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This paper proposes methods and technologies that advance the state of the art

for modelling the musculoskeletal system across the spatial and temporal

scales; and storing these using efficient ontologies and tools. We present popu-

lation-based modelling as an efficient method to rapidly generate individual

morphology from only a few measurements and to learn from the ever-

increasing supply of imaging data available. We present multiscale methods

for continuum muscle and bone models; and efficient mechanostatistical

methods, both continuum and particle-based, to bridge the scales. Finally,

we examine both the importance that muscles play in bone remodelling stimuli

and the latest muscle force prediction methods that use electromyography-

assisted modelling techniques to compute musculoskeletal forces that best

reflect the underlying neuromuscular activity. Our proposal is that, in order

to have a clinically relevant virtual physiological human, (i) bone and muscle

mechanics must be considered together; (ii) models should be trained on popu-

lation data to permit rapid generation and use underlying principal modes that

describe both muscle patterns and morphology; and (iii) these tools need to be

available in an open-source repository so that the scientific community may

use, personalize and contribute to the database of models.

1. Introduction
This paper presents a perspective on state-of-the-art methods and technologies

that are needed to establish a clinically relevant virtual physiological human

(VPH). We propose suitable methods in geometry development, numerical

methods, storage and sharing of musculoskeletal models in order to collectively

advance the field of musculoskeletal modelling as a scientific community.

Musculoskeletal methods can be made more patient-specific in geometric

shape, material behaviour and relevant bio-signals (through the use of

muscle electromyography (EMG)). Personalized geometry is possible using

‘free-form’ deformation [1] or segmentation from computed tomography (CT)

and/or magnetic resonance imaging (MRI) but would not be clinically feasible

due to the need for rapid model generation. Specifically, MRI is not easily seg-

mented using automated methods, ‘free-form’ deformation requires careful

selection of anatomical landmarks and additional smoothing constraints to

obtain a realistic anatomical profile, and CT is less desirable due to ionizing

radiation. General uniform scaling methods [2,3], such as those used in

OPENSIM, are not accurate enough to capture anatomically realistic geometric

shape variations and are not suitable for pathological populations. Recent geo-

metric construction methods have been converging towards population-based

approaches, using statistical methods that capture the natural variations in

the form and function of the musculoskeletal system. They may be used to
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intelligently segment an individual [4], or predict individual

geometry using multivariate statistical methods [5]. Statistical

modelling also allows quantitative comparisons between

populations, identification of trends across populations and

diagnostic and prognostic predictions.

Musculoskeletal tools must incorporate both multiscale

and multi-physics in order to address clinical problems that

manifest at different hierarchical levels, such as at the

whole organ, meso-, micro- and cellular levels. In order to

address these challenges, we need to adopt suitable numeri-

cal methods that are appropriate to different scales and

incorporate statistical methods to capture mechanics at finer

scales that may be homogenized and integrated with whole

organ-level mechanics efficiently. We also need to adopt

modelling frameworks and define modelling ontologies and

tools that describe information at each scale. To date we see

the Physiome Project [6] and its numerical and graphical

engines (OPENCMISS and CMGUI) [7] and the associated

markup languages (CELLML and FIELDML) [7–10] as one

effective suite of tools for sharing and communicating

models to the scientific community. The Musculoskeletal

Atlas Project [11] (MAP) is a recent development that links

previously collected models and imaging data with popu-

lation-based statistical tools and widely used modelling

platforms, including ABAQUS, FEBIO and OPENSIM.

Modelling methods must be integrative and holistic,

including muscle, bone, cartilage and neural modelling,

rather than being applied in isolation. The mechanical struc-

ture of bone and its remodelling response are heavily

influenced by its loading conditions, which are a result of

our daily interactions with the environment. Movement, for

example, results from an orchestrated and selective activation

of muscles generating force to induce joint torques in order to

consciously navigate through the environment. The force

generation is achieved through complex processes on mul-

tiple scales and multiple parts of the musculoskeletal

system; for example, the generation of neural stimuli in the

spinal cord, transmission of signals from the nerve to a

muscle’s neuromuscular junctions, force generation within

skeletal muscle sarcomeres, force transmission to the tendons

and sensory feedback to the nervous system. These processes

are extremely complex, strongly coupled with each other and

by far not fully understood. A better understanding of the

structure and function of the neuromuscular system would

allow us an improved understanding of neuromuscular dis-

orders and therefore lead to improved diagnosis and

treatment. In addition, an improved understanding would

provide us with valuable input for prevention measures

when planning ergonomic environments.

Finally, the use of electrophysiological inputs into muscle

models has been incorporated through EMG signals, a surro-

gate for underlying muscle activation. The mechanisms

underlying joint function and body movement are a reflec-

tion of the interacting dynamics of the composite

neuromusculoskeletal system. Therefore, even if one aims to

characterize the local mechanical environment of specific

skeletal tissues, the broader neuromusculoskeletal mechan-

isms underlying the observed tissue loading need to be

accounted for. Joint function is the ultimate result of muscle

forces modulated by neural commands generated by popu-

lations of spinal motor neurons and sensory afferents. In

this context, despite the detailed knowledge that we have

about function of neural or mechanical structures in the
human body, we currently have little relevant information

to establish cause–effect relationships across them in vivo in

the moving human. This currently represents the major

open challenge to the understanding of human movement.

In this paper, we discuss the latest developments in EMG-

based models that to date have provided some of the best

matches to the instrumented in vivo knee joint force as part

of the ‘grand knee challenge’ [12,13].
1.1. Population models and the Musculoskeletal Atlas
Project

Focusing on the femur, we review recent works that have

demonstrated statistical methods to showcase the power

and need for population modelling in the field of musculo-

skeletal biomechanics. This is intimately linked with the

MAP, an open-source model-generation software and a

cloud-based data, model and workflow database that

addresses the challenges of the VPH.

Population-derived models typically involve the collection

of a ‘training set’ of parametrized and normalized data. In the

case of geometric modelling, this involves collecting typically

segmented geometries and identifying correspondent land-

marks (such as consistent bony protrusions) located on all

segmentations, then using a Procrustes transform to align

landmark sets [4]. A statistical analysis such as principal

component analysis can then be performed on the data to

reduce its dimensionality and reveal significant modes of vari-

ation or correlation. Population models of the femur, as with

many other structures, usually begin by building statistical

models of its shape and appearance [14,15]. The most immedi-

ate applications for shape models are image segmentation

[16,17] and shape reconstruction [18]. Automated image seg-

mentation allows large populations of data to be collected

while shape reconstruction from landmarks and partial sur-

faces efficiently produces geometries for surgery planning,

muscle paths via insertions, patient classification [19] and

patient-specific modelling.

Beyond shape, population models can include internal

femur architecture [17,20], correlations to fracture and disease

risk [14,21], mechanical behaviour [22] and anthropological

and anthropometric data [5]. These models allow the predic-

tion of femoral structure from correlated data, or vice versa.

In the case of statistical models relating structure to mechanical

behaviour, the ability to predict internal stresses and strains via

a statistical model offers a computationally efficient means to

compute stresses, such that real-time clinical applications

become possible [23].

Population modelling has also been used in conjunction

with discriminant analysis to identify biomechanical features

of dynamic gait waveforms associated with ageing [24] and

pathology [25,26]. Although useful for the classification of

normal or pathological gait, the weights obtained from a

principal component analysis can also be used to syntheti-

cally generate feasible gait data across a larger population

than what was originally sampled [27]. This can be useful

for assessing the variability in biomechanical parameters

across a population and has application to predict femur frac-

ture risk [22] or assess joint replacement designs [27].

Population models might also be used to predict complex

form–function relationships of the musculoskeletal system.

For example, knowledge of knee geometry can be used to
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Figure 1. Schematic of the MAP, composed of the MAP Database, the MAP Client and the MAP Query tool. The goal of the MAP is to streamline the generation,
storage and use of musculoskeletal models. (Online version in colour.)
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predict the knee joint alignment [28], joint kinematics and

joint mechanics [29].

Population modelling has many applications for under-

standing the form and function of the musculoskeletal

system. The methods and applications presented thus far

are invariably workflows that combine many steps to create

and use statistical models for a specific purpose. Steps such

as segmentation, landmarking, registration and model recon-

struction are common across many workflows and are

essential tools for population modelling. Also essential to

population modelling are the population data themselves.

To facilitate the use of population modelling for musculoske-

letal applications, we have created the MAP (figure 1), an

open-source software framework, to: (i) consolidate the

essential tools of musculoskeletal population modelling

with an easy-to-use interface—the MAP Client, and (ii) pro-

vide a repository for imaging, functional and model data

across a population—the MAP Database.
1.2. The Musculoskeletal Atlas Project Client
The MAP Client is a Python-based open-source workflow

manager for musculoskeletal model generation. The tools to

generate a model, such as segmentation and registration,

are implemented as plugins, or steps, which can be linked

together in a graphical user interface (GUI) to produce a

workflow (figure 2).

The MAP Client is designed around ease of use and com-

munity engagement. The GUI allows novice users to execute

workflows containing complex steps, while steps can be

quickly written in the Python language with the aid of

the in-built plugin wizard. The plugin framework is light-

weight, requires no external libraries and is compliant with

both Python 2 and Python 3, facilitating cross-platform use.

Framework documentation and tutorials can be found

in https://map-client.readthedocs.org/en/latest/index.html.

Currently, a workflow has been developed for the generation
of lower limb bone models from motion capture and imaging

data [15]. Key steps include segmentation, landmark viewing

and annotation, point-cloud registration, shape model-based

non-rigid registration and surface mesh fitting. The purpose

of this workflow is to rapidly generate accurate bone

models that are compatible with OPENSIM, an open-source

musculoskeletal modelling package [2].

Another example of a MAP Client workflow is one for

reconstructing whole femur geometry from proximal femur

segmentation (figure 2). In this example, the geometry of

the whole femur is needed to apply realistic muscle forces

to simulate stresses in the hip; however, medical imaging

data are only available for the proximal femur. A femur

shape model is first used to reconstruct a realistic femur

based on surface data segmented from hip MRI. An STL
Source Step and a Model Source Step import the segmentation

and the mean femur model, respectively. The proximal por-

tion of the femur model is then discretized into a data

cloud by a Model Evaluation Step. The data cloud and segmen-

tation are input to the Pointcloud Rigid-body Registration Step in

which the data cloud is registered to the segmentation using

an iterative closest point approach [30]. The registration trans-

formation is output to a Model Transformation Step, which

applies the transformation to the mean femur model to

bring it into alignment with the segmentation. A Principal
Component Mesh Fitting Step takes the transformed model,

the segmentation and a set of principal components

(imported by a PC Source Step) to non-rigidly fit the model

to the segmentation along its principal components. The

fitted model is output to a Model Local Fit Step, which per-

forms a final fine-scale fit of the model to the segmentation

to improve accuracy in the proximal femur. Finally, the

fitted model is passed to an Export STL Surface Step, which

writes the model as an STL file. The final model can then

be used for computational modelling, such as rigid body

dynamics or finite-element analysis. Workflows implemented

in the MAP Client abstract the implementation details so that

https://map-client.readthedocs.org/en/latest/index.html
https://map-client.readthedocs.org/en/latest/index.html


Figure 2. The MAP Client user interface. Installed plugins are shown on the left and an assembled workflow for reconstructing femur shape from proximal femur
geometry is shown in the workspace on the right. (Online version in colour.)
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users focus on the process at hand. Importantly, workflows

and steps can be saved and shared with others so that meth-

odologies implemented as MAP Client workflows can be

readily validated and implemented by others.

1.3. The Musculoskeletal Atlas Project Database
The MAP Client is complemented by the MAP Database,

which stores workflows and associated steps. The MAP Data-

base also functions as a repository for models, workflows,

steps and associated imaging and functional data. The MAP

Database is built upon the Physiome Model Repository [31],

which includes access control, annotation and search tools,

and a distributed version control system. One rationale for

developing the MAP Database is to facilitate exchange of

models and data to accelerate the field of computational biome-

chanics. Researchers around the world are creating models and

generating simulations that, for the most part, are never shared

or used outside the original intent of the investigators’ primary

goal. The potential for computational models to have clinical

impact and build upon prior knowledge is limited by our

inability to share, test and openly validate each other’s

models. The MAP Database will address this limitation with

the goal of providing access to thousands of datasets and

associated models. Coupled with population modelling

methods, this repository promises to bring us closer to clinical

adoption of computational models.
2. Multiscale continuum mechanics of bone
Whole joint models may be derived from population-based

approaches detailed in §1; however, the hierarchical structure

of bone presents a challenge to model efficiently and capture

important spatial behaviour to understand the mechanisms of

ageing, disease and fracture. At the continuum level, bone can

be assumed to have an anisotropic behaviour with a constitutive

description informed from underlying microstructures. These

underlying structures are influenced by bone strain, which in

turn is informed by muscle forces [32] such as the anatomical

muscle loading considered in §§3 and 4. Computational
microstructural bone adaptation has been well represented in

the literature for trabecular bone [33,34] and evaluated against

in vivo loaded murine bone [35]. A more recent approach has

been based on particle-based schemes; and efficient methods

of linking underlying remodelling mechanics to the whole

bone using statistical methods similar to those presented in

§1. Figure 3 describes the proposed multiscale bone mechanics

framework, where a smooth particle hydrodynamics (SPH)

model captures microstructure-level bone remodelling, which

has a two-way communication via statistical methods to the

whole hip. EMG-based muscle forces from walking stimuli

are used to drive remodelling at the whole hip joint, which is

solved using finite-element modelling. The SPH microstructure

bone model predicts porosity and homogenized Young’s mod-

ulus given a load from the whole hip finite-element model. The

SPH model is repeatedly run on a population of loading

scenarios and a multivariate statistical model, such as partial

least-squares regression (PLSR), is then trained to relate

Young’s modulus to a given load. The PLSR statistical model

can then be rapidly called upon to predict remodelled bone

strength given whole hip loads. In this framework, finite-

element methods are more suited to whole-body continuum

static simulations, but are linked via statistical methods to par-

ticle-based schemes, which are computationally expensive but

capture dynamic behaviour at finer scales better.

Particle-based methods allow us to understand very fine

micro-mechanical behaviour associated with bone remodelling

and micro-fracture. SPH is a continuum method but belongs to

the family of meshless particle-based numerical methods. The

key benefit is that it easily captures highly filamentary fracture

patterns and evolving Haversian canals (or ‘cutting cones’) in

cortical bone. Modelling bone cracks and evolving structures

due to remodelling is challenging using traditional finite-

element modelling due to the need for the mesh to match the

geometry of the discontinuity and the mesh must be regener-

ated at each step [36]. A recent implementation of SPH [37]

evaluated the influence of loading stimulus and age on the

growth of Haversian canals. The study also presented a

unique hypothesis that large cortical bone pores in older age

are a result of the coalescence of smaller Haversian canals
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Figure 3. Multiscale bone modelling framework consisting of a two-way information flow between muscle forces, bone mechanics, statistical model and micro-level
SPH particle mechanics. An SPH model simulates microstructure bone remodelling, which is captured in a statistical model and rapidly called from a whole hip
model. EMG muscle forces from walking stimuli drive the bone remodelling. (Online version in colour.)
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that merge due to stress shielding in bone. The SPH method

was able to capture patterns of remodelling that have been

clearly observed in synchrotron imaging. The model also

demonstrated sensitivity to subject-specific pore distribution,

initial bone density, loading patterns and osteocyte density.

All these features are key variables that need to be considered

at the bone micro-scale, and SPH is a suitable numerical

method to model with this level of fidelity.

A challenge of modelling at finer scales is how to link results

with meso- and macro-level structures efficiently. Homogeniz-

ing microstructures that lead directly to macroscopic stress

tensors can be computed analytically or numerically; however,

typically we simulate different microstructural scenarios under

different loading conditions, which can lead to a whole popu-

lation of models. This has motivated the application of

statistical approaches such as PLSR to link spatial scales by

developing pre-computed surrogate models, such as the

mechanostatistical model of cortical bone remodelling reported

by Wang et al. [38]. Population models were used to train femur

shape prediction in §1 and here we train a statistical model

on synthetic finite-element mechanics. A unique aspect of

Wang’s study was that the model was derived using equine

data (due to similar structures to humans) with in vivo strain

gauge data for different speeds of gait to inform the ‘mechano-

stat’ [39] used to decide states of bone remodelling, and

bio-staining data to quantify rates of bone remodelling. The

model simulated the ‘cutting-cone’ phenomenon, which was

directed towards damaged bone or regions of low strain stimu-

lus according to Wolff’s law. A ‘fading memory’ model was

also used to capture the effect that bone remembers its recent

history of loading even if one stops exercising. These complex

features were then simulated for different loading states and

Haversian canal configurations to train the PLSR surrogate

model. All these mechanical effects were then linked to the
femoral neck (a known region that fails) by calls to the statistical

model. A mechanics model that would normally run in hours

was solved in seconds, making this approach highly translata-

ble to the clinic. The statistical model is evaluated by predicting

mechanics solutions that are not part of the original training set.

The local variations in bone density and trabecular bone

strut alignment are due to the daily loading stimulus that

bone senses [40]. In fact, almost half the load at a joint is

attributed to muscle forces crossing it; hence, confidence in

evaluating bone remodelling requires confidence in muscle

force prediction. To illustrate this idea, muscle forces devel-

oped using the EMG-assisted method (§4) were used to

inform bone remodelling patterns in the acetabulum of the

hip [41]. A detailed finite-element model of the hip joint

was developed from a Somso model (www.somso.de) includ-

ing muscle origins and insertions, material properties from

CT Hounsfield units and validated against a Sawbone

model (www.sawbones.com) using an Instron compression

test. The model was firstly simulated using the total net

force loaded through the joint centre, and secondly using

the equivalent load distributed between the ground reaction

force and supporting muscle forces. Firstly, it was observed

that muscles distribute the loads more evenly across the

pelvis and reduce the peak von Mises stresses by up to

30%, as shown in figure 3 (top) and also confirmed by the

work of Dalstra et al. [42]. Hence, regions of bone remodelling

stimuli can be overestimated when anatomically accurate

muscle forces are not considered. Secondly, regions of remo-

delling around the acetabulum, which showed increased

stress due to muscle insertions, corresponded with high den-

sity observed using CT phantom values. This shows that

incorporating muscles partly explains the spatial variation

of bone density. Having confidence in muscle loading pat-

terns is important for bone remodelling predictions and §§3

http://www.somso.de
http://www.sawbones.com
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3. Multiscale continuum mechanics of muscle
Within a clinical setting, one of the few directly and easily acces-

sible functional data of the neuromuscular system are EMG

recordings. EMG signals can be recorded using surface or

needle electrodes. Needle EMG electrodes are invasive and

typically only pick up signals from a few motor units near the

electrode. By contrast, surface EMG electrodes are non-invasive

but only detect the activity of muscles underneath the electrode,

i.e. near the surface. The activity of deeper muscles cannot be

directly measured using surface EMG and, hence, needs to be

estimated using neural-based EMG-assisted methods (§4). Fur-

thermore, the complex functional grouping of muscle fibres into

motor units, their distribution within the muscle volume,

and their complex structural embedding within the extracellu-

lar matrix provide geometrical and mechanical uncertainty

leading to drawbacks in analysing EMG signals and, hence, cur-

rently limit us to using EMG signals to derive robust clinical

EMG-based markers for specific diseases.

Advancements in electrode design and signal processing

nowadays provides promising and new ways of decomposing

experimental high-density surface EMG signals into individual

motor unit discharges [43]. Despite the potential of these

methods, high-density EMG has yet to gain widespread clinical

acceptance. While these electrodes have already successfully

been used to investigate muscular function under isometric

conditions, there is still some uncertainty for interpreting non-iso-

metric contractions since the muscle as the source of the electrical

signals (action potentials), which are picked up by the electrode,

moves relative to the electrode on the surface of the skin. If ana-

tomical structures are taken into consideration, simulations could

provide further insights for improving source localization.

However, state-of-the-art computational models of the EMG

focus on the signal processing part and often neglect or simplify

the anatomical arrangements of the muscle fibres. Despite all

advancements, the link between the neural control and the

response of a particular muscle is not always clear.

Considering the non-isometric case of analysing EMG

data, one would obtain a much improved understanding of

the neuromuscular system and its disorders by employing

simulations. To do so, detailed biophysical models that are

capable of describing the complex mechanisms from the

neural drive to the generation of muscle force [44] leading

to the resulting EMG signals [45] need to be developed. How-

ever, existing chemo-electro-mechanically based models need

to be extended in order to consider micro-mechanical

descriptions of the skeletal muscle tissue similar to those

describing the interplay between the force-generating fibres

and the extracellular matrix (e.g. [46]).

From the chemo-electro-mechanical point of view, multi-

scale biophysical models exist that describe the entire pathway

from electrical excitation to muscle force generation [47–49].

In these models, a biophysical cellular model predicts the

stresses that result from the activation-induced contraction of

the half-sarcomeres. These sarcomere-based active stresses are

homogenized before being included in a continuum-mechanical

constitutive equation describing the relationship between tissue

deformation (strain) and stress distribution. By solving the dis-

cretized governing equations of the continuum-mechanical
model, one obtains the deformed geometry of the muscle as

well as the resulting muscle forces. Since each contraction

within a muscle fibre is induced through an action potential

that propagates along the respective fibre, the electrical state of

the muscle tissue is known, and, therefore, the resulting (surface)

EMG signal can be computed using the bidomain equations

[45]. A short overview of the interconnected model components,

which have been implemented within the open-source software

library OPENCMISS [7], is given in figure 4.

Besides the aforementioned framework, the only other

existing true multiscale framework for modelling the chemo-

electro-mechanical behaviour of skeletal muscle tissue has

been recently proposed by Ivanović et al. [50]. Within

this work, the authors focus on high-performance computa-

tional aspects of their chemo-electro-mechanical model

and ignore the possibility of incorporating biophysical-based

recruitment models. Two other existing multiscale skeletal

muscle models [51,52] can be categorized as electro-mechanical

skeletal muscle models, in which the authors do not solve for the

underlying biophysical processes on the cellular level but rather

assume a phenomenological behaviour of the electrical signal.

The biophysical description has many advantages over

simpler, phenomenological models. Physiological effects,

such as membrane fatigue causing changes in the amplitude

or action potential propagation velocities, are derived based

on the model rather than being prescribed as part of the

model construction. Despite the fact that many material par-

ameters of such a comprehensive model cannot be

determined on a patient-specific basis, the model provides

a step forward to determine and identify mechanisms present

in muscular function and dysfunction.

While models of the EMG led to an improved understand-

ing of the electrophysiological behaviour of skeletal muscles,

they are not necessarily suitable for analysing the mechanical

state of the underlying muscles. Hence, the EMG and the

chemo-electro-mechanical models need to be further extended

by additional measures, mechanisms and data in order to

quantify the mechanical behaviour of the skeletal muscle

tissue. One possibility is to record, in addition to EMG, mech-

anical quantities such as muscle vibrations or muscle

deformations. One preferred possibility could be magnetic res-

onance elastography. To correlate specific activation principles

with mechanical response, controlled muscle contractions are

desired. Since skeletal muscles contract voluntarily, a con-

trolled environment can be achieved by inducing a muscular

contraction through functional electrical stimulation (FES). In

FES, an external electrical signal is applied to stimulate

muscle tissue. To determine the number of muscle fibres that

are stimulated through a particular (monophasic or biphasic)

impulse, one can also use the above-described modelling

framework. In Kim et al. [53], a chemo-electro-mechanical

model was used to investigate different electrode arrange-

ments and explore neural spike trains, resulting from the

firing rate of the motor neurons on the amount of activated

muscle tissue and its effect on fatigue.
4. EMG-based muscle models and validation
At the whole joint scale, gait analysis in conjunction with

musculoskeletal modelling has provided opportunities for

estimating muscle forces. However, currently available

methods largely rely on optimization as a way to solve for
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neuromuscular redundancy. Because there are more muscles

than skeletal degrees of freedom (DOFs), there are multiple

neuromuscular patterns that can result in the same joint-

DOF state, i.e. DOF moment and acceleration. Optimization

is used to select the one neuromuscular pattern that satisfies

an a priori defined optimization criterion [54], such as mini-

mizing metabolic cost or total muscle activation. This

approach generates systematic and repeatable muscle force

patterns for a given joint-DOF state. Therefore, it does not

characterize how neuromuscular patterns vary across con-

ditions, i.e. time, motor tasks, training and pathology, even

for the same joint-DOF state and within the same person.

An alternative is that of combining current optimization-

based modelling methods with muscle electrophysiological

recording and processing techniques. Here we provide an over-

view of the EMG signal processing techniques that we use to

extract features of neuromuscular recruitment as well as the

modelling formulations that have been recently proposed

under this paradigm.

4.1. Extracting neuromuscular features from
electrophysiological recordings

Surface EMG recordings can be easily recorded in vivo during

dynamic motor tasks. Although limited in terms of selectivity

and noise contamination, they encode meaningful information

on the muscle neural excitation level. Muscle EMGs are typically

high-pass filtered, fill-wave rectified, low-pass filtered and

amplitude normalized to extract smooth linear envelopes, i.e.

muscle excitations. These give an indication of the time seg-

ments a specific muscle is active. In our previous work,
we further processed EMG excitations to extract a number

of features including muscle-specific activation and low-

dimensional synergistic structures of muscle activation [55,56].

The first feature represents normalized levels of muscle recruit-

ment, with ‘zero’ referring to no recruitment and ‘one’ referring

to full muscle recruitment, i.e. all muscle motor units recruited

and firing at maximal rate. Because motor units fire at non-

uniform rates and the resulting action potentials superimpose

on each other, the amplitude of the surface EMG picked

up by the electrodes is not proportional to the muscle activa-

tion and therefore to muscle force and was accounted for by

employing a second-order twitch model and a nonlinear trans-

fer function [55]. The second feature can be extracted by

processing muscle-specific activation using unsupervised

machine learning and dimensionality reduction techniques

such as non-negative matrix factorization [56]. This decomposes

multi-muscle activations into a lower-dimensional set of non-

negative activation primitives and muscle weightings. Linear

mixing of primitives and weightings reconstructs most of the

variability of the original muscle-specific activations. This

suggests that complex muscle activation patterns can be con-

structed by a small number of synergistic primitives acting on

multiple muscles simultaneously.

4.2. Open-loop and closed-loop formulations of
EMG-informed musculoskeletal modelling

Neuromuscular features have been successfully extracted

from experimentally recorded EMG data as a direct input

drive to numerical musculoskeletal models of human limbs,

thus accounting for realistic subject-specific neuromuscular
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strategies [56,57]. In this, muscle and joint dynamics are pre-

dicted blindly as part of an open-loop formulation, i.e. with

no mechanism that accounts for prediction errors. This

model formulation comprises four major components. The

activation-mapping component distributes muscle-specific

activations or low-dimensional primitives of activations to

individual musculotendon units (MTUs) in the musculo-

skeletal model. The MTU kinematics component synthesizes

subject-specific musculoskeletal kinematics models into a

set of multidimensional cubic B-splines [58]. Synthesis into

continuous functions is crucial for generating differentiable

musculotendon kinematics equations and enabling the compu-

tation of analytical Jacobians for the forward simulation of the

musculoskeletal system. The component receives experimental

joint angles as an input and computes MTU kinematics, i.e.

length and moment arms. The MTU dynamic component

employs a Hill-type muscle model in series with nonlinear elas-

tic tendons to estimate MTU forces from MTU lengths and

activations estimated in the previous blocks. The joint dynamic

component projects MTU forces to multiple joint-DOFs simul-

taneously by using MTU moment arms from the previous

block. This allows the MTU force to be translated into the

joint moment and joint contact force simultaneously [59]. The

open-loop model is calibrated to obtain the best predictions

of the experimental joint data when only driven by activation

patterns and joint angles from a set of calibration trials. It

employs a nonlinear least-squares optimization procedure to

identify parameters that vary nonlinearly across subjects

including: EMG-to-activation parameters, MTU optimal fibre

length, tendon slack length and maximal isometric force.

The open-loop formulation is then generalized into a

closed-loop modelling formulation [60]. This accounts for

surface EMG uncertainties that may contribute to bias the

model-based joint dynamics estimates including cross-talk

and filtering artefacts as well as the inability to access deeply

located muscles. In this, the open-loop EMG-driven modelling

formulation is coupled with a static optimization procedure.

This enables the input EMG excitations to be adjusted and

predicts neural commands for muscles with no EMG data

available so that the forward-driven musculoskeletal model

tracks experimental joint data about multiple DOFs simul-

taneously. This provides the flexibility of transitioning from

the configuration where muscles are fully driven by exper-

imental EMG signals to the configuration where muscle

activation patterns are fully synthesized using numerical
optimization. Importantly, we provided a procedure that

allows the minimal level of EMG adjustment to be established

that results in dynamically consistent simulations.

In Sartori et al. [57], we have shown for the first time

the possibility of predicting dynamically consistent estimates of

joint moments about multiple DOFs simultaneously as a direct

function of EMG data as part of an open-loop formulation

(figure 5a). In Sartori et al. [56], we showed, for the first time,

that it is possible to reconstruct the subject-specific lower extre-

mity musculoskeletal function from a five-dimensional set

of muscle synergies with the same accuracy as when using

16 muscle EMG recordings (figure 5a). Results also showed

how biomechanically different motor tasks shared similar

elementary neural control patterns that project into specialized

musculoskeletal functions. Figure 5b shows how open-loop

multi-DOF modelling could be employed to blindly generate

knee joint contact force estimates that reflected in vivo measure-

ments from instrumented total joint replacements. Finally,

figure 6 shows representative EMG excitations minimally

adjusted as part of our proposed closed-loop formulation

and the resulting improvement in multi-joint moment

matching during walking.
5. Discussion and conclusion
This paper has presented recent methods and technologies that

advance the state of the art for modelling the musculoskeletal

system across the spatial (macro to micro for muscle and

bone) and temporal scales (0.5 s for muscle signals and

months for bone remodelling); and storing these using efficient

ontologies and tools (such as the MAP). Population-based mod-

elling is an efficient method to rapidly generate individual

morphology from only a few measurements and to learn from

the ever-increasing supply of imaging data available. Efficient

mechanostatistical methods coupling different numerical

methods across the spatial scales such as micro-level particle-

based methods with solid continuum whole joints may help

bridge the scales for use in the clinic. The importance that

muscles play in bone remodelling stimuli is highlighted to

show that without muscles we often overestimate bone loading

since muscles effectively distribute and reduce peak loads

across bone. The latest EMG-assisted techniques reveal under-

lying muscle synergies that can be used to derive a reduced

set of muscle primitives. These EMG-based methods have
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provided the best predictions of knee joint contact force to date

in the ‘Grand Knee Challenge’ [12,13], the current gold standard

for testing muscle force prediction methods. Our proposal is

that, in order to have a clinically relevant VPH, (i) bone and

muscle mechanics must be considered together; (ii) models

should be trained on population data to permit rapid generation

and use underlying principal modes that describe both muscle

patterns and morphology; and (iii) these tools need to be

available in an open-source repository that the scientific

community may use, personalize and contribute to.

Regarding population-based models, there is tremendous

potential in the use of population statistics coupled with com-

putational models of the musculoskeletal system to address

clinical problems. However, we must first overcome several

challenges before population models will have clinical

impact. Firstly, streamlining collection and generation of

large sets of geometric and functional data (the whole

femur in §1 was trained on 300 þ CT datasets). Secondly,

storing, searching and sharing large datasets; and thirdly,

integration into computational modelling frameworks. The

MAP is a start in this direction, which will gain traction

with more contributions from the scientific community.

Remodelling of biological tissues including bone has always

been a challenge to validate in vivo and before microstructural

models of bone can be used as part of clinical trials we need

more double-blinded studies involving computational simu-

lation integrated with human and animal models. Two recent

successful examples include a micro-finite-element model that

predicted strength in bone following anabolic fluoride treat-

ment in post-menopausal women as part of a double-blinded

clinical study [61], and a micro-finite-element bone remodelling

prediction validated against mechanically stimulated murine

bone in vivo [35]. Such studies will present the clinical commu-

nity with more confidence in computational predictions of bone

treatments so that they may play a role in pilot testing and to

inform the direction of large clinical trials.

The challenge of multiscale continuum muscle models is

simultaneously simulating all effects in a multi-spatial and
multi-physics framework. A number of key features will

need to be included such as biophysical models of the motor

neurons, a chemo-electro-mechanical skeletal muscle model,

EMG models for predicting the resulting signals, an FES

model, and the inverse problem of detecting changes in

the mechanical properties of the underlying tissue due to

stimulation. Such an integrated model is computationally extre-

mely demanding and requires the use of high-performance

computing environments. Furthermore, one should note that

all of the above-described models focus on a single skeletal

muscle and its neural control. The computational effort multi-

plies by several orders of magnitude if these models are used

to describe parts of the musculoskeletal system. Nevertheless,

building up such detailed biophysical models has a tremen-

dous value as these models not only provide a significant

advancement in understanding the complex neuromuscular

system and valuable input for coarse-scale models, but also

provide in silico test environments to identify mechanisms of

neuromuscular disorders.

EMG-assisted modelling methodologies address the

muscle redundancy problem by making no assumptions on

how muscles activate and share the load about a joint. In this

context, predictive models based on muscle synergies and

modularity enable further opportunities for reducing the neu-

romuscular indeterminacy of movement and for predicting

EMG excitations for those muscles that are hard to measure.

Importantly, the EMG-assisted modelling formulations

presented in this article allow musculoskeletal simulations

to be generated that are consistent both with movement

electrophysiological function and with mechanical function,

something central for extracting realistic muscle force sol-

utions. This all opens up new avenues for characterizing

human neuromusculoskeletal function across individuals and

conditions and for developing personalized rehabilitation

treatments that ultimately enhance human health.

To summarize how the presented methods may be used to

influence personalized human health, a clinical example

encompassing all computational frameworks outlined within

this work can be found in the field of neuro-prosthetics. The

shape and geometry of the muscle is essential for identifying

an optimally designed socket for a particular subject-specific

residual limb. The design of an optimal socket is influenced

not only by the residual limb’s geometry but also by muscular

activity. Since muscle activation changes the material behav-

iour of a residual limb during movement, knowing the

muscle’s activation through multiscale EMG-informed skeletal

muscle modelling can tremendously improve the design. Fur-

thermore, EMG-based modelling can identify subject-specific

neuromuscular activity after amputation and therefore help

to better design, train and control a neuroprosthesis. Moreover,

predicting the muscular activity within a subject-specific limb

and the distribution of the weight of the socket provides the

clinician with a predictive tool to potentially identify pressure

points (stress peaks within the bone) and, hence, information

on areas in which pressure ulcers are likely to develop. Using

the bone remodelling simulations for predicting the long-

term changes within the bone provides additional information

for designing an optimal socket that prevents excessive bone

loss due to the additional ‘artificial’ system. The right prosthe-

sis can maintain homeostasis with respect to muscular mass

and optimal mechanical performance of the artificial limb

(and not only with respect to all its single components but

also at the human–artificial limb interface).
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