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Myosin light-chain phosphatase regulates basal
actomyosin oscillations during morphogenesis
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Contractile actomyosin networks generate forces that drive tissue morphogenesis.

Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II

regulatory light chain through the action of myosin kinases and phosphatases. While the role

of myosin light-chain kinase in regulating contractility during morphogenesis has been largely

characterized, there is surprisingly little information on myosin light-chain phosphatase

(MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells

combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw)

is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber

elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset

of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations.

Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a

quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous

fashion from intrinsic properties of motor assemblies.
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A
ctomyosin-driven cell contractility is indispensable during
morphogenesis for the acquisition of the three-
dimensional shape of tissues and organs1. It relies on

forces generated by the contraction of an actin filament network
through the activity of the motor protein non-muscle myosin-II
(Myo-II)2. Myo-II molecules are hexameric enzymes consisting
of two heavy chains, two regulatory light chains (MRLC) and two
essential light chains3. Myo-II activity is regulated by dynamic
phosphorylation and dephosphorylation of the MRLC4.
Phosphorylation of MRLC by several kinases brings the myosin
complex into an active state, thus allowing its interaction
with actin filaments and the generation of contractile force.
On the contrary, myosin light-chain phosphatase (MLCP), a
heterotrimer consisting of a Ser/Thr phosphatase catalytic
subunit (PP1c), a myosin phosphatase targeting subunit
(MYPT1/2) and a 20-kDa small subunit, performs the opposite
role, myosin inactivation via MRLC dephosphorylation5.
Remarkably, while there is a great deal of information
concerning the role of MRLC kinases on the regulation of cell
contractility during morphogenesis, the function of MRLC
phosphatases in this context remains largely unknown.

Contractility-based morphogenetic transitions require the local
activation of actomyosin networks in particular groups of cells
at specific developmental time points. In contrast to the
detailed characterization of apical contractility, the molecular
and mechanical mechanisms underlying basal actomyosin
contractility during morphogenesis are less known. One
well-studied example of basal cell contraction essential for tissue
morphogenesis is that of the follicle cells (FCs) during egg
formation in the adult Drosophila ovary. In oogenesis, newly
formed egg chambers (or follicles) composed of 16-germline cysts
surrounded by a monolayer follicular epithelium go through 14
developmental stages (from S1 to S14) to eventually give rise to
mature eggs, which are elongated anterior–posteriorly6. Egg
elongation takes place from S5 to late S10 and it relies on two
temporally distinct phenomena. First, during the initial stages of
egg elongation, egg chamber global rotation helps create a
‘molecular corset’ of organized extracellular matrix that biases
growth along its anterior–posterior axis7. Second, periodic basal
contractions driven by myosin oscillations that initiate at S9
eventually shape the mature egg8. Recently, the oscillatory
behaviour of myosin contractile activity in FCs has been
proposed to originate from pressure exerted by the underlying
growing germline. In this mechano-chemical model, pressure
from the germline would activate the Rho-kinase (RhoK)
pathway, thus inducing myosin assembly and contraction in
FCs9. However, the signals that trigger formation of basal
contractile arrays at specific time points of egg chamber
development are still undefined.

Here, we identify flapwing (flw), which codes for one of the
four PP1c subunits that exist in Drosophila, as a key regulator of
basal contractile activity in FCs. We show that at S9, concomitant
with the onset of basal contraction, Flw expression decreases
specifically on the basal side of FCs. In addition, we find that flw
is required for the initiation and periodicity of basal myosin
oscillations. In contrast to previous observations8, we
demonstrate that basal F-actin undergoes periodic pulsations
similarly to myosin. Based on these observations and using in
silico modelling, we propose that cell-autonomous basal
actomyosin oscillations governing egg chamber elongation arise
from the intrinsic properties of motor assemblies.

Results
Dynamic distribution of Flw in FCs during oogenesis.
To analyse Flw expression in FCs we used the protein-trap line

flw-YFP-159, which codes for the Flw-YFP protein10. The
distribution of Flw-YFP throughout oogenesis was dynamic.
Thus, from S5 to S8, Flw-YFP was localized in dot-like structures
both at the apical and basal domains of FCs (Fig. 1a,c,d). In
addition, Flw-YFP localization on the basal side decreased from
S6 to S9, while that on the apical surface remained unchanged
(Fig. 1a,b). To better characterize these changes in Flw-YFP
accumulation, we quantified the fluorescence intensity of Flw-
YFP, as a function of the surface area, at the basal and apical sides
of S6, S8 and S9 FCs (at least eight different egg chambers were
scored in each case). These measurements showed that, while the
apical levels of Flw-YFP were maintained throughout S6–S9, the
basal levels were indeed reduced by 20% from S6 to S8 and by half
from S6 to S9, when oscillations started (Fig. 1i). Next, we decided
to correlate Flw-YFP localization with that of basal actomyosin
fibres. To this end, we performed co-localization studies of Flw-
YFP and F-actin (visualized with TRITC-phalloidin) or myosin
(using the red fluorescent protein mCherry fused to spaghetti
squash, sqh, the gene encoding for the Drosophila non-muscle
Myo-II regulatory light chain11). Organization of basal actin
bundles during oogenesis is quite dynamic. In the germarium,
they show a circumferential organization perpendicular to the
anterior–posterior axis. This tissue level alignment is then
maintained and reinforced up to S10A, when actin bundles are
more apparent and look like stress fibres12–14 (Fig. 1g). At S10B,
actin fibres thicken and by S11 adopt a fan-shaped morphology
and change their orientation by 90o. At S12, normal orientation is
restored12. We found that while at S6, Flw-YFP seemed to localize
to the tips of the F-actin and Sqh-mCherry bundles (Fig. 1d,e), at
S9 it was found distributed along the F-actin and myosin bundles
in a dotted pattern (Fig. 1g,h). To analyse this in more detail, we
quantified the level of co-localization of the different markers
using the Pearson’s correlation coefficient (PCC, Materials and
methods section, Fig. 1j). This analysis revealed reduced co-
localization of Flw-YFP with F-actin or Sqh-mCherry at the tip of
the bundles at S6 (PCC¼ 0.25 and 0.24, respectively) and a
stronger association along the bundles at S9 (PCC¼ 0.62 and
0.60, respectively).

In summary, analysis of Flw-YFP localization during oogenesis
showed that while basal Flw-YFP levels are high from S5 to S8,
before basal myosin oscillations appear, they decrease
dramatically by S9, coinciding with the onset of basal myosin
fluctuations and cell contractions.

Flw regulates the assembly of basal contractile structures. To
address the role of flw in actomyosin contractility regulation in
FCs, we analysed myosin localization (by means of Sqh-GFP
accumulation) in egg chambers carrying FCs homozygous for the
null allele flwFP41 (ref. 15; 10 independent egg chambers were
scored). We found that while basal Sqh-GFP levels increased
nearly twofold (46%) in S6 flw mutant FCs (n¼ 50) compared
with controls (n¼ 52), apical levels only increased by 18%
(Fig. 2a–c). As the catalytic subunit of phosphatases can be highly
pleiotropic, to ensure that Flw was controlling myosin dynamics
directly, as opposed to indirectly, we tested whether elimination
of the MLCP-binding subunit Mbs would also lead to an increase
in myosin activity. To test this, we measured the levels of
activated Sqh in FCs mutant for flw or Mbs, using an antibody
that specifically recognizes Sqh when it is phosphorylated at
the activating Ser-21 (pSqh)16. We found that both flw and
Mbs mutant FCs displayed higher basal levels of pSqh compared
with control (Supplementary Fig. 1). Next, we characterized the
actomyosin fibres in both control and flw mutant FCs, identified
by co-staining of F-actin and Sqh-GFP. We found higher levels of
both actin and myosin in the fibres of S8 flw mutant FCs (n¼ 48)
compared with controls (n¼ 42; Fig. 2d–i, 412 different egg
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chambers were analysed), which resemble those found in wild-
type FCs at later stages12 (Fig. 2j–l, n¼ 46). This similarity
between S8 flw mutants and S9–S10 wild-type FCs unveils a role
for flw in the control of the timing and amount of F-actin and
myosin recruited basally. Hence, our results suggest that
variations in the sub-cellular distribution of Flw might act as a
switch between early- and late-type of basal actomyosin
structures.

A characteristic feature of the basal contractile arrays formed
in S9–S10 wild-type FCs is the periodic changes in
myosin concentration8. To test if the elevated levels of basal
myosin found in early-stage flw mutant FCs underwent a
similar oscillatory behaviour, we performed live imaging of
mosaic S6 egg chambers expressing Sqh-GFP and containing flw
mutant FCs (nine egg chambers cultured independently on
different days were analysed). We found that basal myosin in
mutant cells (n¼ 30) underwent periodic fluctuations (Fig. 3a,b;
Supplementary Movie 1). However, in contrast to the marked and
periodic changes in basal myosin levels found in S9–S10 control
FCs8 (n¼ 34, Supplementary Movie 2), the oscillation period in
S6 flw mutant FCs showed a high degree of variability (Fig. 3b),
suggesting that flw regulated not only the initiation of myosin
oscillation but also its periodicity.

Laser ablation of cell–cell boundaries has emerged as a
powerful tool to measure actomyosin contractility-based intra-
cellular tensions17. Thus, to test whether the basal actomyosin
structures found in S8 mutant cells changed their contractility
state, we used a UV laser beam to sever plasma membranes and
the cortical cytoskeleton in both control and flw mutant FCs at
S8. Cell boundaries were ablated just below the basal plasma
membrane and the behaviour of cell membranes, visualized with
Spider-GFP (a live membrane marker), was monitored 10 s after
ablation. As a consequence of the cut, cortical tension relaxed and
the distance between the cell vertices at both sides of the cut
increased. As velocity of retraction is affected by cytoplasmic
viscosity18, we assumed viscosity in flw and wild-type FCs to be
comparable. To minimize possible effects due to the anisotropic
distribution of forces in the follicular epithelium at this stage, cuts
were all made parallel to the anterior–posterior axis and in the
central region of eight independently cultured egg chambers. In
addition, only vertices initially separated by similar distances,
between 4.5 and 5.5 mm, were considered. We found that the
percentage of distance increase (%Dl, calculated as 100x(L� l)/l,
where L and l are the final and original distances, respectively) of
flw mutant FCs was significantly higher than that observed in
controls (Fig. 3c). Thus, only 18% of control FCs (n¼ 52) showed
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Figure 1 | Control egg chamber showing the localization of Flw-YFP (green), DNA (blue) and F-actin or myosin regulatory light chain (Sqh) in red.

(a, b) Sagittal planes of S6 (a) and S9 (b) egg chambers stained with Rhodamine-Phalloidin to visualize F-actin and the nuclear marker TO-PRO-3. (a) At

S6, Flw-YFP is expressed at both the apical and basal sides of FCs. (b) At S9, basal Flw-YFP localization is specifically reduced. (a0, b0) Magnifications of the

white boxes in a and b, respectively. (c–h) Basal surface views of S6 (c–e) and S9 (f–h) follicles expressing Flw-YFP and either stained with Rhodamine-

Phalloidin to detect F-actin (d, g) or expressing Sqh-mCherry to visualize myosin (e, h). (d) At S6, Flw-YFP largely co-localizes with F-actin, distributing

asymmetrically on the filaments. (e) At S6, Flw-YFP and Sqh-mCherry show a non-overlapping distribution. (g,h) At S9, faint basal Flw-YFP puncta

co-localize with actomyosin filaments. (i) Quantification of the apical and basal levels of Flw-YFP at S6, S8 and S9. (j) Pearson’s coefficient correlation

between Flw-YFP and F-actin and Flw-YFP and Sqh-mCh at S6 and S9. The statistical significance of differences was assessed with a t-test. NS, not

significant, *** Po0.0001. All errors bars indicate s.d. Scale bar, 10 mm. Mean of n¼ 15 egg chambers, assessed over five independent experiments.
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a %Dl above 15, in contrast to the 62% found in flw mutant FCs
(n¼ 56; Fig. 3c). The increase in contractility was specific of the
basal side, as there was no difference between control and flw
mutant FCs when the laser ablation was performed apically
(Fig. 3d, n¼ 48). Altogether, these results strongly suggest that
elimination of flw in FCs leads to an increase in their basal
actomyosin-dependent contractility.

Flw regulates oscillatory dynamics of basal myosin. Our in vivo
analysis of S6 flw mutant FCs suggested that, in addition to its
role in regulating the onset of contractility, flw could also control
the periodicity of basal myosin oscillations. To test this, we
analysed mosaic follicles expressing Sqh-GFP and bearing flw
mutant FCs (at least eight egg chambers cultured independently
in different days were analysed). We decided to study S9–S10
follicles, since at these stages egg chamber rotation has stopped
and periodic basal myosin oscillations of both control and mutant
cells can be monitored in greater detail8. We found that, as it was
the case for S6 FCs, S10 flw mutant FCs (n¼ 34) showed higher
levels of basal myosin than controls (n¼ 28; Fig. 4a). To gain
further insight into the dynamics of basal myosin accumulation
we performed time-lapse imaging on living follicles from eight
independently cultured egg chambers and found that, even
though both control (n¼ 27) and flw (n¼ 32) mutant FCs

showed temporal variations in basal myosin amounts, their
behaviour was markedly different (Supplementary Movie 3,
Fig. 4b,c). First, to quantify myosin dynamics, we developed a
Matlab script to measure pulsation periodicity and observed that
the preferential pulsation frequency of control FCs was – in
agreement with previous results8—a 6.6-min period (Fig. 4d,
n¼ 27). However, mutant FCs did not exhibit a clear frequency
peak; rather, they display stochastic pulsations of myosin
accumulation (Fig. 4e, n¼ 32). Second, the amplitude of the
variations in the amount of basal myosin was considerably lower
in flw mutant FCs (B20%, n¼ 34) compared with controls
(B65%, n¼ 28; Supplementary Movie 3 and Fig. 4f). Altogether
these results showed that flw is required to regulate the periodicity
and the intensity of the fluctuations in basal myosin
accumulation.

Basal F-actin and myosin levels show similar dynamics.
Previous work in Drosophila embryos has shown that pulsed
contractions of an actomyosin network drive apical cell surface
area reduction during gastrulation and dorsal closure11,19. In
these morphogenetic events, both myosin and actin filaments
show a pulsatile behaviour. In contrast, it has been reported that
while basal myosin concentrations oscillate B70% in FCs, the
basal F-actin levels changed only B20% over time, as visualized
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Figure 2 | Loss of flw enhances basal recruitment of actin and myosin. (a) Sagittal plane of a mosaic S8 follicle expressing Sqh-mCherry (red) and

containing flw mutant clones stained for anti-GFP (green) and the nuclear marker TO-PRO-3 (blue). flw mutant FCs (labelled by the absence of GFP,
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by Moesin-GFP. This led to the suggestion that the periodic
changes in basal myosin levels were not produced by dynamic
alterations in F-actin8. However, we had noticed that basal
F-actin accumulation at S9–S10 showed a high degree of
variability in intensity in fixed samples (Fig. 2j). This finding
prompted us to perform time-lapse imaging of S9–S10 egg
chambers expressing both Sqh-mCherry and any of three markers
often used to monitor F-actin dynamics: Lifeact-GFP, Utrophin-
GFP or Moesin-GFP20–22 to record simultaneously dynamic
changes in myosin and F-actin (at least nine egg chambers
cultured independently in different days were analysed for all
experimental conditions). Corroborating our findings in fixed
samples, we observed that F-actin levels oscillated with the same
periodicity and amplitude as myosin with the three markers
utilized, Lifeact-GFP, Utrophin-GFP and Moesin-GFP
(Supplementary Movie 4–8; Fig. 5; Supplementary Fig. 2,
n448). The discrepancy between our results and those
previously published8 could arise from the differences in the
mounting conditions (Methods section). Taken altogether, our
results demonstrate that basal F-actin levels oscillate similarly to
myosin in FCs. Furthermore, simultaneous quantification of the
intensity of Sqh-mCherry and Lifeact-GFP over time revealed
that, while both proteins oscillated with similar periodicity and
amplitude, in B54% of the cases analysed (n¼ 19), actin
accumulation preceded that of myosin by B42 s. The other
46% of cases showed simultaneous pulsation of F-actin and
myosin levels.

Altogether, these results strongly suggest that assembly and
disassembly of basal F-actin and myosin fibres are coordinated

during egg chamber elongation (S9–S10) and that Flw activity is
required to coordinate these actomyosin dynamics. In this
scenario, we would expect basal F-actin levels to behave similarly
to myosin in flw mutant FCs. Indeed, our analysis of basal F-actin
dynamics in S6 flw mutant FCs showed, as it was the case
for myosin levels, premature oscillation (Supplementary Fig. 3,
Supplementary Movie 9), thus supporting our hypothesis.

Next, we decided to incorporate the above observations into an
in silico model to investigate possible mechanisms responsible for
F-actin and myosin periodic pulsations.

A cell-autonomous model of basal actomyosin oscillations.
While several mathematical models have been proposed to
explain actomyosin oscillations exhibited by apically contracting
cells (reviewed in refs 23,24), very few theoretical studies have
addressed the oscillations that occur at the basal surface of cells9.
In our model, we incorporated our observations of control and
mutant cells to two general properties of the actomyosin network:
cooperative actin bundling25 and disassembly of actin bundles
due to myosin-induced tension26 (Fig. 6a). The interplay between
these two reactions is sufficient to produce autonomous
oscillations that reproduce the features of the basal oscillations
observed during egg chamber elongation, in both wild type and
mutant conditions. This minimal but robust model (Online
Methods section and Supplementary Material for details) was able
to make the following predictions: (1) that actomyosin filaments
in FCs oscillate with an average period of 6–8 min and oscillations
in myosin and F-actin intensities correlate (Fig. 6b,c), (2) that

%Δl

0 min

5 min

Sqh-GFP
Nuclear-mCherry

Sqh-GFP

B
as

al
 m

yo
si

n 
in

te
ns

ity
 (

a.
u.

)

4010 20 30

1

0

2

3

4

Time (min)

Control
flw–/–

0

5

0

20

30

10

0

20

30

10

40

0–
5

Laser ablation basal domain

Laser ablation apical domain

%Δl

%
 o

f p
ho

to
ab

la
tio

ns

%
 o

f p
ho

to
ab

la
tio

nsControl
flw–/–

Control
flw–/–

wt
flw–/–

wt
flw–/–

flw–/–

flw–/–

5–
10

10
–1

5

15
–2

0

20
–2

5

25
–3

0

0–
5

5–
10

10
–1

5

15
–2

0

20
–2

5

25
–3

0

30
–3

5

35
–4

0

S6

a b

c d

Figure 3 | Loss of flw results in both precocious basal myosin oscillations and increased basal contractility. (a) Confocal images taken with a 5-min

difference of a live S6 mosaic egg chamber expressing Sqh-GFP (green) and carrying flw mutant clones identified by the absence of nuclear mCherry (red).

While the levels of Sqh-GFP in flw mutant FCs are high and oscillate (arrows), control cells show low and constant Sqh-GFP amounts. (b) Quantification of

the dynamic changes of Sqh-GFP in one of the above control cells (light green line) and two flw mutants (purple line). (c,d) Quantification of cell elongation

after photoablation at the basal (c) and apical (d) domains of control (n¼ 52) and flw (n¼ 56) mutant FCs in six independently cultured egg

chambers. %Dl¼ 100x(L� l)/l where l is the original distance between the cell vertices associated to the ablated edge and L is the distance 10 sec. after

photoablation. Scale bar: 10mm. Mean of n430 FCs, assessed over 9 independent experiments.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10746 ARTICLE

NATURE COMMUNICATIONS | 7:10746 | DOI: 10.1038/ncomms10746 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


actin accumulation precedes that of myosin by B60 s (Fig. 6b)
and finally, that reducing Flw total concentration by three orders
of magnitude (equivalent to flw loss of function; Supplementary
Table 1, [FlwT]lof compared with [FlwT]S9–S10) resulted in a
transition to stochastic bursting in myosin and actin
accumulation (Fig. 6d,e). Our model recapitulates basal
actomyosin dynamics at the cellular level and suggests, in
contrast to previously proposed models9, a cell-autonomous
mechanism for the emergence of basal oscillations of both myosin
and F-actin in vivo.

We next decided to challenge the model by simulating two
experimental situations and then testing the model predictions in
perturbation experiments, using pharmacological or molecular
manipulations. First, our model predicted that preventing F-actin
oscillations would block myosin pulsations. To simulate this, we
stabilized F-actin by reducing k� 6 in equation (6) (see Modelling
actomyosin basal oscillations in Supplementary Information). In
our simulations, this led to a noticeable increase in F-actin and
myosin accumulation and disruption of the oscillatory dynamics
of both actin and myosin (Fig. 7a). To test this experimentally, we
undertook a pharmacological approach and manipulated actin
filaments using the F-actin-stabilizing drug jasplakinolide27. In
contrast to control samples cultured in the solvent
(dimethylsulphoxide (DMSO); Fig. 7b,d and Supplementary
Movie 10, n¼ 32), the addition of jasplakinolide increased the
density of basal F-actin filaments, preventing the normal
fluctuations of the Lifeact-GFP marker (Fig. 7c,e and
Supplementary Movie 11, n¼ 38). As predicted by the model,
myosin oscillations were also blocked (Fig. 7c,e and
Supplementary Movie 11). Second, the model also predicted
that ectopic activation of the myosin light-chain kinase (MLCK)
would lead to premature pulsation. We simulated this by

increasing k2 in equation (1) (see Modelling actomyosin basal
oscillations in Supplementary Information), which led to
precocious, asynchronous oscillations at S6 (Fig. 7f), similar to
what happens when eliminating flw function (Fig. 6d). We next
tested this experimentally by co-expressing a constitutive form of
MLCK (ref. 28; ctMLCK) and Sqh-mCherry in FCs. As
anticipated by the model, basal myosin oscillations were
observed in S6 FCs expressing ctMLCK (Fig. 7g,h and
Supplementary Movie 12). In summary, our model makes
robust predictions, as it reproduces the features of actomyosin
oscillations in wild type as well as on experimental perturbations.

Discussion
In recent years, actomyosin-dependent contractile forces have
emerged as key regulators of the oscillatory behaviour underlying
morphogenesis (reviewed in refs 29,30). However, the
mechanisms controlling the emergence and periodicity of
actomyosin oscillations remain unclear. In this work, we have
addressed these two questions. On one hand, we have identified
the Drosophila MLCP-component Flw as a novel, key regulator of
both the onset and periodicity of the basal actomyosin oscillations
that occur in FCs. On the other, we have shown that, in contrast
to what has been previously published8 and similar to what
happens during apical constriction events31, basal F-actin levels
oscillate with a similar amplitude and periodicity to that of
myosin. This has led us to propose a simple model for the
emergence of actomyosin oscillations in which the combination
of cooperative binding of actin filaments in conjunction with
actin filament dissociation from the bundle, due to myosin-
induced tension, is sufficient to generate cell-autonomous
oscillations in myosin and F-actin content.
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In Drosophila, Flw was shown to prevent over-contraction of
larval muscles, nurse cells’ ring canals and imaginal disc
epithelium32–34. Similarly, we find that loss of flw increases
basal cell contractility. Our observations that basal accumulation
of Flw in FCs decreases when contractility starts and that flw
elimination causes premature actomyosin oscillations unravel a
novel function for flw as an intracellular timer regulating the
onset of basal actomyosin oscillations. However, a number of
questions still remain unanswered. For instance, how is Flw
localization regulated during egg chamber development?
Recently, a model has been proposed in which the Rho-RhoK
pathway is activated in FCs due to pressure exerted by the
underlying growing germline cells9. As RhoK inactivates by
phosphorylation the myosin-binding subunit of MLCP (ref. 35),
which regulates the affinity of PP1 for phosphorylated myosin36,
stimulation of Rho-Kinase signalling in FCs might serve two
purposes, activation of myosin and attenuation of Flw function,
thus ensuring that the right amount of activated myosin is
reached. Our results also show that the reduction of Flw levels at
the onset of FC contractility is specific for the basal side of the
cells, as apical amounts remain constant and apical tension does
not change in the absence of flw. We would like to propose that
the spatial regulation of Flw localization and/or activity could
depend on a local activation of specific kinases on the apical
versus the basal regions of FCs due to different upstream stimuli.
In fact, experiments in serum-starved 3T3 cells have shown that
two different MLCKs, RhoK and MLCK, function at different
cellular locations37. In the future, it will be interesting to analyse
the distribution and function of the different MRLC kinases
during FC basal oscillations. In addition, forthcoming studies
could also be directed to determine whether local recruitment of
Flw is a widespread mechanism to regulate actomyosin
oscillations in other cell types and in other locations within the
cell, such as the apical oscillations underlying Drosophila
mesoderm invagination or dorsal closure (reviewed in
refs 2,30). This would lead to a better understanding of how
organization and dynamics of the different components of the
contractile machinery leads to distinct mechanical properties of
tissues that regulate organ and tissue shape.

Biochemical analysis and studies in intact smooth muscle cells
have implicated MLCP in the modulation of MRLC phosphory-
lated levels and hence cell contraction. However, insights into a
similar role of MLCP in vivo are very limited and mainly derived
from studies in smooth muscle cells. Research in zebrafish showed
that myosin phosphatase was required to regulate hindbrain
morphogenesis by apical modulation of myosin function38. Here,
we show that loss of flw from FCs leads to an increase in the basal
levels of MRLC and to changes in the basal actomyosin oscillatory
behaviour of these cells. From these results, we propose that while
the MLCP-component Flw is not an essential effector of
actomyosin-dependent oscillations, it serves a modulatory role.
Interestingly, similar to what we describe here for Flw, smooth
muscle specific knockout of the myosin-binding subunit of the
MLCP (MYPT1) in mice leads to changes in the contractile
properties of gut phasic and tonic vascular smooth muscles39,40.
Thus, as it is the case for Flw, MYPT1 is necessary for proper
contractility in smooth muscle cells, albeit not essential for muscle
contraction. These results strongly suggest that the role of MLCP
in the modulation of cell contractility is conserved between
species and across different cell types. An imbalance of RhoK and
MLCP in smooth muscle cells, resulting in sustained
phosphorylation of MRLC, contributes to the pathogenesis of
many vascular diseases, such as vasospasm, hypertension and
asthma, and intestinal motility dysfunction40–43. Thus,
deciphering the specific role(s) of MLCP will help us not only

to further understand MRLC phosphorylation and myosin
activation but also to design new drugs to treat diseases caused
by abnormal smooth muscle contraction. The similarities between
the function of MLCP in FCs and smooth muscle cells makes
Drosophila FCs an ideal model system to investigate the
regulation of its activity and its role in regulating MLC activity
and cell contraction. Finally, it has been shown that the catalytic
subunit of PP1 phosphatases are very promiscuous and besides
the myosin regulatory subunit they can bind other proteins,
including actin-binding proteins, such as neurabin I (NrbI)44 and
spinophilin45. Furthermore, experiments in neurons have shown
that although PP1c binding to NrbI does not dictate its
phosphorylation state, it is required for the ability of NrbI to
bind F-actin and to reorganize the actin cytoskeleton by
disassembling stress fibres46. In this context, in addition to its
role on myosin activity, Flw could also contribute to the
regulation of actomyosin dynamics by directly controlling the
activity of actin-binding proteins. In the future, it will be
interesting to determine whether proteins capable of interacting
with Flw are expressed in FCs and if this were the case
analyse whether they have any role on regulating actomyosin
dynamics.

It has been known for a number of years that the contractile
apparatus of certain muscle types, such as striated skeletal and
cardiac muscle fibres, exhibit spontaneous oscillations in
culture47. In addition, in vitro studies have shown that a
minimal actomyosin system under elastic loading can oscillate
spontaneously without the need of the regulatory proteins present
in vivo48. Here, we propose that actomyosin oscillations
governing egg chamber elongation can in principle arise
generically from the dynamic properties of motor assemblies.
This is in contrast to previous models for actomyosin oscillations
occurring at the apical side of cells during Drosophila dorsal
closure, which involve the need of complex protein turnover
dynamics49,50 or the effect of external oscillatory signals51. Our
model also differs from a recent proposition for the basal myosin
fluctuations happening in FCs in which oscillations emerge
without the need of periodic actin basal accumulation and
assuming a nonlinear Rho activation coupled to mechanical
tension9. We suggest that basal actomyosin oscillations occur
above a threshold of active myosin and can run constitutively,
independently of external forces and simply due to the interplay
between cooperative actin aggregation and disassembly of the
network (Fig. 8). Importantly for the initiation of actomyosin
oscillations, our results point to a critical role for MLCP in the
regulation of activated myosin levels. In our model, a cell with a
given concentration of myosin (which can be found in an active
or inactive state and that we estimate in 0.4 mM (Supplementary
Table 1)) elicits different responses depending on the levels of the
regulatory phosphatase. Thus, our simulations show that high
levels of basal Flw (such as the ones found in FCs prior to S9,
estimated as 2.7 mM) prevent oscillations, while the decrease in
Flw amounts at S9 (0.9mM in our in silico simulations) allows
FCs to reach enough phosphorylated myosin concentrations as to
initiate pulsation (Fig. 8). Finally, since our simulations define
periodic F-actin and myosin fluctuations for concentrations of
Flw between 0.2 and 1.25 mM, the oscillatory behaviour of the
basal actomyosin cytoskeleton of S9–S10 FCs is significantly
robust. It will be interesting to determine whether our model
could also account for the actomyosin oscillations taking place on
the apical side of the cells during morphogenesis. Understanding
the commonalities and variations between apical and basal
oscillations promises to provide further insight into the
mechanisms underlying tissue morphogenesis and to improve
tissue engineering protocols.
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Methods
Drosophila stocks and genetics. The following fly stocks were used: flw-YFP-159,
a fusion protein-trap line in which a YFP-coding P-element is inserted in the flw
gene10; flwFP41FRT19A/FMZ (ref. 15); Sqh-GFP (ref. 52) and Sqh-mCherry
(refs 11,52); UASp-UtrGFP (ref. 53), MbsT666FRT80/TM6B (ref. 54), UAS-
Lifeact-GFP, UAS-Moesin-GFP, nlsGFP FRT19A, w[1118]; Ubi-mRFP.nlsFRT80B
and Spider-GFP from the Bloomington Drosophila Stock Centre, UAS-ctMLCK
(ref. 28) and the follicle stem cell driver traffic jam-Gal4 (tj-Gal4 (ref. 55)).
The e22c-gal4 driver is expressed in the follicle stem cells in the germarium and was
therefore used in combination with UAS-flp to generate flw and Mbs FC clones. To
analyse myosin and F-actin dynamics in flw mutant clones, flwFP41FRT19A/FMZ;
Sqh-GFP or flwFP41FRT19A/FMZ; Lifeact-GFP females were crossed to nlsGFP
FRT19A; e22c-gal4 UAS-flp/CyO and hsflpRFPFRT19A males, respectively. To
generate Mbs mutant clones, MbsT666FRT80/TM6B females were crossed to
e22c-gal4 UAS-flp/CyO;Ubi-mRFP.nlsFRT80B. To analyse actin and myosin
dynamics simultaneously, we generated females carrying Sqh-mCherry,
UAS-Lifeact-GFP and tj-Gal4 transgenes. Flies were grown at 25 �C and yeasted for
2 days before dissection.

Time-lapse image acquisition. For live imaging 1–2-day-old females were
fattened on yeast for 48–96 h before dissection. Culture conditions and time-lapse
microscopy was done using a modified version of the protocol described in ref. 56.
Drosophila ovaries were dissected and mounted using the same medium56,
Schneider’s insect medium (GIBCO-BRL) supplemented with 10% foetal bovine
serum (F3018; Sigma), 0.63 penicillin/streptomycin (GIBCO) and 0.20 mg ml� 1

insulin (I5500; Sigma), with a final pH adjusted to 6.9. However, egg chambers
were not mounted on a 50-mm Petriperm plate (Greiner Bio) and covered with a
22-mm coverslip as in ref. 56. Instead, egg chambers were mounted on a 35-mm
glass bottom poly-D-lysine-coated dish (MatTek Corporation) without coverslip.

In addition, a roll of wet tissue paper was placed surrounding the glass bottom to
preserve a certain degree of humidity around the culturing egg chambers. Movies
were acquired on a Leica SP5 MP-AOBS confocal microscope equipped with a
40� 1, 3 PL APO oil objective. Z-stacks with 11–12 slices (0.42mm interval) were
taken to capture the entire basal myosin and actin filaments. Frames were taken
every 30 s.

Laser ablation experiments were performed on an Olympus IX-81 spinning disc
microscope equipped with a Yokogawa CSU-X1 scanning head, a � 60 (1.35 NA)
UplanSApo oil objective, a CoolSnap HQ2 camera and a 355-nm iPulse laser
(Roper Scientific) with a pulse energy of 2.5 J, 6 kHz, 400 ps. Dwell time was
100 msec. Images were taken immediately before and 10 s after laser pulse.

Image processing and data analysis. Quantification of the degree of
co-localization between different markers was performed using Fiji and the PCC in
maximum projections images. The analysis was performed in individual FCs.
Furthermore, as, Flw-YFP signal was only detected at the tips of the F-actin and
Sqh-mCherry bundles in S6 egg chambers, in this case the analysis was done
specifically in this region, to avoid under-representing the degree of correlation
between the different markers.

For quantification of basal myosin and actin dynamics over time, maximal
projections of confocal stacks were produced to account for egg chamber curvature.
Integrated intensity of myosin (red) and actin (green) were quantified for manually
selected regions using ImageJ software. The background value taken from cell-free
regions was subtracted from all data series. Quantification of inter-vertex distances
in the photoablation experiments was performed manually using ImageJ software.

The distribution of oscillation periods was obtained by measuring the intervals
between each pair of two adjacent peaks. Myosin intensity changes in both wild-
type and MLCP mutant cells were obtained by averaging the difference between the
maximum and the minimum fluorescence intensity for each oscillation. To
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calculate the period of myosin and actin oscillation, a Matlab script was developed
to measure the power spectrum density of the signal using one-dimensional
Fourier transform of the autocorrelation function (code available on request).

Statistical analysis of significant differences between control and experimental
samples was done using Student’s t-test.

Drug treatment. Ovarioles were dissected in live-imaging medium and mounted
for imaging as described above in the time-lapse image acquisition section. S9–S10
egg chambers were first imaged for 30 min. On addition of DMSO to control
follicles (at a final concentration of 0.6%) or Jasplakinolide (dissolved in DMSO
and at a final concentration of 6 mM, Sigma Aldrich), the same egg chambers were
imaged for another 40 min.

Immunohistochemistry. For fixed samples, ovaries were dissected at room
temperature in Schneider’s medium (Sigma Aldrich) to preserve cytoskeletal
structures. Fixation was performed incubating egg chambers for 20 min with 4%
paraformaldehyde in PBT (phosphate-buffered salineþ 0.1% Tween 20). For actin
labelling, fixed ovaries were incubated with Rhodamine-Phalloidin (Molecular
Probes, 1:200) for 30 min. The DNA dye TO-PRO-3 (Molecular Probes) was used
at 1:1.000 in PBT. Samples were mounted in Vectashield (Vector Laboratories).
Images were acquired on a Leica SPE confocal microscope equipped with a � 40
(1.15 NA) ACS-APO oil objective.
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