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Abstract

Full kinetic modeling of dynamic PET images requires the measurement of radioligand concentrations in the arterial

plasma. The unchanged parent radioligand must, however, be separated from its radiometabolites by chromatographic

methods. Thus, only few samples can usually be analyzed and the resulting measurements are often noisy. Therefore, the

measurements must be fitted with a mathematical model. This work presents a comprehensive analysis of the different

models proposed in the literature to describe the plasma parent fraction (PPf) and of the alternative approaches for

radiometabolite correction. Finally, we used a dataset of [11C]PBR28 brain PET data as a case study to guide the reader

through the PPf model selection process.
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Introduction

The accurate measurement of parent radioligand con-
centration in plasma is a major challenge of quantita-
tive PET imaging. Radiolabeled compounds injected
into the blood stream are exposed to a complex and
unpredictable chemical environment and thus may
break down in one or more metabolites. At least one
of these metabolites would contain the radioisotope
and is therefore named radiometabolite. To correctly
quantify the binding of a radioligand, the amount of
radiometabolites should be taken into account.1

Depending on the chemical characteristics of the
radiometabolites and on the transport mechanism
between blood and tissue, the radiometabolites may
remain confined to the vascular compartment, migrate
into the tissue along with the parent radioligand or even
be created inside the tissue. Radiometabolites are often
less lipophilic than their parent, and therefore are less
likely to cross the blood–brain barrier and enter the
brain. Thus, if the radiometabolites are confined to
the blood compartment, only the concentration of
parent radioligand should be used as input for

modeling the tissue kinetics. By contrast, radiometabo-
lites that cross the blood–brain barrier or originate dir-
ectly inside the tissue2 must be incorporated into the
model as a second input or as an additional compart-
ment, respectively.

Serial arterial blood samples are usually drawn
during the PET scan, in order to assess the concentra-
tion of parent radioligand over time. Blood samples
may be drawn manually or with an automated blood
sampling system equipped with an online detector or
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with a fraction collector. The online detector allows the
best definition of the peak, by continuously measuring
arterial whole-blood concentrations. However, some
manual blood samples are still required to obtain the
plasma concentration and to separate the parent from
its radiometabolites. The fraction collector instead pro-
vides discrete blood measurements as in the manual
sampling, but with a higher frequency and more precise
timing.

The fraction of unchanged radioligand in plasma
(the Plasma Parent fraction or PPf) is measured with
techniques such as high-performance liquid chroma-
tography (HPLC), thin layer chromatography or
other chromatographic methods. The fast decay of
radioactivity, especially with 11C-labeled tracer,
limits the total number of samples that can be ana-
lyzed by chromatography. Therefore, for kinetic mod-
eling, PPf data points are generally fitted with a
mathematical function, with the purpose of obtaining
a smooth and continuous PPf curve from a series of
discrete noisy samples. Although PPf measurements
are sometimes linearly interpolated,3,4 the use of a
model is preferable to minimize the impact of meas-
urement errors.5 The choice of the PPf model is a
crucial step for kinetic modeling. Indeed, a carefully
selected PPf model allowed Parsey and colleagues6 to
nearly halve the retest variability of the total volume
of distribution (VT) of [11C]DASB compared to the
results obtained with the PPf model commonly used
in the literature. Furthermore, Wu et al.7 showed that
different models can lead to significant differences in
both binding potential (BP) and VT quantification of
[11C]WAY-100635.

The aims of this review are 1) to overview the most
common modeling approaches to correct the plasma
input function for radiometabolites and 2) to define
guidelines for selecting the optimal PPf model. A data-
set of 11 brain PET studies done with [11C]PBR28, a
radioligand for the translocator protein, is used as a
case study. The approaches developed to obtain a full
input function from a limited number of blood samples
are discussed in detail. Finally, we will outline some
alternative modeling strategies for radiometabolite
correction.

Plasma parent fraction modeling

Obtaining a radiometabolite-corrected arterial input
function is a multistep procedure (Figure 1) that usually
involves:

1. Measurement of the whole blood activity – Cb tð Þ.
2. Separation of plasma from whole blood by centrifu-

gation and measurement of the total activity in
plasma – Ctot tð Þ.

3. Analysis of plasma samples by chromatographic
methods to determine the fraction of activity that
is due to the parent tracer – PPf ðtÞ.

Because of their limited number and the presence of
noise in the measurements, PPf data points are rarely
used directly. A PPf model is generally fitted to the data
in order to extrapolate the missing values and to min-
imize the impact of measurement errors. The parent
concentration in plasma is calculated as

Cp tð Þ ¼ Ctot tð Þ � fx t,mð Þ ð1Þ

where fx t,mð Þ is the PPf model of the radiotracer x and
m is the vector of parameters estimated from PPf tð Þ.
The model fx t,mð Þ reflects the PPf properties: its value
may range from 1 to 0, where 1 means that all radio-
activity measured from the plasma sample is due to the
unchanged radioligand and 0 that the radioligand has
been completely metabolized.

The PPf curve has usually an initial value of 1 and
then decreases monotonically and sigmoidally toward
0. However, different shapes are possible. For example,
the parent fraction of [11C]DASB displays an initial
rising phase,6 probably because the parent, but not
the radiometabolites, is trapped in the lungs. The
majority of PPf models can be categorized into three
main classes: Power models, Hill models and
Exponential models (Table 1).8

Power models

First proposed by Watabe and colleagues9 for
[11C]MDL 100,907 and then extended by both Meyers
and colleagues11 for [18F]CPFPX and by Hinz and col-
leagues12 for [11C]MDL 100,907 again, Power models
are characterized by the following general expression

fx t,mð Þ ¼
1

1þ a � tð Þ
b

� �c ð2Þ

where the parameters vector is m ¼ a, b, c½ �, with a4 0,
b4 1 and c4 0. This model is characterized by a sig-
moidal shape that starts from 1 with a zero first deriva-
tive and then approaches 0 for t!1. For 05 b � 1,
the model becomes a convex function.

Hill models

A Hill function was firstly used by Gunn and col-
leagues13 to describe the radiometabolite fraction of
[carbonyl-11C]WAY-100635. This model was subse-
quently used to fit the PPf kinetic of many different
radioligands such as (R)-[11C]Verapamil,14
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[11C]flumazenil16 or [11C]NOP-1A.46 A general expres-
sion for the Hill model is given by

fx t,mð Þ ¼ 1þ
ða� 1Þ � tb

cþ tb
ð3Þ

The parameters vector is still m ¼ a, b, c½ �, with
0 � a5 1, b4 0 and c4 0. The shape of the model is
again sigmoidal, but for t!1 it tends to a instead of
zero. This allows a better description of radiotracers
whose plasma concentration shows a plateau. An
extension of the Hill model was presented by Asselin
et al.26 for [11C]FLB457 and then used for [11C]PIB27

and [18F]FLT.28 Its formulation is

fx t,mð Þ ¼ 1þ
a� 1ð Þ � d � t½ � � tb

cþ tb
ð4Þ

Compared to equation (3), this formulation presents
one extra parameter d4 0, which makes the model
decrease toward an oblique asymptote whose slope
equals �d. This variation of the Hill model is thus
suited for radioligands which are rapidly metabolized
and then slowly washed out. Particular care must be
taken when using this model for extrapolating PPf
values at late times because it may yield negative
values. In this case, a nonlinear constraint should be
used during the estimation of the parameters (i.e. con-
straining fx tend,mð Þ � 0 with tend representing the time
of the end of the scan).

Exponential models

These models are characterized by a (multi)exponential
decay. With minor variations, they have been used for
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Figure 1. Blood samples processing for the derivation of the input function. (a) Blood samples are drawn at various time points and

their radioactivity is measured with a g-counter. The samples are then centrifuged to separate the blood cells from plasma (b) The

whole blood activity – CbðtÞ – and the total activity in plasma – CtotðtÞ – are measured with the g-counter. The HPLC measures the

fraction of activity due to the parent in plasma – PPf ðtÞ. (c) CbðtÞ can be used either after linear interpolation or after fitting with an

appropriate model. Although PPf data can be used after linear interpolation, they are more usually fitted with a tracer specific model –

fxðt, mÞ – where x identifies the specific radiotracer and m is the vector of the estimated parameters. The input function is calculated as

Cp tð Þ ¼ CtotðtÞ � fxðt, mÞ.
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Table 1. Plasma Parent fraction models used in the literature.

Tracer Equation References

Power model

[11C]MDL 100,907

[11C]MPDX

1þ atð Þ2
� ��b 9

10

[18F]CPFPX 1, t � t0

1þ a t � t0ð Þð Þ
b

� ��c
, t4 t0

�
11

[11C]MDL 100,907 1þ atð Þ2
� ��b

�ð1� PPf0Þ
12

Hill model

[11C]WAY-100635

(R)-[11C]verapamil

[11C]PE2I

[11C]flumazenil

[18F]FDDNP

[11C]DPA-713

[11C](R)-PK11195

[11C]SD5024

1�
atb

c þ tb

7,13

14

15

16

17

18

19,20

21

[11C]ORM-13070 1�
aðt � t0Þ

b

c þ ðt � t0Þ
b

22

[18F]PBR111

[11C]PBR28
1�

t3

t3 þ 10a

� �b

þc

 !,
ð1þ cÞ

23

24

[11C]carafentanil 1�
at

bþ t

25

[11C]FLB

[11C]PIB

[18F]FLT

1�
aþ bt

ðc=tÞd þ 1

26

27

28

[68Ga] BAPEN PPf0, t � t0

PPf0 þ
a� PPf0ð Þ t � t0ð Þ

b

c þ t � t0ð Þ
b,

t4 t0

8><
>:

29

[11C]NOP-1 A

[11C]MePPEP

[11C](R)-rolipram

PPf0, t � t0

PPf0 þ
a�PPf0ð Þ t�t0ð Þ

b

cþ t�t0ð Þ
b

h i
� u t, Tð ÞR t

0
u s, Tð Þds,

t4 t0

8><
>:

where u t, Tð Þ ¼ 1 tð Þ � 1 t � Tð Þ and T ¼length of tracer injection and � ¼convolution operator

8

8

8

Exponential model

L-[1-11C]leucine

[11C]flumazenil

1, t � t0
Ae�� t�t0ð Þ þ 1� A, t4 t0

�
30

31

[11C]flumazenil

[11C]NNC 756

[11C]DAA1106

[11C]GB67

[18F]DPA-714

Ae��1 t þ ð1� AÞe��2 t 32

33

34

35

36

[11C](R)-PK11195 1� Að2� e��1 t � e��2 tÞ 37

(continued)
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[11C]NNC 756,33 [11C]flumazenil31 and [11C]-(R)-
PK11195,37 among others. A general formulation is

fx t,mð Þ ¼ A0 þ
Xn
i¼1

Aie
��i�t, with

Xn
i¼0

Ai ¼ 1 ð5Þ

All parameters of the vector m ¼ ½A0,A1, �1, . . . ,
An, �n� are � 0 where n is an integer, usually � 3.
In the variation used for [11C]-(R)-PK11195,43 the
exponential decrease approached an oblique asymp-
tote (Table 1). Similarly to the extended Hill model,
nonlinear constraints may be necessary when using an
oblique asymptote, because extrapolations at late
times may yield negative values. Although these
models are widely used in literature, they generally
perform poorly during the initial phase of the PPf,
because the PPf may decrease more slowly than
what the exponential decay would predict.8,16

Modeling the appearance of radiometabolites
and the parameters of injection

The aforementioned models can be extended to include
a delay term, t0, which represents the interval before
radiometabolites appear in plasma.8,11,30,31,43 The
models fx t,mð Þ are thus modified by substituting t
with ðt� t0Þ and constrained to be equal to 1 for t � t0.

Moreover, the models might start from an initial
value (PPf0) lower than 1. This is done to account for
the presence of co-injected radiochemical impurities
and the rapid formation of radiometabolites in the
body during, for example, the first pass of the radioli-
gand through the lungs.12 This can be included in the

model by multiplying fx t,mð Þ by PPf0
45 or by subtract-

ing ð1� PPf0Þ from fx t,mð Þ.12 The term PPf0 can be
estimated along with the model parameters or can be
fixed to the value measured in the first sample, provided
that the first sample is acquired early after injection.
Oikonen47 proposed to use the estimated PPf0 to cor-
rect for the metabolism that intervenes during sample
handling, i.e. the metabolism of the parent during the
interval between blood drawing and analysis. It would
be preferable, however, to chemically inhibit blood
metabolism at the time of sample collection.48

Finally, the duration of bolus injection may impact
on the initial phase of the PPf curve, because a mixture
of newly injected and recirculating radioligand might be
present in the first blood samples.8 To account for the
length of bolus injection, Tonietto and colleagues8

recently proposed to convolve the model fx t,mð Þ with
the following boxcar function: u t,Tð Þ ¼ 1 tð Þ � 1 t� Tð Þ,
where 1 tð Þ is the Heaviside step function and T the
length of injection. The result is then normalized to a
value between 0 and 1 by dividing by the integral of the
boxcar function

fCx t,m,Tð Þ ¼
fx t,mð Þ � uðt,TÞR t

0 u s,Tð Þds
ð6Þ

where fCx t,m,Tð Þ is the convoluted model and � is the
convolution operator. Since the term T is known from
the experimental protocol, the number of parameters to
be estimated does not increase. Notably, convoluted
models are better suited for scans with long injection
times (greater than 1min), which are more common
when an automatic infusion pump is employed.

Table 1. Continued

Tracer Equation References

[11C]L-deprenyl

[1-11C]Acetate

[11C]DPN

[11C]-(þ)-PHNO

Ae��t þ 1� A 38

39,40

41

42

[11C](R)-PK11195 1� Að Þe��t þ A� Bt 43

Others

[11C]raclopride 1�
Aðe��1 t � e��2 tÞ � Ctot tð Þ

Ctot tð Þ

where Ctot tð Þ is the total activity in plasma

44

[11C]DASB ta A1e��1 t þ A2e��2 t
� �

6

[11C]GR103545
PPf0 1� b

R ct

0
e�uud�1duR1

0
e�uud�1du

 !
45
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Accounting for measurement errors

When information on measurement error is available,
parameters can be estimated by weighting each data
point according to the inverse of its variance.49 The
measurement error of the PPf samples is assumed to
be additive, uncorrelated, with zero mean and unknown
variance. In most studies, the variance is assumed equal
for all samples, which is equivalent to not weighting
the data.

However, some studies assumed that the PPf
variance is based on Poisson statistics of the area-
under-the-curve of parent peaks (AUCp) measured
from radio-HPLC,21,46 that is

Var PPfð Þ ¼ AUCp ð7Þ

Other studies used a full error propagation of HPLC
AUCs for both parent ðAUCp) and radiometabolites
ðAUCmÞ,

5,8 according to the following formulation

Var PPfð Þ ¼ � �
AUCp � AUCm

AUCp þ AUCm

� �3 ð8Þ

where � is a proportional constant which is estimated a
posteriori.

Another formulation of PPf variance was derived by
Wu and colleagues7 for a HPLC equipped with a frac-
tion collection system. The activity (vi, where i stands
for the i-th fraction) and the associated standard devi-
ation (�i) were measured with a well counter. The PPf
variance was thus calculated as

Var PPfð Þ ¼

P
i =2 I vi

	 
 P
i2I �

2
i

� �
�

P
i2I vi

� � P
i =2 I 0̂o

2
i

	 

P

i vi
� �2

ð9Þ

where I is the set of indices of the fractions containing
the parent.

Model selection

The optimal model must be selected among the existing
alternatives on the basis of the quality of data descrip-
tion and reliability of results.50 The standard approach
for model selection involves testing the performance of
the various models by calculating parsimony indices
such as the Akaike Information Criterion (AIC)51 or
the Bayesian Information Criterion (BIC).52 These indi-
ces balance the accuracy of the fit against the complex-
ity of the model (i.e. they statistically penalize models
with more parameters). In fact, models with too many
parameters tend to fit also the measurement errors
(overfitting) and therefore they may poorly interpolate

the missing PPf values. The parsimony indices can be
compared with a repeated-measures ANOVA, where
the information index for the different models represents
the repeated measure. In its simplest form, the compari-
son of just two models reduces to a paired t-test.53

Parsimony criteria are informative and straightfor-
ward to calculate, but one should not base the model
choice solely on them. For example, if the coefficient of
variation (CV), which represents the precision of the
parameter estimates and it is calculated as the ratio
between the estimated standard deviation and the
expected value of the parameter, is too high (e.g.
CV4 100%), the model is not a posteriori or numeric-
ally identifiable and should be rejected.49

Furthermore, once the model is fitted, the prior
assumptions on measurement errors must be verified
by analyzing the weighted residuals. The weighted resi-
duals can be tested for randomness (using for example
the runs test), for normality (Anderson-Darling or
Kolmogorov–Smirnoff test) and, if known, for variance
(Chi-square test for the variance). However, given the
small number of samples available, these tests have low
statistical power and might not detect violations of the
error distribution assumptions. It is therefore more
convenient to visualize the residuals of all the subjects
together, in order to detect possible polarizations, as
shown in Wu et al.7

Population approaches

Fitting a model to the PPf data is often hampered by
the limited number of available samples. When the
measurements are too sparse and noisy, the fit is uncer-
tain and the PPf can be poorly estimated. An input
function with an erroneous shape might entail quanti-
fication errors.54 One possible strategy to solve the
problem of sparse sampling is the use of population
approaches. These methods postulate that different
subjects share similar PPf curves after a bolus injection.

An average radiometabolite curve (naı̈ve average
data) would be the easiest approach. This method
was successfully applied for [11C]raclopride,55

[11C]flumazenil,56 2[18F]F-A-853805,7 and [18F]FLT.58

However, this type of radiometabolite correction is
rarely possible32 and must be validated for each
tracer.59 Furthermore, the population used to calculate
the average curve should be determined from a group
that is comparable to the population under study in
terms of age, sex, body weight and clinical condition.
[18F]FDPN, for example, displays significant gender-
related metabolic differences.60 [18F]FLT is metabolized
in the liver via glucuronidation,61 so that any disease or
therapeutic agent that affects hepatic function is likely
to affect the amount of radiometabolites, making
impossible to use data across different cohorts of
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subjects. Moreover, even within groups of similar sub-
jects, inter-subject variability is almost never negli-
gible12 and occasional outliers should be expected.
Notably, clinical PET protocols are usually performed
on a limited number of subjects (about a dozen). So,
even the presence of one or two outliers in this small
population might significantly influence the results.

A more elegant population approach for radiometa-
bolite correction is the Non Linear Mixed Effect
Modeling (NLMEM).62 Unlike the simple average of
population data, NLMEM accounts for both intra- and
inter-subject variability. Briefly, NLMEM assumes that
the model parameters are characterized by some attri-
butes that do not vary within the population of M sub-
jects (fixed effects, i.e. values that are common to all
subjects) and some others that do (random effects, i.e.
values typical of a specific subject). Mathematically,
this can be written as: mj ¼ d ð�, �j Þ; where mj is the
parameter vector for the subject j, d is a known (pos-
sibly nonlinear) function that describes the expected
value of mj as a function of the fixed effects, �, and
the random effects, �j. The estimation of both fixed
and random effects is performed by taking advantage
of the entire spectrum of measurements from a popu-
lation of individuals, and not obtained in each subject
separately as when, for instance, a least squares estima-
tor is employed. In other words, the parameters of the
model are assumed to belong to a population-based
distribution, which is shared by the subjects under ana-
lysis. This distribution is estimated together with the
parameters of each single subject. Individual PPf data
can thus be modeled by knowing the population PPf
parameters distribution.54 NLMEM has been applied
to three radioligands, [11C]PHNO, [11C]PIB and
[11C]DASB, and performed better than the average
naı̈ve method. NLMEM correctly fitted the PPf
models when only three to four measurements were
available.54 The main limitation of this approach is
that at least 10–12 subjects should be available to esti-
mate the population values.54 On the other hand, since
the between-subject variability is taken into account,
missing data of a single subject can be recovered from
very few PPf samples.

Unconventional approaches

Compartmental models

PPf models are empirical functions whose purpose is to
describe plasma parent data, without necessarily taking
into account the underlying physiological processes.
Accounting for the physiology of the radioligand
could nevertheless be possible by implementing com-
partmental models. Huang and colleagues63 developed
a generalized compartmental model to describe the

conversion of an injected radiotracer into its radiome-
tabolites. The model uses the total activity in plasma as
input and the concentration of each radiometabolite as
output. By identifying the model parameters, the full,
noise-free time course of the parent concentration in
plasma can be estimated. The main limitation of this
approach is that the concentration of each radiometa-
bolite in plasma must be measured. In general, HPLC
analyses are optimized to separate the parent from the
radiometabolites and not to isolate multiple different
radiometabolites. Carson and colleagues44 simplified
this approach by lumping all the radiometabolites in
a single compartment. Another variation included a
compartment for the red cells.64 However, due to
their complexity and the lack of clear advantages over
standard PPf models,7 compartmental models have
been used only for few radioligands, i.e.
[18F]FDOPA,64,65,66 [15O]O2,

63 [11C]raclopride44 and
[11C]Thymidine.67

Radiometabolite correction without metabolite
measurements

The measurement of radiometabolites requires ade-
quate facilities, special care and technical expertise.
Therefore, alternative modeling approaches to estimate
the input function without actually performing any
radiometabolite measurement have been proposed.68,69

These approaches work by estimating simultaneously a
modeled metabolite-corrected input function and the
tissue parameters using both the tissue and the mea-
sured whole-plasma concentrations. Although these
methods were successfully applied to [11C]iomazenil68

and [11C]flumazenil69 datasets, the authors themselves
suggested to limit their use to single tissue compartmen-
tal analyses68 or to rescue studies where metabolite
measurements are unavailable.69

Notably, Shields and colleagues1 corrected for radio-
metabolites the input functions of [18F]FLT by using a
logarithmic interpolation between a single blood
sample measured at 60min and the value 1 at time zero.

Radiometabolite correction with venous sampling

In theory, all PPf models described above can be
applied to venous, rather than arterial, samples, pro-
vided that a suitable arteriovenous equilibrium for the
radioligand under study exists. Venous sampling is
easier, less invasive and would promote a more wide-
spread use of fully quantitative PET studies. As a rule,
however, arterial concentrations of a given compound,
be it radioactive or not, are never fully consistent with
venous concentrations (for reviews, see literatures70,71).

After a bolus injection, arteriovenous equilibrium is
present only during a transient phase when the net
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uptake in the tissue is zero. The length of this phase
varies among the compounds, may be absent for the
duration of the analysis, and surely never lasts for the
whole duration of the arterial input function.59 In par-
ticular, the early arterial peak, when the compound dis-
tributes in the tissue, cannot possibly be replicated in
the venous blood, whose concentrations rather reflect
the uptake and extraction ratio of each particular
tissue. By consequence, venous concentrations heavily
depend on the sampling site.59 For instance, the radi-
oligand concentrations found in the vein of the arm
would change as function of the uptake and extraction
ratio of the tissue of the hand, which may be different
from that of the brain. Finally, inter-subject differences
in arteriovenous concentrations are commonly found in
both animal and human studies.59,72 Therefore, venous
samples should not be used to perform studies under
non-steady-state conditions.

Case study: [11C]PBR28

In this section, we present an example of PPf model
selection on a dataset of [11C]PBR28 brain PET
scans. After selecting the optimal model, we evaluated
the accuracy of population methods by progressively
reducing the number of available blood samples per
subject.

Dataset

Eleven healthy subjects, taken from a previous proto-
col,73 were injected intravenously over 1min with an
activity of 680� 14 MBq of [11C]PBR28. The protocol
was approved by the Ethics Committee of the National
Institutes of Health and the study was conducted
according to the Declaration of Helsinki. Blood sam-
ples (1.0mL each) were drawn from the radial artery at
15 s intervals until 150 s, followed by 3-mL samples at 3,
4, 6, 8, 10, 15, 20, 30, 40, 50, 60, 75, 90, and 120min.
The PPf was measured with an HPLC on almost each
plasma sample, as previously described.74 In summary,
the dataset consisted of 11 PPf curves, each composed
of 19� 1 PPf measurements.

PPf modeling

The 11 PPf curves were fitted with the power model (as
defined in equation (2)), the Hill model in both its basic
and extended version (equations (3) and (4)) and the
exponential model (equation (5) with n ¼ 2). Each
model was tested with and without the delay term t0
and/or the injection length T, for a total of 16 models
(Table 2).

Since the PPf value of the first sample (taken 15 sec-
onds after injection) was smaller than 1 (0.95� 0.03) in

each subject, all equations were implemented consider-
ing an initial PPf value (PPf0), estimated along with the
other parameters, different from 1.

The estimation of the parameters was performed
using a maximum-likelihood non-linear estimator
with relative weights. These were defined as the inverse
of the variance of each data point, and the variance was
calculated using equation (8). A nonlinear constraint
was imposed on the extended Hill model in order to
ensure its positivity at late times.

Model selection

As a first step, we assessed whether the inclusion of the
delay and the injection length significantly improved
the fitting of the models, by comparing the AIC indices
with paired t-tests.

Including the delay term significantly improved the
fitting (i.e. lower AIC) of the exponential models
(p¼ 0.002 against the standard exponential model and
p¼ 0.007 for the version convoluted with injection
length), but resulted in a significantly higher AIC for
the power models (both standard and convoluted:
p¼ 0.023 and p< 0.001, respectively). No significant
differences were found for the Hill functions. Adding
the injection length significantly reduced the AIC indi-
ces only for the exponential model (p¼ 0.013).
Therefore, t0 and T were added only to the exponential
model.

Table 2. AIC scores for the model selection of [11C]PBR28.

Accounting for AIC (mean� SD)

Power – �149� 14

t0 �147� 15

T �148� 15

t0 T �146� 16

Hill – �144� 15

t0 �146� 19

T �145� 18

t0 T �145� 20

Exponential – �110� 21

t0 �135� 14

T �118� 21

t0 T �139� 16

Hill extended – �152� 20

t0 �152� 23

T �151� 22

t0 T �143� 34
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Among the four remaining models (exponential with
t0 and T, power, Hill and Hill extended), the extended
Hill model had the lowest mean AIC (Table 2) albeit

statistical significance (Bonferroni corrected) was
reached only against the basic Hill model (p¼ 0.014).
Notably, the exponential model showed unreliable
estimates (CV> 100%) while the power model tended
to overestimate the PPf curve around the 20th min
(Figure 2a), thus producing a polarization of the
weighted residuals. Therefore, both these models were
rejected. The basic Hill model did not fit correctly the
tails of the PPf curves (Figure 2b) because these did not
reach a plateau level but decreased slowly and con-
stantly. Among the tested alternatives, the extended
Hill model showed the most reliable estimates
(CV: a¼ 6� 9%, b¼ 0.04� 0.06%, c¼ 10� 19%,
d¼ 6� 6%, PPf0¼ 1� 1%, ). The model adequately
fitted the data and the weighted residuals were consist-
ent with the measurement error hypotheses (both runs
and Anderson-Darling tests did not detect assumptions
violation) (Figure 2c). Therefore, the extended Hill
model was selected to fit [11C]PBR28 PPf curves.
Figure 3 shows an example of fit and weighted residuals
for a representative subject.

Tissue estimates were obtained as described in Rizzo
et al.75 using as PPf model the four alternatives selected
in the first step. The impact on VT varied according to
the PPf model and ranged from 7%� 5% for the non-
extended Hill model to 5%� 10% for the convoluted
exponential model (versus the extended Hill model).
The bias of the binding potential was higher and
ranged from �5%� 12% to �25%� 26%.
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Figure 2. Weighted residual comparison of the PPf models. Mean (black line) and between-subject variance (grey area) of the

weighted residuals obtained by fitting the different PPf models to [11C]PBR data: (a) power model with t0 constrained to 0. (b) Hill

model with t0 constrained to 0. (c) Extended Hill model with t0 fixed to 0. (D) Convoluted exponential model with estimated t0. The

Extended Hill model provided the best description of the data and was the only one to yield random residuals.
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Figure 3. Plasma parent fraction modeling with the extended

Hill model. (a) Fitting of the [11C]PBR28 PPf measurements

(open circles) with the extended Hill model (black line) in a

representative subject and (b) weighted residuals over time for

the same subject.
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Population approaches

In this section, we compared population-based curves
to the individual fitting of the PPf performed with the
optimal model selected in the previous section. In par-
ticular, we implemented the NLMEM approach as
described in Veronese et al.55 and the naı̈ve average
method by averaging the PPf samples of all subjects
and then by fitting the average curve with the
extended Hill model. For each subject, the PPf

curve was thus estimated using the individual and
the two population approaches and the estimation
was repeated by progressively reducing the number
of samples available (i.e. frequent, standard and
sparse sampling). For each approach and each sam-
pling frequency, we calculated the residual sum of
squares (RSS) between the PPf curve estimated and
all the available PPf datapoints, regardless of the
samples used in the estimation. The individual fit
obtained with frequent sampling was taken as refer-
ence. Notably, the number of samples obtained with
sparse sampling was not sufficient to estimate the
model parameters individually.

NLMEM could reliably recover the individual PPf
with all sampling frequencies. The fit obtained with fre-
quent sampling was not statistically different from that
obtained with standard sampling (p< 0.05, paired
t-test) and only borderline different (p¼ 0.046) from
the fit obtained with sparse sampling (Figure 4).

On the other hand, the model descriptions of the
individual method were statistically different between
standard and frequent sampling (which is expected,
because the individual method does not use any add-
itional information other than the data to analyze).

Finally, the PPf profile obtained from the average
approach significantly differs from the profile measured
individually (Figure 5). In general, the higher the popu-
lation variability, the higher the error introduced by the
average approach.

Conclusion

Correcting the input function for radiometabolites is a
crucial step to obtain reliable estimates of tissue param-
eters. This is usually done by measuring the fraction of
activity due to the parent tracer in plasma and then by
fitting the data points with a mathematical model. In
order to select the optimal plasma model among the
many that are available in the literature, one should
first preselect a suitable subset of PPf models, tailored
to the characteristics of the radiotracer under analysis
and to the experimental setting, and then carry out
comprehensive comparisons.

In this review, we used a dataset of [11C]PBR28 as
case study to guide the reader through the process of
model selection and we found that an extended Hill
model provided the most accurate description of the
PPf shape of this radioligand.

Finally, NLMEM can be used to obtain a robust
radiometabolite correction when the number of sam-
ples available is too small for standard modeling
approaches. Population approaches based on averaged
PPf curves are not recommended because they can
heavily bias arterial input shapes and therefore the
tissue parameters.
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Figure 4. Comparison between individual, NLMEM and aver-

age fitting for the estimation of the PPf curve when the number of

samples is reduced. Boxplots of the residual sum of squares (RSS)

between the PPf curve estimated with the individual, NLMEM

and average approach and all the PPf data available, regardless of

the samples used in the estimation. Stars indicate statistical

differences (p< 0.05) tested with pair t-tests. The robustness

of the methods was tested by progressively reducing the number

of data points: frequent sampling: with all the available PPf meas-

urements of each subject (19� 1 on average, for 120-min input

functions); standard sampling: six samples per subject were used,

as commonly found in the literature. The protocol used by

Hannestad and colleagues76 for [11C]PBR28 was adopted (i.e.

the samples were taken at 3, 8, 15, 30, 60, and 90 min after

injection); sparse sampling: the number of PPf samples per sub-

ject was reduced to the minimal number necessary to fit the

correspondent PPf model (i.e. 5, equal to the number of the

parameters). In addition, for half of the population (six subjects

randomly chosen, including the one presented in this figure) the

number of samples was further reduced to 4. This was done in

order to simulate the unexpected loss of a sample (e.g. arterial

catheter failure, clotted blood, problems in HPLC analysis, etc.).

Notably, the sparse sampling does not allow the estimation of the

individual parameters of the model.
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