time asymmetry of the window shown on panel (i), may be 
readily explained by the switching dynamics dependence on the conductive state of the memristor.

Another unexpected anomaly of the data is the presence of the (weak and broad) second peak in the distribu-
tion of final conductances in the numerical simulation of synaptic self-adaptation – see Fig. 4d. This peak might 
be suppressed by balancing device’s asymmetry by slightly varying parameters of the STDP – see Fig. S2 and its 
discussion.

Summary
In conclusion, we have experimentally demonstrated that Al2O3/TiO2-based memristors may be used to imple-
ment the spike-time dependent plasticity with STDP window shapes similar to those observed in biological 
neural systems. By fitting the experimental data with a simple compact model, we have shown that such STDP 
behavior enables self-adaptation of the synaptic weights to a narrow interval in the intermediate value of their 
dynamic range, at least in a simple (but very representative) spiking network. These results give every hope for 
stable operation of future large neuromorphic networks based on such memristors.
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