Skip to main content
. 2016 Feb 18;7:10790. doi: 10.1038/ncomms10790

Table 1. Voltage stability condition applied to 11 test networks.

Numerical testing of theoretical predictions
Test case (1,000 instances) Condition correctness Exact deviation (δexact) Predicted deviation (δ) Condition accuracy
9 bus system True 5.50·10−2 5.52·10−2 3.56·10−3
14 bus system True 2.50·10−2 2.51·10−2 1.96·10−3
RTS 24 True 3.28·10−2 3.29·10−2 3.28·10−3
30 bus system True 4.72·10−2 4.75·10−2 7.64·10−3
New England 39 True 5.95·10−2 5.99·10−2 5.97·10−3
RTS ‘96 (2 area) True 3.44·10−2 3.45·10−2 3.81·10−3
57 bus system True 0.97·10−1 0.99·10−1 2.97·10−2
RTS ‘96 (3 area) True 3.57·10−2 3.58·10−2 3.94·10−3
118 bus system True 2.68·10−2 2.69·10−2 3.63·10−3
300 bus system True 1.32·10−1 1.36·10−1 3.03·10−2
Polish 2,383 system True 4.03·10−2 4.06·10−2 8.55·10−3

Condition correctness is whether the implication Inline graphic holds for every network realization, where Inline graphic and δexact is determined numerically. Exact and predicted deviations are averaged values of the respective quantities over all realizations. Condition accuracy is calculated as (δδexact)/δexact, and averaged over 1,000 randomized instances for each network, with 30% of generation (resp. 30% of load) randomized by 30% (resp. 50%) using a normal distribution centred around base conditions.