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Blood vessels have unique properties that allow them to function together

within a complex, self-regulating network. The contractile capacity of the

wall combined with complex mechanical properties of the extracellular

matrix enables vessels to adapt to changes in haemodynamic loading. Hom-

ogenized phenomenological and multi-constituent, structurally motivated

continuum models have successfully captured these mechanical properties,

but truly describing intricate microstructural details of the arterial wall may

require a discrete framework. Such an approach would facilitate modelling

interactions between or the separation of layers of the wall and would

offer the advantage of seamless integration with discrete models of complex

blood flow. We present a discrete particle model of a multi-constituent, non-

linearly elastic, anisotropic arterial wall, which we develop using the

dissipative particle dynamics method. Mimicking basic features of the

microstructure of the arterial wall, the model comprises an elastin matrix

having isotropic nonlinear elastic properties plus anisotropic fibre reinforce-

ment that represents the stiffer collagen fibres of the wall. These collagen

fibres are distributed evenly and are oriented in four directions, symmetric

to the vessel axis. Experimental results from biaxial mechanical tests of an

artery are used for model validation, and a delamination test is simulated

to demonstrate the new capabilities of the model.
1. Introduction
The arterial tree is a highly complex, self-regulating network. Active cellular

processes control extracellular matrix remodelling and smooth muscle contrac-

tion and thereby allow the vessels to respond to changes in blood flow, blood

pressure, circulating hormones and neural activity. Indeed, cellular control of

the matrix is fundamental to ensuring both appropriate mechanical functional-

ity and structural integrity, and there is an intricate communication between the

cells and matrix. Of particular note, the microstructure endows the normal

arterial wall with a unique stability against lateral bending (tortuosity) while

maintaining constant axial force during changes in internal pressure, which is

energetically favourable [1].

The wall of a normal elastic artery consists of three layers: the intima, media

and adventitia. The intima is composed of a layer of endothelial cells that line

the inside of the vessel and thus contact the flowing blood. The media is the

middle layer; it consists of multiple layers of smooth muscle cells and elastin

with admixed glycosaminoglycans and collagen fibres [2]. The adventitia is

the outer layer; it consists primarily of collagen fibres. The elastin is highly com-

pliant and resilient and carries most of the load at low pressures, while the

stiffer collagen fibres carry load at high pressures and provide most of the

strength of the wall. Collagen fibre dispersion differs between layers and

specific artery types. In general, however, these fibres, along with the predomi-

nantly circumferential smooth muscle orientation, give arteries a macroscopic
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mechanical response that is nearly orthotropic with respect to

their primary axes, circumferential and axial [3]. Whereas

multi-layered models of the wall are particularly important

in mechanobiological studies, single-layered homogenized

models are often sufficient to capture the effects of the wall

on the haemodynamics.

Continuum models of arteries have advanced signifi-

cantly over the past three decades and are now able to

describe well the overall anisotropic mechanical properties.

One of the earliest and most inspirational models was the

Fung model [4,5], which introduced an exponential strain

energy function that was incorporated into many subsequent

models. Another often used model [6,7] employs a multi-

constituent framework, namely a neo-Hookean component

representing an elastin-dominated isotropic matrix plus

families of parallel fibres that represent fibrillar collagen.

The fibres are often described by Fung-type strain energy

functions. Two identical fibre families oriented symmetrically

to the axis of the cylinder are often used to render the

material macroscopically orthotropic. One variant accounts

for dispersion in fibre orientation by using a parameter to

characterize the distribution of fibre orientation angles. A

different approach [8,9] introduces two additional fibre

families, aligned axially and circumferentially to create a

‘four-fibre family’ model. Without considering dispersion

explicitly, the mixture of the four fibre orientations provides

a good phenomenological approximation of the macroscopic

effects of collagen fibre dispersion and cross-links, which are

not considered explicitly in current models [9]. The circumfer-

ential fibres also account for the passive elastic properties of

the smooth muscle cells, which are typically aligned in the

circumferential direction.

Notwithstanding the success of these and other recent

models, it is worthwhile to consider additional ways to

advance the characterization of arteries, leveraging what

has been learned through prior continuum models. To this

end, we propose a discrete particle model for an anisotropic

artery based on the same fibre-reinforced elastic structure.

While the continuum approach offers certain advantages, it

presents challenges that can be avoided or at least lessened

in discrete modelling. For instance, the problem of dissection,

a pathological condition in which layers within the arterial

wall separate, is difficult to simulate with continuum

models but trivial to represent in a discrete model. Among

discrete models, the peridynamic theory was proposed to

overcome some of the intrinsic limitations of classical conti-

nuum theories when dealing with problems having

discontinuous displacement fields, such as fracture [10,11].

Similarly, smoothed particle hydrodynamics (SPH) was

introduced for solid mechanics as a high-strain Lagrangian

method for modelling fractures and crack propagation [12].

While peridynamics and SPH formulations are motivated

by methods of continuum mechanics (top-down approach),

dissipative particle dynamics (DPD) [13,14] is a discrete par-

ticle mesoscale (bottom-up) approach in which particles

represent clusters of molecules and finite-strain solid defor-

mations are described using nonlinear spring potentials

between neighbouring particles. DPD is an effective method

for modelling the mechanics of soft matter (e.g. polymers)

and complex fluids like blood, which suggests a potential

advantage when developing fluid–solid interaction models

for the vasculature. For example, existing DPD models of

red blood cells and platelets [15–17] that accurately capture
contributions of haematocrit to the viscosity of blood or

contributions of platelet activation and aggregation to throm-

bosis at fine- and coarse-grained scales can be incorporated

into flow simulations. Combining such capabilities with a

model of dissection of the wall could thus enable a seamless

means to study the complexities of the in vivo situation.

Given this ultimate goal, in this paper, we present an

orthotropic DPD model of an artery composed of two inte-

grated constituents: an isotropic elastin-dominated matrix

within which is embedded multiple families of stiff collagen

fibres. To account for consequences of collagen fibre dis-

persion and cross-linking we adopt the four-fibre method,

which has been shown to describe biaxial data well and is

more readily adaptable to discrete modelling than methods

using a continuous distribution for dispersion (which ulti-

mately models many discrete fibre directions). The elastin

matrix is modelled to approximate a neo-Hookean (non-

linear) elastic behaviour, while equations for the fibre

spring potentials are derived directly from the continuum

equations of [7,9]. To the best of our knowledge, this is the

first attempt to model fibre-reinforced or anisotropic solids

using a discrete particle framework. This is also, to the best

of our knowledge, the first attempt to model the macroscopic

behaviour of the arterial wall using discrete particle methods,

which would ultimately allow seamless coupling of discrete

models of blood flow within a flexible vessel that can respond

to the variations in flow or pressure. We begin with a two-

fibre version of the model, which we use for numerical veri-

fication, and then we move to the four-fibre model, which we

validate with experimental results for two separate biaxial

tests that mimic in vivo mechanical loading conditions of a

vessel. We then present results for delamination of a two-

layer arterial wall which is constructed by connecting two

separate fibre-reinforced layers.
2. Methods
2.1. Mathematical models
DPD is a coarse-grained discrete particle simulation method in

which particles represent molecular clusters, as first developed

by Hoogerbrugge & Koelman [14]. Solids are treated as networks

of DPD particles connected by spring potentials. Two model

structures are shown in figure 1. The arterial wall is modelled

as a mesh of triangulated elastin matrix (grey) with embedded

fibres (red/blue) arranged as a diamond mesh representing col-

lagen. DPD particles are located at the vertices of the mesh. The

two-fibre model uses two identical fibre families oriented sym-

metrically to the axis of the cylinder, thus rendering the overall

material behaviour orthotropic in response to circumferential

and axial loading. The four-fibre model includes additional

fibres in the axial and circumferential directions. The DPD par-

ticles associated with the fibres will be referred to as fibre

particles, while those in elastin matrix will be referred to as

matrix particles.

In DPD models of solid material, results converge rapidly as

the particle number increases (i.e. as the model is fine-grained).

Unless the body undergoes severe shape changes and defor-

mations, which require higher mesh resolutions to resolve

small features including sharp corners, very fine-grained

meshes are typically not used. For a detailed derivation of the

scaling for a triangulated mesh refer to the study of Fedosov

et al. [18].

Unlike multi-constituent continuum models, the fibres and

elastin in the DPD model mechanically interact at the contact
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Figure 1. Structural schematic of both two- and four-fibre DPD models of an
arterial wall containing two primary structural constituents: collagen fibres
embedded in an elastin-dominated matrix. The two-fibre model (top) con-
tains collagen fibres (red) and an elastin matrix (grey). The four-fibre
model (bottom) contains additional axial (dark blue) and circumferential
(light blue) fibres. DPD particles in each layer are located at the vertices
of each triangle or diamond, indicated in the right column with black circles.
(Online version in colour.)
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points between the fibre particles and the matrix triangle faces, as

shown in figure 2. The fibre particle (red circle at j0 or j in the

undeformed or deformed configuration) and its three matrix par-

ticle neighbours (located at the triangle vertices) are attracted by

an elastic force f E
J defined in equation (2.3).

The total system energy is

Usystem ¼ Umatrix þUfibres þUint, ð2:1Þ

where Umatrix and Ufibres are energies in the matrix and fibre,

given in equations (2.6) and (2.11). Uint is an interaction energy

from the binding of the two constituents, which is inappropri-

ately absent in most continuum models, but enters naturally in

the DPD method [16]

Uint ¼
X

j[1...Nmf

kmfðdj � dj0Þ2

2
, ð2:2Þ

where Nmf is the number of connection points between the

matrix and fibres; in this case, Nmf is equal to the number of

fibre particles because the constituents are connected at points

of intersection between the fibre particles and the triangle faces

on the matrix layer. dj is the distance between the vertex j in

the fibres and its corresponding projection point j0 on the

matrix layer; dj0 is the initial distance (in the unloaded material)

between j and j0. Figure 2 shows (a) the undeformed configur-

ation and (b) a deformed configuration. kmf is the spring

constant of the interaction potential. The corresponding elastic

force on the vertex j of the fibre layer is

f E
J ¼ kmfðdj � dj0 Þtj, ð2:3Þ

where tj is the vector from point j to point j0.
Here Uint is a crucial term in our model for it represents the

interaction energy between different constituents. Ideally, this

term could vary for arteries from different regions as well as

be a function of age, disease status and so forth; however, to

compare directly to continuum models, we set kmf to be a large
positive number to prevent sliding between the fibres and

matrix. In this way, Uint acts as a penalty term in the total

energy that significantly restricts the inter-constituent motions

and thus models a ‘constrained mixture.’ Specifically, we set

the value of kmf four orders of magnitude higher than the

shear modulus of the elastin layer, m0, which was more than suf-

ficient to prevent different constituents from separating. Further

increases in kmf did not change the simulated stretch tests

(whereas much lower values of kmf decreased the overall material

stiffness). By considering weaker interaction forces between

different constituents, we are able to simulate delaminations as

discussed later. First, however, we develop a working constitu-

tive model of a fibre-reinforced artery in DPD that can match

results from existing continuum models for a healthy wall.
2.1.1. Material thickness in a two-dimensional model
The arterial wall is technically treated as a two-dimensional

material with stresses and strains uniform across the wall (in

the radial direction). By assuming local incompressibility, how-

ever, we compute local changes in wall thickness, which affects

the local structural stiffness. Thus, we avoid a membrane

approximation.

The thickness at any location along the wall is calculated

from the change in area of the triangular faces in the elastin.

Thus, ht ¼ ht,0At,0=At, where ht is the triangle thickness, At is

the triangle area and the subscript ‘0’ denotes the unloaded

value. The thickness of a matrix particle, hm, is the average thick-

ness of the triangles associated with it. Conversely, fibre particle

thickness is computed as the weighted average of the thicknesses

of its matrix particle neighbours, which are located at the vertices

of triangular faces where fibre particles attach (figure 2). The

thickness, hf of fibre particle f, is computed as

hf ¼
X

i[½1,2,3�
hiwi, ð2:4Þ

where hf is the thickness of the fibre particle and hi is the thick-

ness of the matrix particle located at one of the three vertices

of a triangle. The weights, wi depend on the distance between

the matrix and fibre particles and are defined as

wi ¼
D� di

2D
, with D ¼

X
j[½1,2,3�

dj, ð2:5Þ

where di is the distance between the fibre particle and matrix

particle i, and D is the sum of the three distances.
2.2. Matrix
The total energy in the matrix, Umatrix is

Umatrix ¼ Us,m þUarea, ð2:6Þ

where Us,m is the total spring potential for the matrix, and Uarea

is the potential due to area constraints. Spring forces in the wall

come from conservative elastic forces of the bonds. Following

[15], we combine a wormlike chain (WLC) potential, UWLC,

with a repulsive power force potential, UPOW, to achieve a neo-

Hookean behaviour. The former potential does not prevent com-

pression, thus the UPOW potential is added as a repulsive force to

resist compression of the springs (e.g. so that the material does

not collapse along the width when pulled lengthwise). This

approach has also been used effectively in modelling red blood

cells [15]. For a mesh with Ms springs in the matrix, the potential

of spring j depends on its length lj, and Us,m is the sum of all Ms

springs: Us,m ¼ S j[1...Ms,m
½UWLCðljÞ þUPOWðljÞ�: The spring ener-

gies are defined [15] as

UWLC ¼
kBTlmax

4p
3x2 � 2x3

1� x
ð2:7Þ
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Figure 2. Adhesion between fibre and matrix particles (a) Undeformed configuration. j00 is the projection point on the undeformed elastin matrix of vertex j0 of the
undeformed collagen fibre; d j0 is the initial distance between vertex j0 and point j00: (b) Deformed configuration. j0 is the deformed configuration of point j00; dj is
the distance between deformed fibre vertex j and point j0; f E

j is the elastic interaction force; nj is the normal direction vector of the elastin matrix. The distance
between the fibre projection point j0 and the matrix particles at the vertices of the adhering triangle are d1, d2 and d3. (Online version in colour.)

Table 1. Parameters for pressurization of thin-walled tube. Here, Nv is the number of DPD particles, l0 and lmax are the equilibrium and maximum bond
lengths, respectively, m0 is the shear modulus, m is the exponent in equation (2.8), and k1 and k2 are parameters of the two-fibre model in equation (2.11).

layer Nv l0 (mm) lmax m0 (kPa) m k1 (kPa) k2

matrix 260 1.485 5.0 7.64 2

fibre (a ¼ 508) 221 1.485 996.6 524.6

fibre (a ¼ 408) 240 1.440 996.6 524.6

fibre (a ¼ 308) 260 1.484 996.6 524.6
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and

UPOW ¼
kp

ðm� 1Þlm�1
, for m . 0, m = 1

�kp logðlÞ, for m ¼ 1,

8<
: ð2:8Þ

where x ¼ l=lmax; lmax is the maximum spring length (equili-

brium length is l0), and p is the persistence length. The POW

force coefficient is kp and m is the exponent. The persistence

length and kp are computed by balancing the spring forces at

equilibrium (f ¼ @ðUWLC �UPOWÞ=@ljl¼l0 ¼ 0) and from their

relation to the shear modulus m0 (see derivation in supporting

material of [15]):

hjm0 ¼
ffiffiffi
3
p

kBT
4 pjlmaxx0

x0

2ð1� x0Þ3
� 1

4ð1� x0Þ2
þ 1

4

 !

þ
ffiffiffi
3
p

kpðmþ 1Þ
4lmþ1

0

, ð2:9Þ

where hj and pj are the current thickness and persistence length,

respectively, of matrix particle j. This is a slight variation from

the expression in [15]; here, we include the thickness term hj,

whereas the original expression was derived for a thin-walled

material in which thickness did not vary, so m0 was treated as

the product of the shear modulus and the constant thickness.

Area constraints from [15,18] are defined as

Uarea ¼
X

j[1...Nt

kahtðAj � A0Þ2

2A0
, ð2:10Þ

where Nt is the number of triangles in the mesh, and ka is the area

constraint coefficient. Aj is the current area of triangle j, and A0 is

the equilibrium value of the triangle area; ht is the triangle

thickness.
2.3. Fibre
The fibres are treated without area constraints because individual

collagen fibres are ostensibly independent, hence the potential

for the fibres comes entirely from the spring forces,

Ff ¼ @Ufibre=@l: Discretizing the continuum model stress function

for fibres in [6] gives an equivalent expression for the DPD force

of a single fibre spring (see derivation in appendix A):

Ff ¼
2k1dfhl2

Jl20

l2

l20
� 1

� �
exp k2

l2

l20
� 1

� �2
" #

, ð2:11Þ

where l and l0 are the current and unloaded bond lengths,

respectively; df is the orthogonal distance between two parallel

fibres, and h is the thickness of the fibre; thus dfh is the cross-

sectional area of the fibre. The parameter k1 determines the initial

stiffness and k2 determines the hardening behaviour. The

Jacobian is set to J ¼ 1 for incompressibility.
2.4. Experimental methods and simulation procedures
We first simulate pressurization (radial tractions only) of a thin-

walled tube using a two-fibre DPD model and compare results

against the theoretical continuum results to verify our implemen-

tation. Using the same two-fibre model, we also perform

simulations of a planar sheet undergoing biaxial stretching similar

to the experiments of Keyes et al. [19] and Kural et al. [20]. We then

consider the more complete four-fibre model in DPD and validate

it against experimental biaxial data collected from a common car-

otid artery (CCA) of the mouse. The advantage of using biaxial

stretching tests for calibration is that arteries experience both lumi-

nal pressure and significant axial stretch in their in vivo state. Thus,

biaxial tests reveal more about the in vivo mechanical behaviour

than do uniaxial tests. For example, a unique mechanical property

of arteries is that they maintain a constant level of axial force

during pressurization when maintained at their in vivo length

[21–23]. When extended beyond the in vivo axial stretch, increased

pressure causes an increase in axial force; when held below the
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in vivo axial stretch, increased pressure causes a decrease in axial

force [8]. Below, we describe both experimental and simulation

procedures for two biaxial tests: pressure–diameter tests at and

around the in vivo length (P2d ), and force–length ( f2l ) tests at

various internal pressure levels.

2.4.1. Pressure – diameter (P2d ) and force – length ( f2l )
tests

Full details of our approved (Institutional Animal Care and Use

Committee) animal protocols, experimental methods and data
analysis have been reported previously [8]. Briefly, murine

common carotid arteries were excised, cleaned and placed

within a custom computer-controlled biaxial device. Following

preconditioning, cyclic P2d tests were performed over a range

of pressures from 0 to 140 mmHg at three different fixed axial

stretches, in vivo and +5% of in vivo. Similarly, cyclic axial f2l
tests were performed over a range from 0 to 10 mN at four differ-

ent fixed pressures: 10, 60, 100 and 140 mmHg. Together, these

seven protocols provide biaxial data sufficient for robust non-

linear parameter estimation to characterize the highly nonlinear

and anisotropic behaviour. Assuming plane stress, theoretical

expressions for luminal pressure and axial force can be deter-

mined as a function of unknown material parameters for each

experimental data point. A nonlinear least-square regression,

based on the Levenberg–Marquardt algorithm, is used to esti-

mate the material parameters by minimization of a properly

defined objective function. For more details on parameter

estimation, refer to [8].

In P2d test simulations using DPD, the vessel is pressurized

over a range of 0–150 mmHg in three separate trials in which it is

held at each of three levels of axial stretch, lz ¼ length/unloaded

length ¼ 1.64, 1,73, 1.81, where 1.73 is the estimated in vivo axial

stretch. Consistent with most continuum modelling, in our DPD

simulations, we ignore the cannulated ends of the artery and simu-

late only the middle segment (1 mm length) where the radius is

nearly uniform and where the experimental data are measured.

The axial force is computed by summing the material forces on

each DPD particle at the ends of the segment. In this way, the

entire length of the vessel is free to move radially. The vessel is first

extended axially until it reaches one of the three values of lz, at

which point it is restricted from further axial deformation for the

rest of the simulation so that it can maintain a constant axial stretch.

After the axial stretch, pressure is applied in small steps and the

resulting tube thickness, diameter and axial force are computed.

We use a slightly different but equivalent procedure for the

f2l tests. We begin by pressurizing the DPD vessels to one of

four levels (10, 60, 100 or 140 mmHg) and allowing the length,

diameter and thickness to change freely in response to the

pressure. This step is equivalent to the first three steps in



Table 2. Mesh values for square sheets in figure 4.

layer Nv l0 (mm) lmax m0 (kPa) m k1 (kPa) k2

matrix 2879 0.206 5.0 7.64 2

fibre (308) 2822 0.206 996.6 524.6

fibre (408) 2503 0.204 996.6 524.6
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the experimental procedure: the artery was extended to a large

axial stretch, then it was pressurized and finally it was returned

to a lower axial stretch at which axial force was nearly 0. In both

procedures, the final state is that the vessel is pressurized and

experiences no applied axial force. Because creep, relaxation

and hysteresis are negligible during such tests on arteries

[8,9,24], the two procedures are equivalent. We confirmed this

equivalence in DPD simulations, but chose the first procedure

to reduce computational time. From this point, the simulation

procedure followed the experiment: an axial force of 0–18 mN

was applied to the ends of the tube (distributed uniformly over

the circumference).

In contrast with the experiment, the simulation used an equiv-

alent but different method of computing the axial force due to

pressure as this approach was more convenient to model: in the

experiment, the luminal pressure in the cannulated vessel acted

on a closed-ended vessel, which meant that the axial force experi-

enced by the vessel was equal to the sum of ft, the axial force

applied to the vessel to stretch it axially, plus fp,z ¼ pr2
inP, or the

pressure times the inner cross-sectional area of the tube. In DPD,

pressure was applied to an open-ended tube, and we corrected

for the true axial force of a closed tube after the simulation.

Thus, the axial force due to pressure on a closed tube,pr2
inP, is sub-

tracted from axial force computed in simulation, where P is the

pressure used in the simulation (in units of pascals), and rin is

the current inner radius. Essentially, by simulating pressurization

of an open-ended tube, we are doing the equivalent of pressurizing

a closed tube and then applying axial force of �pr2
inP:

2.4.2. Delamination tests
In order to explore applications of the proposed DPD model in

dealing with discontinuities arising from failure in soft tissues,

we simulate intramural delamination to replicate a peeling exper-

iment in which a rectangular, two-layer strip of arterial tissue is

separated by applying opposite forces to the top edges of the

layers (as though peeling apart two strips of adhesive tape).

We enforced a rigid boundary condition along the short edges

of the sheets where the pulling force is applied, mimicking con-

ditions in an experimental testing device in which the mounted

specimen would be constrained on each end [25].

Here we use a high binding force value for the fibre–matrix

interaction, kmf to ensure no slip between these components.

Further, since the focus is the inter-layer interactions in an arter-

ial wall, we note that there are mainly two parameters involved:

the inter-layer binding strength kmm which is similar to kmf in

equations (2.2) and (2.3), and a new quantity defined as the criti-

cal bond length before breaking, lcrit. Normally, these quantities

will not be constant throughout the arterial wall; thus to be more

realistic, we assume that kmm and Icrit follow a normal distribution

with mean values and standard deviations.
3. Results
3.1. Pressurization of a thin-walled tube
We pressurized a discrete particle tube embedded with two

diagonal fibres symmetric across the axis for verification
against continuum results in fig. 7 from [6]. As in the example

from [6], we use a cylinder with a mean radius R ¼ 4.745 mm

and wall thickness H ¼ 0.43 mm in the stress-free configur-

ation. We compute the axial and circumferential stretches,

lz and lu, respectively, due to internal pressurization using

three tubes with different fibre angles, a, where a is the refer-

ence angle between each diagonal fibre and the axis. Table 1

gives the mesh and the parameters used in the simulation.

Results for the three tubes are shown in figure 3 along

with the interpolated results from [6]. The top plot shows

the axial stretch due to pressure, while the bottom plot

shows circumferential stretch. As the tube is pressurized,

causing the circumference to increase, the axial length of

the unconstrained tube decreases due to the incompressibility

constraint. The tube with the 508 fibre angle experiences the

smallest circumferential stretch, because these fibres are clo-

sest to being aligned with the circumferential direction,

thus they support more of the circumferential load than the

408 or 308 fibres. The 508 fibre angle also experiences the

smallest axial shortening (top plot) because the circumferen-

tial deformation is less. The DPD model matched well the

continuum model for the circumferential stretch. While

there is slight discrepancy for the axial stretch, this could be

explained by slight differences in surface area constraints

and bending stiffness, which are modelled differently in the

discrete than the continuum models.
3.2. Biaxial mechanical tests
Because arterial tissue is subjected to biaxial loads under

normal physiological conditions, it is important to test the

model’s performance in biaxial mechanical tests. Figure 4

shows the results of a planar biaxial stretch of two 10 mm

by 10 mm samples with 0.5 mm thickness, identical except

for their fibre angles, 308 and 408. Table 2 gives the mesh

values and parameters. The sheets were deformed with an

equal force applied to the horizontal and vertical edges,

with free boundary conditions in both x- and y-directions,

thus preserving a rectangular shape. The top plot shows

the stretch along the length; the bottom plot shows the stretch

along the width. Solid black curves are spectral element (con-

tinuum) results based on two-fibre family model of Gasser

et al. [6], and open circles are DPD results, which match

well except at the largest deformations. Compared with the

408 fibre angle, the 308 fibres are closer to being aligned

with the vertical (lengthwise) direction, so they support a

smaller portion of the horizontal load than the 408 fibres.

For this reason, the sheet with the 308 fibre angle experiences

significantly higher stretch along the width (bottom plot),

thus resulting in increased shortening along the length

(upper plot). The extreme deformation at smaller fibre

angles is likely the source of discrepancy between DPD and

continuum results.
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While the two-fibre model provides important verification

benchmarks, the four-fibre model [9] has proved better suited

to capture the complex, biaxial mechanical response of

murine arteries. Here we move to the four-fibre model follow-

ing [9], as shown in the lower half of figure 1, and present

biaxial P2d and f2l data for a CCA as described above in

Methods. Model parameters for the traditional four-fibre

family continuum model and the DPD model are obtained

through a best-fit estimation following the procedures outlined

in [8]. Fits of the continuum model, in figure 5d–f, were very
good, with estimated values of R2 .� 0:98 The unloaded

(stress-free) dimensions of the artery are 5.57 mm length,

447 mm outer diameter and 65 mm wall thickness. Parameters

and mesh for the DPD model are given in table 3.

DPD results for P2d tests are shown in figure 5a,b, with

R2-values (.0.93) lower than those for the continuum model,

but still very good. Figure 5a shows the diameter versus pressure

when the tube is held at three levels of axial stretch, and figure 5b
gives the axial force versus pressure. In figure 5b, the results at the

in vivo axial stretch are relatively flat, so that as the pressure



Table 3. Mesh and parameters for four-fibre DPD tube in figure 5.

layer Nv l0 (mm) lmax m0 (kPa) m ka k1 (kPa) k2

matrix 868 42.77 2.0 21.22 2 0

diagonal fibres 812 43.11 0.04 1.16

circumferential fibres 42.77 7.025 0.09

axial fibres 74.82 9.25 0.07

Table 4. Mesh values for each layer of the square patch in the peeling experiment.

layer m0 (kPa) k1 (kPa) k2 kmf (N m – 1) Kmm (N m – 1) lcrit (mm)

matrix 7.64

fibres 996.6 524.6 0.1 0.005+ 0.0005 0.01+ 0.0025
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increases, the axial force remains constant. When the vessel is

held at an axial stretch above the in vivo value, increased pressure

causes an increase in the axial force. When the vessel is held

slightly below the in vivo axial stretch, the axial force decreases

with increased pressure. Hence, the DPD model captured this

complex, fundamental biaxial behaviour well, similar to most

continuum models reported in the literature.

The results for the f2l tests are shown in figure 5c along

with the corresponding R2-value. These results match the

experiment for axial force versus length well, especially at

100 and 140 mmHg. The intersection point of all four

curves (roughly 1.73) is the in vivo axial stretch value. Overall,

the description of data with the DPD model is similar to that

of the best continuum models, as exemplified in figure 5d– f
for the same P2d and f2l tests.

3.3. Modelling delamination of arterial layers
As described in the Methods section, we use a high binding

force value for the fibre–matrix interaction, kmf, whereas we

introduce weaker inter-layer binding strength kmm along

with a quantity defined as the critical bond length before

breaking, lcrit. Further, we assume that kmm and lcrit follow

a normal distribution with mean values and standard devi-

ations given in table 4. This table also lists parameters used

for the peeling experiment of figures 6 and 7. We consider

two different orientations for the fibres, 608 and 308 relative

to the pulling direction (y-axis in figure 6).

Figure 6 shows a sequence of snapshots for the peeling pro-

cess of a double-layered square patch. We plot the peeling force/

width versus delamination length in figure 7 for the above-

mentioned fibre orientations for five simulations along with

their mean curves. The results are qualitatively similar to the

experimental results of [25] with the peeling force for 308 orien-

tation higher than that for the 608 orientation. This difference

could be due to more aligned fibres along the pulling direction

in 308 configuration, which results in higher stiffness of the

loaded specimen and an increase in the peeling force.
4. Discussion
In this work, we adopted a middle ground between a two-

dimensional approximation and a physically more realistic

three-dimensional approach. We determined the local
thickness of the wall based on volume incompressibility

while ignoring transmural variations in stress; this is equival-

ent to using plane-stress elements in FEM. This approach was

critical to our model’s ability to produce accurate results for

complex biaxial stretching, both in tubular and planar speci-

mens. Further, we believe that future modelling of fluid–

structure interactions in DPD will be more efficient using a

two-dimensional wall model. All the simulations were per-

formed on a single computer node with 16 cores, and the

runs took no longer than several minutes due to the small

number of particles needed to represent the arterial walls.

We do not expect computation time to become a major chal-

lenge even if we use a three-dimensional model of arterial

layers. Using DPD to model three-dimensional mechanics

of an arterial wall consisting of several layers of particles

spanning the wall thickness remains for future study. This

approach may be preferred in some cases, such as in studying

the mechanobiology and, more importantly, the delamina-

tion/dissection process. A truly three-dimensional DPD

model of the arterial wall will also require significantly

more experimental data, including bond connectivity along

the third dimension and the distribution and alignment of

fibres across the thickness. There is also less information on

‘bond energies’ in compression than in tension, noting that

the continuum stress is compressive in the radial direction.

Hence, further extension of the DPD model must await

additional experimental data.

For our model, we assumed that the fibres and elastin

matrix were perfectly adhered so that no inter-constituent

sliding or separation was permitted regardless of the defor-

mation or applied force. This provided a model analogous

to its continuum predecessors, which is useful for verification

and robust parameter estimation. As seen via comparisons

with simulated (planar) and actual (tubular) biaxial data,

the DPD model captured the salient results well. The small

quantitative difference in the biaxial stretch results may be

explained by small discrepancies between the matrix

equations in the continuum model and the DPD worm-like

chain model. While the two are essentially equivalent at

small deformations, they diverge slightly at large defor-

mations. The matrix also introduces some uncertainty in the

DPD model as it has three additional parameters that the con-

tinuum model does not: ka, the local area constraint; lmax, the

maximum WLC spring extension; m, the WLC power term.
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Because m had very low sensitivity, we set its value at 2, the

same as in [15]. The other parameters were calibrated by opti-

mizing ka for a range of values of lmax and then selecting the

best combination. The overall material stiffness could be

increased by decreasing lmax or increasing ka, but each

choice affected the shape of the response curves differently.

For the two-fibre model, we found that the best matches

were obtained when lmax was maximized at 5 (above

which, results were unchanged), balanced with a large ka

optimized to provide the appropriate stiffness. For the four-

fibre model, we found the opposite: the best results were

obtained by setting ka to 0 and decreasing lmax to 2. The

difference may be explained by the way the microstructure

of the fibres affects the macroscopic properties of the material.

The addition of two new fibre families, in changing the
nature of the mechanical response, may alter the sensitivities

of the matrix parameters. In the validation experiments with

the four-fibre model, the parameter fitting may also have con-

tributed to the error because it was calibrated to the

continuum model.

Layer interactions are unavoidable in some pathological

conditions. For example, in carotid artery dissection, a lead-

ing cause of stroke in young adults [26], intramural layers

are separated and are often contiguous with an intimal tear

that allows blood within the wall. While the continuum

approach poses difficulties in modelling dissections, DPD

could provide an effective framework particularly when

coupling the wall mechanics and haemodynamics. The pre-

sent model is suitable to model dissection by adding

additional multi-constituent layers and binding them to
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each other (but using a lower binding force in equation (2.3)

to allow a delamination/dissection). By contrast, ad hoc
models (such as cohesive potential energy) are needed in

continuum models and displacement discontinuities have

to be resolved by adding more nodal degrees of freedom

in the FEM mesh [27].

We performed simple illustrative simulations for the peel-

ing of a two-layered arterial wall to demonstrate one possible

use of the DPD model in studying damage and failure in soft

tissues, as shown in figure 6. The layer interactions can be

modelled (in a discrete sense) by considering harmonic

bonds connecting the two layers at the location of matrix par-

ticles. Although the peeling force versus delamination length

in figure 7 is qualitatively similar to the peeling forces

reported in [25], performing a close comparison with that

data is not possible due to lack of information on the

matrix/fibre properties and fibres orientation. Nonetheless,

we examined and presented the sensitivity of the simulations

to the values of kmm and lcrit (figure 8). First we increase the

mean value of kmm twofold to 0.01(N m– 1) while keeping its

variation at 10%. We observe an increase in the peeling force

in figure 8a as expected since the interlayer bond strength has

been increased. In addition, we test the effect of lcrit in

figure 8b by introducing a higher variation through a

higher standard deviation of 100%. We find a slight increase

in both the amplitude of the peeling force and its mean value.

The above analysis suggests that the local microstructure can

be effectively modelled in this DPD framework.
5. Conclusion
We presented a DPD model of a multi-constituent (fibre-

reinforced) artery that mimics its primary microstructural

features. To the best of our knowledge, this is the first discrete

particle model of such a biosolid. In simple pressurization

tests, the two-fibre DPD model demonstrated excellent verifi-

cation against theoretical results. The four-fibre model also

performed well in biaxial stretch tests when validated against

experimental results; it was able to reproduce the unique

mechanical behaviour of arteries in which, when held at

in vivo axial length, the axial force nearly remains constant
at all pressures, while the axial force rises with pressure

above the in vivo length and decreases with pressure below

the in vivo length. Further, we were able to model the delami-

nation process of a multi-layered specimen, which suggests

DPD is a promising approach for modelling failure and

damage in soft tissues. Most importantly, however, this

approach promises seamless particle-based fluid–solid inter-

action simulations in the future, particularly in cases of

localized tissue damage that may result in aneurysms.
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Appendix A. Derivation of fibre spring forces in
dissipative particle dynamics
To derive a DPD bond-type equivalent to the stress function

in the continuum model of Gasser et al. [6], consider stretch-

ing a two-dimensional sheet consisting of nf parallel fibres in

the x-direction from initial length l0 to l with an effective con-

tinuum cross-sectional area of Af. The fibre orientation vector

is a0 ¼ ½1 0� and the deformed fibre orientation vector is
�a0 ¼ ½l=l0 0�:

For the no dispersion case (k ¼ 0), the deformed structure

tensor [6] is given as

�h ¼ �a0 � �a0 ¼
l2

l20
0

0 0

2
4

3
5, ðA 1Þ
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and the Green–Lagrange strain-like quantity is given as

�E ¼ trð�hÞ � 1 ¼ l2

l20
� 1: ðA 2Þ

The stress function in continuum (see table 2 in [6]) is given as

c0f ¼ k1
�E expðk2

�E2Þ ¼ k1
l2

l20
� 1

� �
exp k2

l2

l20
� 1

� �2
" #

, ðA 3Þ

where k1 and k2 are two material parameters that determine

the initial stiffness and hardening behaviour, respectively.

Thus, the projected Kirchhoff stress tensor for the fibres

(eqn 4.8 in [6]) is

~tf ¼ 2c0f
�h ¼ 2k1

l2

l20
� 1

� �
l2

l20
exp k2

l2

l20
� 1

� �2
" #

0

0 0

2
64

3
75, ðA 4Þ

where the Kirchhoff stress tensor is related to ~tf through

tf ¼ p:~tf: Here p is the fourth-order projection tensor defined

as I� ð1=2ÞI� I: After some algebra, we find tf ¼ ð1=2Þ~tf:

The Cauchy stress in the x-direction is given by

s11 ¼
~tf,11

J
¼ 2k1l2

Jl20

l2

l20
� 1

� �
exp k2

l2

l20
� 1

� �2
" #

, ðA 5Þ

where J is the Jacobian, which presents the volume change. If

volume is incompressible, J ¼ 1.

Since the summation of fibre forces (in DPD or reality)

equals the stress times the cross-sectional area (in effective

continuum media), i.e.

nfFf ¼ s11Af, ðA 6Þ

the final exponential form of the DPD bond force is

Ff ¼
s11Af

nf
¼

2k1Af l2

Jnfl20

l2

l20
� 1

� �
exp k2

l2

l20
� 1

� �2
" #

, ðA 7Þ
where l and l0 are the current and unloaded bond lengths,

respectively; J ¼ 1 for volume incompressibility.

Also, it may be noted that Af/nf is the cross-sectional

area (thickness, h times the width of the sheet) divided

by the number of fibres; thus Af=nf ¼ dfh, where df is the

distance between two parallel fibres along the normal

direction, which can be calculated from the initial fibre con-

figuration along with volume incompressibility, as we

describe here. First, we assume local volume incompressi-

bility such that the local volume is preserved. Local

volume is equal to the fibre bond length l times the dis-

tance to the nearest parallel fibre, df, times the thickness

h. Thus,

V0 ¼ l0df0h0 ¼ V ¼ ldfh, ðA 8Þ

where the subscript ‘0’ denotes the initial (unloaded) value.

From this, we get an expression for dfh:

dfh ¼
l0df0h0

l
: ðA 9Þ

The values l0 and h0 are known, and df0 can be computed

from the initial configuration of the diamond grid

df0 ¼ l0 sinð2aÞ, ðA 10Þ

where a is the fibre angle and l0 sinð2aÞ is the distance

along the orthogonal direction between two parallel

edges of an equilateral diamond with sides having length

l0 and angles 2a and 1808 2 2a. The final expression for

dfh is

dfh ¼
l20 sinð2aÞh0

l
: ðA 11Þ
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